F. Akthar and C. Hahne, RapidMiner 5, Operator Reference. www.rapid-i.com, 2012.

M. Barty±, R. Patton, M. Syfert, . Salvador-de-las-heras, and J. Quevedo, Introduction to the DAMADICS actuator FDI benchmark study, Control Engineering Practice, vol.14, issue.6, 2006.
DOI : 10.1016/j.conengprac.2005.06.015

M. Barty± and M. Syfert, Using damadics actuator benchmark library (dablib)

T. Bhadra, S. Bandyopadhyay, and U. Maulik, Dierential evolution based optimization of svm parameters for meta classier design, Procedia Technology, vol.4, issue.5057, 2012.

M. Blanke, M. Kinnaert, J. Lunze, and M. Staro±wiecki, Diagnosis and Fault- Tolerant Control, 2006.

L. Breiman, R. Olshen, J. F. Stone, and C. , Classication and Regression Trees, 1984.

F. Caccavale and L. Villani, Fault Diagnosis and Fault Tolerance for Mechatronic Systems: Recent Advances, 2003.

J. Calado, J. Sá-da-costa, M. Barty±, and J. Korbicz, FDI approach to the DAMADICS benchmark problem based on qualitative reasoning coupled with fuzzy neural networks, Control Engineering Practice, vol.14, issue.6, 2006.
DOI : 10.1016/j.conengprac.2005.03.025

W. Cholewa, Real-time diagnostic expert systems, CAMES, vol.9, issue.1, p.2140, 2002.

P. Cichosz, Systemy ucz¡ce si¦, Warszawa: WNT, 2000.

W. W. Cohen, Fast eective rule induction, Twelfth International Conference on Machine Learning, 1995.

R. Cretulescu, D. Morariu, M. Breazu, and L. Vintan, Weights space exploration using genetic algorithms for meta-classier in text document classication, Studies in Informatics and Control, vol.21, issue.2, p.147154, 2012.

I. Guyon and A. Elissee, An introduction to variable and feature selection, Journal of Machine Learning Research, vol.3, p.11571182, 2003.

S. Haykin, Neural Networks: A Comprehensive Foundation, 1999.

C. W. Hsu, C. C. Chang, and C. J. Lin, A practical guide to support vector classication, 2003.

R. Isermann, Model-based fault-detection and diagnosis ??? status and applications, Annual Reviews in Control, vol.29, issue.1, p.7185, 2005.
DOI : 10.1016/j.arcontrol.2004.12.002

R. Isermann, Fault-Diagnosis Systems. An Introduction from Fault Detection to Fault Tolerance, 2006.

T. Jingyuan, S. Yibing, Z. Longfu, and Z. Wei, Analog circuit fault diagnosis using adaboost and svm, Communications, Circuits and Systems, p.118411874657978, 2008.

M. Kalisch, P. Przystaªka, and A. Timoejczuk, Application of selected classication schemes for fault diagnosis of actuator systems, Proceedings of the 2014 Federated Conference on Computer Science and Information Systems, p.13811390, 2014.

K. Kerdprasop and N. Kerdprasop, Feature selection and boosting techniques to improve fault detection accuracy in the semiconductor manufacturing process, Proceedings of the International MultiConference of Engineers and Computer Scientist, 2011.

J. Korbicz, J. M. Ko±cielny, Z. Kowalczuk, and W. Cholewa, Fault diagnosis . Models, articial intelligence, applications, 2004.

J. Korbicz and M. Kowal, Neuro-fuzzy networks and their application to fault detection of dynamical systems, Engineering Applications of Artificial Intelligence, vol.20, issue.5, 2007.
DOI : 10.1016/j.engappai.2006.11.009

J. M. Ko±cielny, Diagnostyka zautomatyzowanych procesów przemysªowych, Akademicka Ocyna Wydawnicza EXIT, 2001.

L. Kuncheva, Combining Pattern Classier: Methods and Algorithms, 2004.

L. Lam, Classier combinations: Implementations and theoretical issue, Lecture Notes in Computer Science, vol.1857, issue.7786, 2000.

A. Lile, Analyzing e-learning systems using educational data mining techniques, Mediterranean Journal of Social Sciences, vol.2, issue.3, p.403419, 2011.

W. Moczulski, INDUCTIVE ACQUISITION OF DIAGNOSTIC KNOWLEDGE FOR STATES TREE WITH COMPLEX STRUCTURE, Mechanical Systems and Signal Processing, vol.15, issue.4, p.813825, 2001.
DOI : 10.1006/mssp.2001.1389

M. Mrugalski, M. Witczak, and J. Korbicz, Condence estimation of the multi-layer perceptron and its application in fault detection systems, Engineering Applications of Articial Inteligence, vol.21, issue.895906, 2008.

M. Namdari, H. Jazayeri-rad, and S. J. Hashemi, Process fault diagnosis using support vector machines with a genetic algorithm based parameter tuning, Journal of Automation and Control, vol.2, issue.1, p.17, 2014.

R. Patton, F. Uppal, and C. Lopez-toribio, Soft computing approaches to fault diagnosis for dynamic systems: A survey, IFAC Symposium SAFEPROCESS, p.298311, 2000.

R. J. Patton, P. M. Frank, and R. N. Clark, Issues of Fault Diagnosis for Dynamic Systems, 2000.
DOI : 10.1007/978-1-4471-3644-6

S. Pöyhönen, Support vector machines in fault diagnostics of electrical motors, 2002.

F. Previdi and T. Parisini, Model-free actuator fault detection using a spectral estimation approach: the case of the DAMADICS benchmark problem, Control Engineering Practice, vol.14, issue.6, 2006.
DOI : 10.1016/j.conengprac.2005.04.001

V. Puig, M. Witczak, F. Nejjari, J. Quevedo, and J. Korbicz, A GMDH neural network-based approach to passive robust fault detection using a constraint satisfaction backward test, Engineering Applications of Articial Inteligence, vol.20, issue.886, p.897, 2007.

M. Wo¹niak, Metody fuzji informacji dla komputerowych systemów rozpoznawania, Ocyna Wydawnicza Politechniki Wrocl awskiej, 2006.

Q. Wu and Z. Ni, Car assembly line fault diagnosis based on triangular fuzzy support vector classier machine and particle swarm optimization, Expert Systems with Application, vol.38, p.47274733, 2011.

B. S. Yang, X. Di, and T. Han, Random forests classier for machine fault diagnosis, Journal of Mechanical Science and Technology, vol.22, pp.17161725-12206, 2008.

P. Yao, Z. Liu, Z. Wang, and S. Bu, Fault signal classication using adaptive boosting algorithm, Elektronika ir Elektrotechnika, vol.18, issue.8, 2012.