Convolutional Neural Networks for Large-Scale Remote Sensing Image Classification

Emmanuel Maggiori 1 Yuliya Tarabalka 1 Guillaume Charpiat 2 Pierre Alliez 1
1 TITANE - Geometric Modeling of 3D Environments
CRISAM - Inria Sophia Antipolis - Méditerranée
2 TAO - Machine Learning and Optimisation
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : We propose an end-to-end framework for the dense, pixelwise classification of satellite imagery with convolutional neural networks (CNNs). In our framework, CNNs are directly trained to produce classification maps out of the input images. We first devise a fully convolutional architecture and demonstrate its relevance to the dense classification problem. We then address the issue of imperfect training data through a two-step training approach: CNNs are first initialized by using a large amount of possibly inaccurate reference data, then refined on a small amount of accurately labeled data. To complete our framework we design a multi-scale neuron module that alleviates the common trade-off between recognition and precise localization. A series of experiments show that our networks take into account a large amount of context to provide fine-grained classification maps.
Type de document :
Article dans une revue
IEEE Transactions on Geoscience and Remote Sensing, Institute of Electrical and Electronics Engineers, 2016
Liste complète des métadonnées



https://hal.inria.fr/hal-01369906
Contributeur : Emmanuel Maggiori <>
Soumis le : lundi 13 mars 2017 - 15:21:49
Dernière modification le : mercredi 15 mars 2017 - 01:07:33
Document(s) archivé(s) le : mercredi 14 juin 2017 - 14:02:56

Fichiers

Maggiori_final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01369906, version 1

Citation

Emmanuel Maggiori, Yuliya Tarabalka, Guillaume Charpiat, Pierre Alliez. Convolutional Neural Networks for Large-Scale Remote Sensing Image Classification. IEEE Transactions on Geoscience and Remote Sensing, Institute of Electrical and Electronics Engineers, 2016. <hal-01369906>

Partager

Métriques

Consultations de
la notice

709

Téléchargements du document

2896