
�>���G �A�/�, �?���H�@�y�R�j�d�y�k�8�k

�?�i�i�T�b�,�f�f�?���H�X�B�M�`�B���X�7�`�f�?���H�@�y�R�j�d�y�k�8�k

�a�m�#�K�B�i�i�2�/ �Q�M �R�y �P�+�i �k�y�R�e

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�a�K���`�i�T�?�Q�M�2�@�#���b�2�/ �l�b�2�` �G�Q�+���i�B�Q�M �h�`���+�F�B�M�; �B�M �A�M�/�Q�Q�`
�1�M�p�B�`�Q�M�K�2�M�i

�o�B�2�i �*�m�Q�M�; �h���- �.�Q�K�B�M�B�[�m�2 �o���m�7�`�2�v�/���x�- �h�`�m�M�;�@�E�B�2�M �.���Q�- �1�`�B�+ �*���b�i�2�H�H�B

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�o�B�2�i �*�m�Q�M�; �h���- �.�Q�K�B�M�B�[�m�2 �o���m�7�`�2�v�/���x�- �h�`�m�M�;�@�E�B�2�M �.���Q�- �1�`�B�+ �*���b�i�2�H�H�B�X �a�K���`�i�T�?�Q�M�2�@�#���b�2�/ �l�b�2�` �G�Q�@
�+���i�B�Q�M �h�`���+�F�B�M�; �B�M �A�M�/�Q�Q�` �1�M�p�B�`�Q�M�K�2�M�i�X �A�M�i�2�`�M���i�B�Q�M���H �*�Q�M�7�2�`�2�M�+�2 �Q�M �A�M�/�Q�Q�` �S�Q�b�B�i�B�Q�M�B�M�; ���M�/ �A�M�/�Q�Q�`
�L���p�B�;���i�B�Q�M �U�A�S�A�L�V�- �P�+�i �k�y�R�e�- �J���/�`�B�/�- �a�T���B�M�X �k�y�R�e�X �I�?���H�@�y�R�j�d�y�k�8�k�=

https://hal.inria.fr/hal-01370252
https://hal.archives-ouvertes.fr

Smartphone-based User Location Tracking in Indoor Environment

Viet-Cuong Ta1;2, Dominique Vaufreydaz1, Trung-Kien Dao2, Eric Castelli2

1 Pervasive Interaction/LIG, CNRS, University of Grenoble-Alpes, Inria, France
2 MICA Institute (HUST-CNRS/UMI2954-Grenoble INP), Hanoi University of Science and

Technology, Vietnam

Author Version

Abstract

This paper introduces our work in the framework of Track 3 of the IPIN 2016 Indoor Localization
Competition, which addresses the smartphone-based tracking problem in an o�ine manner. Our approach
splits the path-reconstruction into several smaller tasks, including building identi�cation, �oor identi�cation,
user direction and speed inference. For each task, a speci�c set of data from the provided log data is used.
Evaluation is carried out using a cross validation scheme. To produce the robustness again noisy data,
we combine several approaches into one on the basis of their testing results. By testing on the provided
training data, we have a good accuracy on building and �oor identi�cation. For the task of tracking the
user's position within the �oor, the result is 10m at 3rd-quarter distance error after 3 minutes of walking.

1 Introduction

With the widespread of the smartphone and related technologies, tracking users through their phones becomes
one of the main research topics of user positioning. Track 3 of the 2016 IPIN Competition addresses the
problem in an o�ine scenario. The data are collected by the organizers in a setup that is similar to the real
world situations of daily phone usage. The data thus comes with some noisy and unexpected patterns. Moreover,
the required tracking length is at a large scale in term of space and time.

The objective of the competition is to construct as close as possible the path of the users, providing we have
full access to data in the smartphone. The number of the users is not speci�ed. Meanwhile, there are four
di�erent phone models, which are Samsung Galaxy S3, Samsung Galaxy S3 mini-model, Samsung Galaxy S4
and Google Nexus 5. The collected data contains 12 di�erent types of sensor. Each sensor can be viewed as an
independent data stream which have speci�c update rate (samples per second) and sensor's value output. Due
to the hardware dependent properties, each data stream are likely to have some di�erences for a speci�c phone
model. The collected area involves four di�erent building with multiple �oors. The competition then requires
to identify the user's position which includes the building, the �oor of the building and the latitude/longitude.
The evaluation score is a function of building, �oor and the distance errors. While the building and �oor errors
penetrate a wrong prediction with a building cost and �oor cost, the distance error is calculated by the 3rd-
quarter of the distance errors of all the valid points. A valid point is a point which is predicted with the right
building and �oor. The position of the user is needed to update every 0.5 second. The training data includes
several routes for each building and also has ground truth positions. It is up to contestants to use which types
of sensor to track the phone. One important note is that the phone is not required to be handled in a same
position throughout the collecting process. There are also supplementary data which include all the building
maps and videos of the data collection process.

Intuitively, the process of user tracking starts from identifying building to the �oor of the building and then
the 2D positions within the �oor. We select some speci�c subset of sensors to carry out these tasks (see Fig. 1):

� Identifying building: using GPS value (GNSStag) and appeared Wi-Fi MAC address data (WIFI tag).

� Identifying �oor: using Wi-Fi data to build �ngerprinting database, then learning �oor ID from the
database by several models.

� Approximating the 2D path: we assume that for each �oor, the user needs to enter and leave at some
speci�c points. The remaining task is to reconstruct the path from these two locations. For solving this,
we apply a particle �lter. The moving model bases on the inertial data, which are accelerometer, magnetic
and gyroscope sensors. Additional adjustment steps are carried out, which could based on Wi-Fi data or
map information.

1

2 RELATED WORKS 2

Building
Identification

Floor
Identification

Path
Approximation

Path Adjustment

GNSS

WIFI

ACCE, MAGN,
GYRO

Map

User�·s Path

LO
G

G
ED

 D
AT

A
PATH

 REC
O

N
S

TR
U

C
TIO

N

Figure 1: Possible use of sensors type for path reconstruction

While it is straightforward to �nd stable approaches for identifying building and �oor, the path approxima-
tion within each �oor remain the biggest challenge. The data brings out many practical problems. In term of
wireless positioning approach, the system has to handle a spare Wi-Fi �ngerprinting database, unreliable scan-
ning periods and multiple devices. For tracking through inertial data, there is no guarantee that the phone's
sensors are calibrated. It is therefore di�cult to create a robust system that can identify all these types of issue.
In our approach, we start to build the path from a simple solution, based on inertial sensors. Then, we try to
integrate more sources of information to reduce the drifting errors over time. Several approaches are proposed
and tested on a selected path of the provided data. As our best results to now, we can reach around 10m in 3
minutes and 24.5m in 7 minutes, at 3rd-quarter error.

The rest of the paper is arranged as follows. Related works are presented in Section II. Then, we propose
our approach for identifying building and �oor in Sections III and IV, respectively. In Section V, we try to
solve the problem of path approximation with the objective to minimal the distance error. Finally, Section VI
provides our summary on the works.

2 Related works

The most straightforward way to track a smartphone is to use the GPS/GNSS data. The GPS/GNSS data
is a built-in functionality in most of the smartphone models today. However, its performance in the indoor
environment is questionable due to the blocking e�ect of surrounding environment [12]. Other alternative
wireless tracking technologies include RFID, Cellular-Based, UWB, WLAN and Bluetooth [9]. Among them,
WLAN has got the most attentions because of its availability in the real world environment. One of most
well-known approach for WLAN is �ngerprinting, which the traditional positioning problem is transformed to
a statistical learning problem. As reported in [15], �ngerprinting models can reach the error as low as 2m for
indoor environment. In a wild application setup, the approaches stay around 6m with mean squared distance
error. These kind of data and results are available in Track 3 of the 2015 IPIN Competition [13]. Compared to
the normal database which is used in �ngerprinting, the Wi-Fi database extracted from the provided data in
the 2016 Competition is relatively small and sparse. There are also four di�erent phone models, which lead to
a source of noise on hardware variation [7].

Besides WLAN data, the smartphone can be tracked by signals from its inertial sensors. Three types of
sensors, i.e., accelerometer, mangnetometer and gyroscope, provide a good estimation for the phone's movements
to some extend. In general, several techniques have been developed for inferring the movements from the signals
of inertial sensors [6]. Normally, the task is divided into two parts: one for �nding the speed and the other for
the direction. One of the principal challenges in user tracking is to handle the drifting e�ects of the sensors.
Kalman and particle �lters are two popular choices to work against these problems for short-term errors. For
the long-term drifting, it is normally required to have a calibration technique in addition [8]. The direction of
using map information is also feasible and is discussed in [14][1].

In terms of �nding the direction, there exists some advance �lters such as Madwgick �lter [10] and Mahony
�lter [4]. It should be noted that the sensors equipped in smartphones nowaday usually contain much noise. For

3 BUILDING IDENTIFICATION 3

Table 1: Number of Wi-Fi scans on UAH Building data

Route All Floor0 Floor1 Floor2 Floor3 AvgDistance
R1-S3 80 20 32 19 0 5.77
R1-S4 139 23 54 45 0 4.30
R2-S3 97 64 0 0 19 6.08
R2-S4 149 92 0 0 36 4.82
R4-S3 40 0 18 16 0 4.72
R4-S4 64 0 19 38 0 4.02
Total 569 199 123 118 55 4.96

Android devices, the errors can be as large as60� for 3 minutes of tracking [16]. On the other hand, tracking
the user speed could be more straightforward if we can have the constraint that there are only two movement
patterns, namely standing and walking. The number of steps can be counted and then multiplied with step
length to �nd the moving distance [8].

3 Building Identi�cation

In the supplementary data, each building is included with the WGS coordinates of the building. By using
these coordinates, the distance between pair of buildings is calculated. There is only the case of UJITI and
UJIUB, which have a distance of around 450m. The other pairs are quite far from each other. Beside that, each
building comes with a speci�c set of observedMAC_BSSID. There is no MAC_BSSIDbelong to two buildings. We
then assume that GNSS data and appearedMAC_BSSIDcould be used to identify the building e�ciently.

4 Floor Identi�cation

In this task, we select the UAH building data for validating our model because it has a high number of observed
Wi-Fi stations. There are 353 MAC_BSSIDrecords appeared in the given data.

4.1 Fixing the POSI data and create the groundtruth data

The training data include POSI tag, which is the checkpoints along the user's trajectory. The time period
between consecutivePOSIrecords varies and is longer than the required sampling time, which is 0.5s. In most
cases, the user takes a linear trajectory between two subsequentPOSI records. However, there are several
segments which do not follow the observation. It is thus mandatory to correct those segments. We add some
virtual checkpoints along the ambiguous segments. The timestamp together with these virtual checkpoints are
calculated from the ratio between the virtual moving distance and the time to complete the real segment. Those
virtual checkpoints are put manually on the basis of the provided maps and videos. The small parts where the
trajectory crosses the stairs are not corrected.

After �xing the trajectory, the position at a �xed time t will be computed by a linear interpolation between
two consecutive checkpointsPi and Pj , respectively, before and aftert. The Wi-Fi �ngerprinting database is
then created by joining the groundtruth position with the Wi-Fi signals recorded in the log �le. Each WIFI
record is provided with: application timestamp (AppTimeStamp), sensor level timestamp (SensorTimeStamp),
name (Name_SSID), MAC address (MAC_BSSID) and signal strength (RSS). The SensorTimeStamp�eld of the
WIFI record is used as the time indicator for Wi-Fi.

To produce a completed scan fromWIFI records, the appeared sensor times are grouped into separated time
periods. Each period has the length of 4.5s. Speci�cally, twoWIFI records are considered in a same scan if the
di�erence in their SensorTimeStampis less than 4.5s. From the completed scan, we create a feature vector of
353 dimensions, and set the reported RSS value of seen Wi-Fi stations as the feature value. If there is an unseen
Wi-Fi station in the completed scan, its value is set to a constant value (WIFI_ZERO).

4.2 Wi-Fi �ngerprinting results on �oor identi�cation

The UAH building comes with four �oors (ID from 0 to 3). There are 3 routes in total, with two di�erent
devices, namely Samsung Galaxy S3 and Samsung Galaxy S4. Table 1 shows the extracted number of the
Wi-Fi �ngerprinting data. The All column is the number of the POSIrecords appeared in the log �le. The
AvgDistance is the average distance between consecutive completed Wi-Fi scans. The stats indicate that the
two phone models Samsung S3 and S4 have some variation within the Wi-Fi scanning data.

5 PATH APPROXIMATING WITHIN A FLOOR 4

Table 2: Floor accuracy on 5 folds cross validation

Id Model Raw 2-�lter HLF
1 RF classifer 95.52% 94.28% 92.70%
2 RF regressor 89.80% 91.82% 93.76%
3 KNN classi�er 91.47% 91.30% 91.47%
4 KNN regressor 90.60% 90.33% 90.69%
5 XGB classi�er 98.24% 97.80% 97.36%
6 XGB regressor 99.38% 98.41% 98.77%

In the task of learning the �oor ID, we apply three family models: K-Nearest Neighbour (KNN), Random
Forest (RF) [2] and Extreme Gradient Boost (XGB) [3]. While KNN is a popular choice to work with the Wi-Fi
�ngerprinting data, the others propose learning abilities on a small amount of training data. We also vary the
set of features:

� Raw features: The RSS value is used as default value. In case of KNN model, the Euclidean distance is
used. We setWIFI_ZEROto � 150.

This value is sensitive for the KNN models. The other models, based on decision tree, are unlikely a�ected.

� Filtering [11]: The set of features is derived from the winner of Track 3 of the 2015 IPIN Competition. In
our experiments, instead of splitting into groups like their proposal, we add an addition ofD features to
represent that. The level of �lters is set to two, namely 2-�lters. Assume that among D access points, if
the i th and j th ones have the highest reported RSS, we set the value ofi th and j th in D additional features
to an INFINITE value. This was can ensure the robustness of Euclide distance. The total number of
features after this operator is2D .

� Hyperbolic Location Fingerprinting features [7]: The feature comes from the fact that the data come from
two di�erent devices. We simply take the subtraction of the RSS values as the feature between Wi-Fi
access pointsi , j . Normally, using HLF features would results into D � (D � 1)=2. Because of the little
amount of data we have got, it would be unpractical for training model if we use such an large number
of dimension (around 500 samples against over 60000 dimensions). An additional dimensional reduce
step thus is necessary. In our experiments, we use the Random Tree Embedding approach [5] to get a
700-dimensional vector approximately.

Each type of model is tested with both options, i.e., classi�er and regressor. In the �oor learning task, it is
straightforward to use a classi�er to learn the feature space. In case of using a regressor, the target is a real
number indicating the �oor, and the output is also a real value x in the range of [0; 3]. In order to converting
from x to a �oor ID, we use a cut vector C = f c1; c2; c3g. A value x is classi�ed to the Floor i if x � ci +1 ,
otherwise, x is classi�ed as the Floor 3. The value ofC could be computed directly on training data as an
sub optimization step. After the regression model is trained, we get the model's prediction values on all the
training data. Then, C is selected in a way that maximize the prediction accuracy of the prediction values and
the training targets. On the other hand, this method yields a potential over�tting issue.

Table 2 shows the results on 5 folds random cross validation. XGB regression model with Raw feature get the
highest results. There is no signi�cant separation between three types of features. The using of regressor with
an additional layer of optimization could provide a good solution to the �oor identi�cation. It can be explained
that the label, which is the number of �oor actually, contains some continuous relationship. For example, in
the vector space, the samples of Floors 0 and 1 could be overlapped easily than those of Floors 0 and 2.

5 Path Approximating within a Floor

At this point, based on the �oor cross validation results, we assume that the �oor is able to be predicted
correctly. Therefore, the remaining task is to approximate the trajectory within the �oor. Moreover, as the
users can only use stairs or elevators for moving out or into the �oor, the task could be reduced to �nd an
approximate path from a starting point. In other cases, GNSS data and Wi-Fi data could be used to �nd out
the point. As it is simple to produce correct groundtruth path for it, we select Floor 1 from UAH building for
testing the idea on path approximation within the �oor.

5.1 Using GNSS data

The GNSS data comes with the latitude/longitude of the smartphones. Table 3 provides the details of the
GNSS data within Floor 1.

5 PATH APPROXIMATING WITHIN A FLOOR 5

Table 3: GNSS data on the Floor 1 of UAH Building, the errors is reported by 3rd-quarter errors

Route N Update rate Longest missing Error
R1-S3 44 9.5s 25.0s 466.2m
R1-S4 186 2.3s 127.0s 29.4m
R4-S3 14 7.7s 20.0s 15.6m
R4-S4 0 - - -

Figure 2: The green dots are the training Wi-Fi points, and the blue dots denote the center of the clusters. The
radius of the clusters circle is set to 10m to visualize the quality of the clustering.

There exists a signi�cant di�erence in the update rate between two phone models, Samsung Galaxy S3 and
Samsung Galaxy S4. The S4 phone is updated more frequently than the S3 one. On the other hand, the S4
phone su�ers a large missing period. This would make using the GNSS data from the S4 less reliable. The
expected errors for using GNSS data is around 30.0m. However, the results is likely unstable.

5.2 Inferring position using Wi-Fi data

The same feature set and models from previous experiments are used. It is straightforward that regressor
type models can be applied for learning the position from the Wi-Fi data. For the classi�ers, it is possible to
transform the 2D coordinates target, including latitude and longitude, to a label. The most popular way is to
divide the area into several smaller grids of �xed size. Another approach could involve manually picking the
points by using the provided map. In our experiment, we perform a K-means clustering on latitude, longitude
of all the groundtruth points. Figure 2 is a result of K-mean clustering with the number of centers �xed to 15.

Table 4 reports the distance errors on 5 folds cross validation. With the total of 123 available points, the
e�ective training samples are around 100 points and 23 points for testing. The best result are around 6.0m by
using XGB model with 2-�lters feature. In fact, there is a similar performance between three set of features.
With three set of features, we prefer to use the HLF feature set because the device noise could be high, especially

Table 4: Errors on Floor 1, UAH building for 5 folds cross validation, report by 3rd-quarter errors

Id Model Raw 2-�lters HLF
1 RF classifer 10.6m 11.5m 12.9m
2 RF regressor 13.6m 16.1m 16.4m
3 KNN classi�er 10.3m 10.3m 10.3m
4 KNN regressor 9.7m 9.4m 9.1m
5 XGB classi�er 6.6m 6.0m 6.2m
6 XGB regressor 9.1m 8.6m 8.7m

5 PATH APPROXIMATING WITHIN A FLOOR 6

we only have a small size of training data. With the tree-based model, classi�er approaches outperform the
regressor ones. At this step, we can build the user path by interpolating the outputs of the Wi-Fi model.
However, like in GNSS data, there is also a long period of time that the phone does not receive any new Wi-Fi
data. The errors also are unpredictable if the user moves too far from the appeared area in the training data.

5.3 Inferring direction using magnetic, accelerometer and gyroscope sensors

In order to identify the phone's direction, we look into the data of four types of sensors: magnetic sensor (MAGN
tag), accelerometers (ACCEtag), gyroscope (GYROtag) and ahrs sensors (AHRStag).

The sampling rate is not the same between those types of sensors and between di�erent phone models. In
addition to that, the rate can vary in a great range for a walk of the user For example, in the GYRO data of
S3 model, it is updated with every 5ms in average. However, at some point, it takes 25ms to get the new data.

Several ways of extracting the phone's direction are tested, including:

� Based on magnetic and accelerometer (AccMag): at time t, the data from nearest MAGNand ACCEread
are used for constructing the rotation matrix. Then, the AccMag orientation is devised from the matrix.
This is the most standard way for �nding the phone orientation. The value of AccMag orientation is
supposed to be the low update rate part of the direction. It is then fused with the high update rate part
by two other methods, which evolves the integration of the gyroscope data.

� Based on the integration of gyroscope (GYRO): the values are used to feed to the system with theSensorT imestamp
value. The integration is then calculated on 3-axis, Azimuth, Pitch and Roll. An further step of fusion is
added by using a constant� :

Gyro = (1 � �) � IntegratedGyro + � � AccMag (1)

where � is a threshold weighting contribution of these two factors.

� Use Madgwick �lter [10]: the �lter is designed to �x the magnetic disortion and gyroscope drifting errors
in commercial IMU. It uses a quaternion representation for accelerometer and mangnetometer data. An
optimized gradient-descent algorithm is employed to track the gyroscope errors. In our implemenation
of Madgwick �lter, we downsample both gyroscope and magnetic data to be equal to the update rate of
accelerometer data. The starting quaternion is calculated directly from theAccMag above.

� Using AHRSdata directly: AHRSdata is received every 0.02 second for both S3 phone and S4 phone,
roughly.

From all of the approaches above, we use the value of Azimuth axis (or Yaw) as the user's direction. The
direction can have the update rate as high as 0.02 second, which is equal the update rate of accelerometer
sensor. Therefore, before intergrating with the speed, it should be downsampled.

5.4 Inferring the moving distance using accelerometer sensor

Figure 3 plots the Z -axis of accelerometer when the user's movement contains both standing and walking
movement. There are speci�c patterns in the signal. For simplicity, we calculate the standard deviation for a
�xed window length dt and use a thresholdM for splitting between standing and moving. In order to �nd the
suitable value of M , the standard deviation of Z -axis is computed on all the data (Fig. 4). From the �gure,
there is a point which the standard deviation pattern changes signi�cantly. In this case, the point is around
0.1. Therefore, it is straightforward for choosingM = 0 :1 in this case.

Whenever the standard deviation of a window lengthdt is aboveM , we infer the moving distance as:

MovingDistance = AvgSpeed� dt (2)

where AvgSpeedis the average speed over the �oor, which could be calculated based on the training data. The
local variance of the user's speed is discarded here. We choose to calculate the moving distance based on the
AvgSpeedinstead of the number of steps because the user's step length is not available.

5.5 Combining the direction and moving distance for the full path approximating

From the calculate direction and moving distance, we downsample by a window of time lengthdt = 0 :5 second,
which meets the requirements of the competition.

The approximating path will be built by using particle �lter, which is a popular choice in this task. As our
observations on the data, it is di�cult to create an e�ective observation model from the Wi-Fi scanning results.

5 PATH APPROXIMATING WITHIN A FLOOR 7

Figure 3: Z -axis plot of walking and standing movements

Figure 4: Cumulative density function of standard deviation for each window length of 0.2s, i.e 10ACCEdata
packages.

There are two main reasons: �rstly, there exists long periods of time in the data that Wi-Fi scanning result does
not present; secondly, after 4 seconds in general, there could be a huge drifting in the particle's position which
can not be adjusted by the Wi-Fi �ngerprinting results. Therefore, our particle �lter have only the moving
model.

To evaluate our approaches, we choose the Route 1 at UAH building. The data is extract from the user's
walk with the Samsung Galaxy S3 phone model. The period when the phone entered and left the Floor 1 is
from 132.25s to 565.00s, approximately. To prevent the drifting errors, we use only 3 minutes from that period
length.

Table 5 shows the results in term of mean squared distance error (MSE), mean error and 3rd quarter error.
During a period of 3 minutes, Gyro and Madgwick Filter reach a similar error of 20.0m. The Gyro approach
still is more stable than the Madgwick �lter as it has both a low MSE and the median error. Meanwhile, the
others, AccMag and AHRS, cannot provide a good approximation of the phone's direction.

We plot the output paths in Fig. 5. The turning angles from the Gyro and Madgwick �lter are highly
correlated with the user's movements. The under-performance of Madqwick �lter could come from our speci�c
implementation on the identifying the �rst quaternion. The technique suggests that a motion stop is needed,
instead of calculating it directly as in ours. In addition to that, there is a downsampling step for GYROand MAGN
data, which could introduce more noise.

Compare to the performance of Gyro and Madwick �lter, the correlation of AHRS and AccMag is quite low.
It is reported that the magnetic sensor has a poor performance in the indoor environment. Moreover, there
is not guarantee that a calibration process of the magnetic sensor is carried before the data is collected. As
the magnetic data are presented in computing the direction of Gyro and Madgwick �lter approaches, it could
possibly reduce the accuracy of those output directions.

5.6 Path adjusting

In the above setup, the drifting error could be as high as 20m after only 3 minutes approximation. For a longer
period, i.e. 7 minutes in this speci�c case, the error is likely unpredictable. Therefore, additional calibration
steps should be employed for controlling the drifting a�ects. There are several sources of data could be used
for this purpose, which includes GNSS, Wi-Fi and map information. Comparing between GNSS and Wi-Fi, the
Wi-Fi data has a more stable update rate and also a better accuracy. Therefore, using the Wi-Fi data to adjust

