N

N

Lightweight Resource Management for DDoS Traffic
Isolation in a Cloud Environment
Ibnu Mubarok, Kiryong Lee, Sihyung Lee, Heejo Lee

» To cite this version:

Ibnu Mubarok, Kiryong Lee, Sihyung Lee, Heejo Lee. Lightweight Resource Management for DDoS
Traffic Isolation in a Cloud Environment. 29th IFIP International Information Security Conference
(SEC), Jun 2014, Marrakech, Morocco. pp.44-51, 10.1007/978-3-642-55415-5_4 . hal-01370352

HAL Id: hal-01370352
https://inria.hal.science/hal-01370352

Submitted on 22 Sep 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://inria.hal.science/hal-01370352
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Lightweight Resource Management for DDoS Traffic
Isolation in a Cloud Environment

Ibnu Mubarok!, Kiryong Lee!, Sihyung Lee? and Heejo Lee!

! Korea University {ibnu, krlee, heejo}@korea.ac.kr
2 Seoul Womens University {sihyunglee}@swu.ac.kr

Abstract. Distributed denial-of-service (DDoS) attacks are one of the most dif-
ficult issues in network security and communications. This paper is a part of
research project that applies distributed defense against distributed attacks. The
aim of this project is to provide services by distributing load from one main server
to an infrastructure of cloud-based replicas. This paper proposes a lightweight
resource management for DDoS traffic isolation in cloud environments. Exper-
imental results show that our mechanism is a viable approach for dynamic re-
source scaling under high traffic with distributed resource location.

Keywords: Cloud computing, DDoS attack, resource management

1 Introduction

Existing DDoS mitigation solutions can be categorized by their approach: victim-based
and network-based. Victim-based solutions focus on the mitigation of an attack at the
client side, while network-based solutions protect the attack at routers. Victim-based so-
lutions suffer from several drawbacks, such as the need for oversized server resources.
Network-based solutions often suffer from link congestion and other challenging issues.
New types of attacks, such as Layer-7 DDoS attacks, also contribute to the difficul-
ties with network-based solutions. Several methods use a signature-based approach, in
which attack signatures are automatically shared among service providers [1]. However,
the collection and analysis of these signatures are time consuming. Content delivery
network (CDN)-based approaches, such as Akamai [5] and CloudFlare [3], typically
use cache servers, and therefore, they are vulnerable to cache pollution attacks such as
false-locality and locality-disruption attacks [8], [4]. Attackers might continue to send
requests for unpopular data and pollute the cache stored in different locations within
the network topology, leading to service disruption and incurring additional costs.
Enormous resource capacity and ease of scalability in cloud computing could be
beneficial to protecting services from DDoS attacks. Many companies and researchers
are considering the use of a cloud as a shield from DDoS attacks. However, one concern
with this approach is the resource usage. Because one component of billing for cloud
services is resource usage and most DDoS attacks aim to deplete a servers resource.
However, if critical services are being targeted, and those services cannot be shut down,
there is no other option but to keep the service alive using the clouds massive power.



This paper proposes a lightweight resource management for isolating DDoS traffic
in a cloud environment. Our work focuses on resource allocation management and pro-
vides a mechanism for scaling resources under DDoS attack. In this paper, we describe
a simple resource placement based on response time and a modified threshold-based
scaling mechanism to ensure resource availability.

The main contribution of this research is to propose and evaluate a simple yet effec-
tive mechanism for resource scaling and allocation management in a cloud environment
under a DDoS attack. Further, this mechanism can be used when the large bandwidth
consumption from other legitimate applications lead to the degradation of the servers
quality of service (QoS).

2 Distributed Defense Against Distributed Attacks

2.1 DROPFAST

This paper is a part of a research project that is attempting to apply distributed defense
against distributed attacks. The project, DROPFAST, is based on the idea of providing
efficient and secure service by distributing the load from one main server to an infras-
tructure of cloud-based replicas of the main protected server [7].

Our project is based on the use of the massive computing power of the cloud infras-
tructure as well as the distributed nature of the cloud to protect the system from DDoS
attacks. Our goal is to distribute DDoS traffic inside the cloud environment, guarantee-
ing that the main server remains accessible to legitimate users. Anomalous users are
directed to a replica server in the cloud, whereas an obvious attacker is directed to the
quarantine server.

We define the main server as our primary server in which the services must be pro-
tected during a DDoS attack. Replica servers are virtual machine resources in the cloud
comprising an image of the original server. Based on traffic classification, legitimate
users can access the original server, whereas users are forced to access the replicas. We
can not simply drop the suspicious traffic, as it is the gray area in which user might be
legitimate. For DDoS detection, we use an open source IDS such as Snort system since
detection is not our main research focus. To distribute traffic, we apply DNS-based
traffic redirection.

As today’s services depend on multiple resources, all the independent resources
might be replicated in several locations. Our prototype implementation only mentions
about one type of resource, which is a web server, but the concept and idea could be
extended as well.

2.2 Problem Statement

In a cloud, computing resources must be allocated and scheduled in such a manner
that providers achieve high resource utilization and users meet their applications per-
formance requirements with minimal cost. This task is related to cloud resource man-
agement. Based on the idea of providing service by redistributing load from one main
server to an infrastructure of cloud-based replicas, in addition to proper traffic isolation



and user classification, a clouds resources can be managed to efficiently mitigate DDoS
attacks. Therefore, to guarantee service availability, a cloud service provider must pro-
vide effective resource management for handling DDoS traffic.

3 Lightweight Resource Management

3.1 Overview

An implicit goal of our work is to minimize cost when serving resource to client. In
order to do so, we must ensure that our scaling mechanism works effectively and ef-
ficiently. One option is to significantly minimize resource consumption by selecting
the best replica locations and allocate a minimum number of resources to each replica.
Therefore, our mechanism consists of two main phases: (1) Replica Location Activa-
tion; responsible for selecting the best replica placement among these potential loca-
tions. (2) Dynamic Scaling; phase when the system triggers an increase or a decrease in
the amount of allocated resources in the server, using modified-threshold based scaling.

3.2 Replica Activation and Deactivation

We assume that replica servers are deployed in N predefined locations. In this setting,
our objective is to choose M replicas (M < N) and activate selected replicas, such that
congestion is minimized near the main server. Figure 1 shows the ideal result when we
activate one replica (M = 1). The high load of attack traffic is redirected to the location
furthest from the main server, thus relieving the load near the main server. Legitimate
traffic can still access the main server.

Attaacker

\g “Q Normal User
HE wh ¥

Activate replica @

location ’ m ﬁﬁ
Replica farm 2

Replica farm 1

AIH § ~a IOH

Replica farm 3

-

=i

Dropfast-Core

JEmm—

Main server

Fig. 1: Replica activation. After activating replica farm 1, traffic from attackers will be
redirected from the main server to replica farm 1



Because our ultimate goal is to minimize congestion near the main server, we need
to define a measure of congestion. For our purposes, we use the response time at the
main server. The response time is a straightforward metric that represents a servers
availability. A benefit of using this metric is that it can be measured by probing the
server from the outside, and it does not require installing a probing agent at the server.
The installation of additional agents in the server is often a sensitive issue, because such
modifications may degrade the servers performance or lead to failure.

According to the objective and the measure of congestion, the optimal solution is
to choose an M-subset of replicas with a minimal response time out of all possible
M-subsets. However, identifying such a subset is not practical when N is large. The
evaluation of all possible M-subsets can take a significant amount of time, and quick
decisions are necessary when under DDoS attack. Therefore, we propose an approxi-
mation algorithm, a greedy method that performs M iterations and chooses one replica
at each iteration. This greedy algorithm works as follows:

1. At the beginning of the iterations, none of the N replicas are activated.

2. Ateach iteration, we evaluate all of the replicas that are not yet activated. In partic-
ular, we compute two metrics: (i) the response time from each replica to the main
server, and (ii) the hop count from the replica to the main server.

3. We choose the replica with the highest response time, assuming that the area around
this selected replica is more congested than other areas. The response time is mea-
sured by sensor agents, which are deployed in every replica farm, and which send
TCP SYN and simple HTTP requests to the main server on a regular basis.

4. In step (3), if more than one replica yields the same highest response time, we
choose the replica with the highest hop count. Such a selection ensures that the
attack traffic is redirected at the farthest possible location from the main server.

5. We activate the selected replica, and then repeat steps (2)-(4), until M replicas are
activated.

To summarize, we activate one replica R at a time, selecting the replica with the
highest response time and hop count. We expect that this will redirect the largest amount
of traffic to R and that this redirection will occur at the location farthest from the server.
One advantage of the proposed greedy algorithm is that it does not require the network
topology information. Retrieving the latest topology information may not be practical,
particularly when the network has thousands of nodes and the topology (and routing)
changes frequently.

In the evaluation, we compare the proposed algorithm with two traditional methods
that have been used for resource placement: (i) Random placement: randomly chooses
M replicas among N potential sites (M < N) according to the uniform distribution, and
it does not depend on traffic workload. (ii) Hotspot placement: This algorithm selects
replicas near the clients that generate the highest load [6]. In particular, the algorithm
sorts the N potential sites according to the amount of trafc generated within their area.
The algorithm then selects the M sites that generate the largest amount of trafc.

In most cases, DDoS attacks only occur for a certain amount of time. To deacti-
vate the replica location, we check the status of the attack using DDoS detection soft-
ware/module, whether it is still under attack. The sensor agent then checks the response



time. If the response time is gradually returning to normal, there is no congestion, the
traffic load returns to normal, and the server health check yields a normal status, the
server is in a healthy condition. At this point, we deactivate the replica location. If there
are many replica locations, we select the replica location where no congestion is de-
tected or where there is the smallest response time. This purpose of the replica location
deactivation is resource saving.

3.3 Scaling Condition

In this section we explain how our scaling mechanism works. Initially, we start with
a low number of machines and gradually increase the load to determine the number of
resources required. This approach helps us avoid a situation where we need to reduce the
number of machines (M -1) at each iteration. The number of resources required must
be estimated accurately so that they can be provisioned within the cloud infrastructure.

Normally, a simple threshold consists of two lines, the upper threshold and lower
threshold. This simple threshold might not sufficiently capture traffic fluctuation and
adapt to changes. Therefore, we use a four-line threshold-based mechanism. We use a
modified threshold mechanism to dynamically change the resource allocation for cer-
tain threshold configurations. Using a threshold is a straightforward method to scale
resources, and it is shown to be effective in any type of scenario. If the performance
metric overpassed the invocation threshold, for a certain time, the system will perform
invocation. Similarly, when the performance metric is under the revocation threshold,
the system will automatically perform revocation. Figure 2 shows the threshold-based
approach for invocation. Invocation is a process by which a system increases the re-
source allocation, whereas revocation decreases the current resource allocation.

Tmunimi Trenitor

PM

Fig. 2: Invocation condition

The four lines of threshold are: threshold invoke(6;,,,,), bumper invoke(S3;,,,, ), bumper
revoke(B; ey ), and threshold revoke(6,..,,). We use four lines because a metric that goes
beyond the original threshold might only stay momentarily above a certain point, and
the additional threshold (bumper) can help us determine if the situation is lasting. For
the first interval, if the performance metric value exceeds the invocation threshold, we
start the timer to monitor the systems status. During this monitoring period, we collect



the performance metric value until the monitoring time ends. If the stop value is located
above the bumper invocation threshold, there is a high probability that current resource
allocation is stressed. If the last PM (M,p) value is above Sinv and below finv, and
the average PM value is also above fBinv, we perform invocation with a one-by-one
increase. If the average PM value is above finv, and the M stop value is also above
finv, we conduct invocation with a two-fold increase. This is similar to TCPs slow
start, we do ‘x 2’ to reach the top as soon as possible at the beginning of a DDoS. Once
we are near the top, we do “+1” to gradually increase the number of replicas. In ad-
dition to the invocation condition, the revocation condition has the same principle for
deciding the revocation step, but with a different direction value. The monitoring starts
when the performance metric value goes deep below the frev. This triggers collection
of the performance metric value until the monitoring stops. We use response time as
performance metric, as we found it sufficient to determine the degradation of a server’s
performance. Possible threshold and bumper values are 10% for threshold revocation,
25% for bumper revocation, 75% for bumper invocation, and 90% for threshold in-
vocation. This percentage is proportionally scaled with range value from minimum to
maximum for the performance metric.

4 Evaluation and Results

For our experiment, we use OMNET++, a simulation environment shown to be efficient
for large networks [2]. We also use OverSim and HTTP component from INET module
in OMNET++. To emulate Internet topology, we use GT-ITM and BRITE topology
generator. We also derive the topology from BGP routing tables. We use the public
Web trace of World Cup 1998 as input, which contains flash crowd traffic, a traffic
pattern very similar to DDoS attack. The server and network was overloaded by a flash
crowd event, and the aggregated volume resembles that of DDoS attack. In total, the
web site received more than 1.35 billion requests during the collection period of three
months (11,000 requests per minute on average), and almost STB of data was sent to
clients (41 MB per minute on average). We vary the number of replicas from 1 to 4 for
10-node graphs, from 1 to 10 for 100-node graphs, and from 1 to 100 for 1,000-node
graphs.

We ran the simulation several times to obtain a stable result, and these results re-
semble the normal condition. First, we analyzed the replica placement algorithm. We
measured the response time from clients to replicas. As shown in Figure 3.a, which
is generated by 100-node graphs, our mechanism achieves shorter response time than
random and hot-spot placements. The results are similar in 10-node and 1,000-node
graphs. Further, we measured the response time as we increased the number of replicas,
starting from 1 to 10. Figure 3.b shows that our mechanism outperforms random and
hot-spot placements, and the differences become greater as more replicas are used. This
is because hotspot algorithm makes decisions solely based on traffic volume, whereas
our mechanism considers multiple factors, (i) response time and (ii) furthest location
based on the hop counts. We also measured the efficiency of our scaling mechanism.
We assume that one replica can handle one million requests per hour and this may vary
depending on the capacity of replicas. Figure 4 compares our approach with the sim-



ple threshold and shows that our mechanism much more closely follows the real traffic
load, thereby eliminating the needs to invoke redundant replicas. Compared to the ran-
dom and hotspot algorithms, our approach demonstrates the following benefits: it will
only be active when there is an attack, and it is lightweight and easy to implement.

CDF (%)

CDF (%) of client perceived response time Average response time on

number of replica changes

50 “K;—__,x
0
o 1 2 3 4 5 6 7 8 9 10
50 100 150 200 250
Response Time(ms) #replicas
——Random —O—Hotspot —*—our approach ——Random —*—Hotspot —&—Our approach
(a) CDF of client response time (b) Average response time on number of

replica changes

Fig. 3: Result of comparison between random, hotspot and our approach

Number of replica instances on Traffic Load changes

llions of request/haur)
~

Server Load (mi

.é“ “‘q,vﬂb“'_““ow“{s" d‘\c"“f,u"‘f@“«cﬁfffo TR e e
o q"d‘

i Traffic Load ~ —#¢—Threshold-based ~ —0— Owr scaling palicy

Fig. 4: Replica instances on traffic load changes



5 Conclusion

A lightweight scaling mechanism to guarantee service during a DDoS attack. We eval-
uate a simple and effective mechanism for resource scaling allocation management for
DDoS traffic isolation in a cloud environment. Our work has demonstrated the com-
pelling benefit of the cloud, which can handle high traffic and scale the service dynami-
cally. This research motivation is not to entirely eliminate DDoS attacks, but to provide
continuity of a service during a DDoS attack. Other topics, such as a pricing scheme
for this mechanism, can be calculated fairly by the cloud service provider as a new type
of service, despite the actual resource usage. Inconsistency and synchronization issues
procedure would be another problem we should consider be to apply the resource pre-
diction mechanism for dynamic resource scaling.

Acknowledgments. This research was supported by the R&D Support Center of the
Seoul Development Institute and the South Korean government (WR080951).

References

1. ArborNetworks: Fingerprint sharing alliance (2012), http://www.arbornetworks.com/careers/53-
products/4418-fingerprint-sharing-alliance-overview

2. Bless, R.: Using realistic internet topology data for large scale network simulations in om-
net++. Tech. rep., University (2002)

3. Cloudflare: An overview of cloudflare (2012), https://www.cloudflare.com/overview

4. Muttik, 1., Barton, C.: Cloud security technologies. Inf. Sec. Techn. Report 14(1), 1-6 (2009)

5. Nygren, E., Sitaraman, R.K., Sun, J.: The akamai network: a platform for high-performance
internet applications. Operating Systems Review 44(3), 2-19 (2010)

6. Qiu, L., Padmanabhan, V.N., Voelker, G.M.: On the placement of web server replicas. In:
INFOCOM. pp. 1587-1596 (2001)

7. Rashad, A., Dongwon, S., Heejo, L.: Dropfast: Defending against ddos attacks using cloud
technology. In: International Conference on Security and Management (2013)

8. Xie, M., Widjaja, 1., Wang, H.: Enhancing cache robustness for content-centric networking.
In: INFOCOM. pp. 2426-2434 (2012)



