
HAL Id: hal-01370360
https://inria.hal.science/hal-01370360

Submitted on 22 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Trusted UI for the Mobile Web
Bastian Braun, Johannes Koestler, Joachim Posegga, Martin Johns

To cite this version:
Bastian Braun, Johannes Koestler, Joachim Posegga, Martin Johns. A Trusted UI for the Mobile
Web. 29th IFIP International Information Security Conference (SEC), Jun 2014, Marrakech, Morocco.
pp.127-141, �10.1007/978-3-642-55415-5_11�. �hal-01370360�

https://inria.hal.science/hal-01370360
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


A Trusted UI for the Mobile Web

Bastian Braun1, Martin Johns2, Johannes Koestler1, and Joachim Posegga1

1 Institute of IT Security and Security Law (ISL), University of Passau, Germany
2 SAP Research, Karlsruhe, Germany

{bb,jp}@sec.uni-passau.de, martin.johns@sap.com,

koestler@fim.uni-passau.de

Abstract. Modern mobile devices come with first class web browsers
that rival their desktop counterparts in power and popularity. However,
recent publications point out that mobile browsers are particularly sus-
ceptible to attacks on web authentication, such as phishing or clickjack-
ing. We analyze those attacks and find that existing countermeasures
from desktop computers can not be easily transfered to the mobile world.
The attacks’ root cause is a missing trusted UI for security critical re-
quests. Based on this result, we provide our approach, the MobileAu-
thenticator, that establishes a trusted path to the web application and
reliably prohibits the described attacks. With this approach, the user
only needs one tool to protect any number of mobile web application
accounts. Based on the implementation as an app for iOS and Android
respectively, we evaluate the approach and show that the underlying
interaction scheme easily integrates into legacy web applications.

1 Introduction

Since the introduction of the original iPhone in 2008, mobile devices are first
class citizens in the world of computing. Due to the impressive advances in
energy consumption, mobile processor power, and display quality, the majority
of the common computing tasks can nowadays be done as easily on a mobile
device as on a “real” computer on the desktop.

However, while the computational power of the mobile devices is almost
comparable to their desktop counterparts, other key differences, in areas such as
screen estate, UI paradigms, or operating system induced limitations, remain for
the foreseeable future. These differences have a significant impact on the device’s
security characteristics: Reduced screen estate results in significant less space
for visual security indicators that could help combating phishing attacks [1, 2].
Changed user interaction paradigms allow for different clickjacking variants [3].
Virtual keyboards on mobile devices lead to choosing insecure passwords, due to
necessary, uncomfortable context switches between letters, numbers, and special
characters [2]. And finally, the current restrictions in mobile operating systems
and the lack of an extension model for iOS’ mobile browser render most of the
currently proposed attack mitigation tools impossible on mobile devices.

As we will explore in Section 2, these limitations especially amplify security
threats against mobile web authentication. For this reason, we propose a novel



authorization delegation scheme using a native application, the MobileAuthen-
ticator, that functions as a companion application to the mobile web browser.
In this paper, we make the following contributions:
– We analyze how common web authentication attacks, such as phishing or

clickjacking, manifest themselves in mobile scenarios and identify a common
root cause – the lack of a trusted UI of the browser.

– We propose a novel authorization delegation scheme for mobile web appli-
cations that leverages a native companion application. It serves as a trust
anchor for the mobile web application’s client side through providing the
missing trusted UI capabilities.

– We report on a practical implementation of our system as an app for the
two currently dominating mobile operating systems, iOS and Android. In
this context, we show how the concept can be realized through leveraging
the platform-specific facilities for inter-app cooperation.
In the remainder of this paper, we first cover relevant attack classes that

target web authentication mechanisms and discuss their specific characteristics
in mobile web scenarios (Sec. 2). Then, we present our solution in Sec. 3. In Sec. 4,
we document our practical implementations for iOS, Android, and Wordpress.
The security and usability properties of our scheme are evaluated in Sec. 5. After
revisiting related work in Sec. 6, we conclude the paper in Sec. 7.

2 Security Threats

In the last decade, numerous security problems in the field of web applications
have been discovered and documented, among them phishing, cross-site script-
ing (XSS), cross-site request forgery (CSRF), session fixation, or clickjacking.
In this section, we discuss the listed security threats in respect to how they ap-
ply to mobile web applications. Furthermore, we explore if previously proposed
solutions can be adopted in a mobile environment.

2.1 Threat Classes

In general, mobile web applications are susceptible to the same class of threats as
their desktop counterparts. However, it has been shown that several attack types,
such as phishing or clickjacking, are harder to solve in the mobile scenario, due to
their direct interplay with the available screen estate and web browser chrome [2,
4, 1]. In this section, we list applicable security issues and briefly discuss special
aspects of the mobile case.
Phishing: The term phishing subsumes all attacks that aim to obtain the user’s
password via tricking the user to interact with a web resource that claims to
be a legitimate part of the targeted web application but in fact is under the
control of the attacker. It has been shown [5, 2, 1] that mobile web applications
expose a higher level of susceptibility to such attacks, mainly due to the signifi-
cantly reduced availability of optical indicators, such as browser chrome or SSL
indicators.



Clickjacking: A clickjacking attacker deludes the user concerning the context
and target of her actions to make her click in the attacker’s interest. For the
mobile case, Rydstedt et al. [4] coin the term tapjacking for this attack vector
as users do not click but tap on their mobile devices. One of their techniques
is zooming elements of the target web page. They found that the hosting (i.e.,
attacking) page can set a zoom factor overriding the iframe’s own scaling. This
way, an attacker can include a transparent “Like” or “Tweet” button fitting the
entire width of the screen.
CSRF: A CSRF attacker inserts a crafted link into some website that makes
the browser send a request to the target web application, seemingly on behalf
of the user. The mobile case is similar to the desktop scenario with a slight
exception: Client-side protection approaches like CsFire [6] do not work because
mobile browsers have no or not sufficient extension support.
XSS: The XSS attacker is able to inject malicious script code into benign web
pages. The code runs in the context of the benign domain and can impersonate
the user. There is actually no difference between XSS attacks on mobile browsers
and desktop browsers.
Session fixation: During a session fixation attack, the attacker sets a session
identifier before the user logs in. The attack is successful if the SID is not changed
during the login. The attacker’s window of opportunity lasts until the user logs
out. The mobile case is very similar to the desktop case. However, sessions in
some mobile web applications expire later [4], or do not expire at all but only
delete the client-side session cookie upon logout [7]. This extends the attacker’s
control over the user’s account.

2.2 On the Infeasibility of Existing Mitigation Approaches in
Mobile Web Scenarios

In this section, we discuss several potential solutions to the outlined security
problems and show their insufficiency in the realm of mobile web applications.
Client-side SSL authentication: The current generation of – at least Android
– smart phones is missing proper tools support for certificate management. Fur-
thermore, the usage of this authentication method only solves a subset of the
identified security implications, i.e., all issues that exist in connection with the
potential stealing of passwords (i.e., mainly phishing). However, security prob-
lems that concern attacker-initiated state changes (e.g. caused by XSS, CSRF,
or clickjacking) remain unprotected.
Browser extensions or plugins: A potential approach to overcome short-
comings of web browser-based applications is to include the security mechanism
directly into the browser using a browser extension or plugins, such as Silverlight
or Flash. However, the web browsers in current smart phones do not support
plugins3, and the only browser offering support for extensions is Firefox Mobile
for Android with only a limited number of APIs4.

3 The Android platform offered limited support for Flash on a subset of existing de-
vices. Adobe discontinued support by Aug 15, 2012. See http://adobe.ly/1a1EpPH.

4 See http://mzl.la/1fwQNoX and http://bit.ly/1k7NQOE for details.



Dedicated modified browsers: It is possible to deploy dedicated web browsers
to mobile devices, which incorporate enhanced security mechanisms. However,
they can not be used within applications that offer an integrated web-view, nor
can they be set to serve as the default browser on iOS platforms, thus, excluding
roughly half of all users. Finally, developing and maintaining a special browser
variant is of high effort and cost, which is also a major roadblock for this potential
approach.
Local network-layer helpers: Finally, there are several approaches that rely
on local network-layer utilities, such as HTTP proxies. Such tools cannot be
deployed to the current generation of mobile devices.

2.3 Root Cause Analysis

Generally speaking, a web application is a reactive system. The web server re-
ceives incoming HTTP requests and reacts according to the implemented busi-
ness logic of the application. A subset of the incoming requests lead to changes
in the server-side state while others only retrieve data stored on the server. If
received as part of an authenticated session, the first case may represent se-
curity sensitive actions on the application data. The handling of such requests
requires special attention. Within this paper, we will repeatedly utilize the term
authorized action.

Definition 1. Authorized Action An authorized action is a security sensitive
event on the server that is triggered by an incoming authenticated request, mean-
ing that the user authorized the web application to perform the requested action
on her behalf.

Which events have to be considered security sensitive highly depends on the
internal logic of the application. Hence, the applicable set of authorized actions
has to be determined on a per-application basis. Frequently encountered exam-
ples include the login into the application, changing the user’s data record, and
ordering and purchasing of services or goods. For all such actions, the underly-
ing assumption is that the owner of the credential (password or authenticated
SID) is the originator of the triggering event and that the details of the action
have not been tampered with by unauthorized third parties. All discussed secu-
rity issues have in common, that the application’s back-end component (i.e., the
web server) cannot distinguish authorized actions, which have been conducted
intentionally by the user, from authorized actions, that have either been con-
ducted directly by the attacker (e.g., through credentials that have been stolen
via phishing or XSS) or have been initiated by the attacker via tricking the user
(through clickjacking or CSRF). What web applications are missing is a trusted
path between the user and the back-end system. The back-end system needs
reliable evidence, that the initiated security sensitive actions have indeed been
deliberately conducted by the user:

Definition 2. Trusted Path An application provides a trusted path, if it can
be verified on the server-side that all incoming authorized actions are caused with
the user’s explicit consent and that their integrity is ensured.



3 Mobile Authenticator

Fig. 1. Solution Overview

The general idea of our approach is to establish a
trusted path between the user and the web appli-
cation in order to protect the user against the at-
tacks given in Sec. 2.1. We implement the approach
as an app but we envisage it as an integral fea-
ture of mobile operating systems. The mobile ap-
plication enables the user to communicate securely
with the web application’s server side using autho-
rized actions that (1) have been explicitly initiated
by the user, (2) thus are fully intended by the user,
instead of being created without her consent (i.e.,
through clickjacking or XSS), and (3) have not been
tampered with. This way, the security functional-
ity is strongly separated from the web application’s
browser-based front-end, and hence, the web-specific weaknesses and limitations
do not apply anymore. The actual application logic can still be implemented as
a cross-platform web application which can be accessed on any web-enabled mo-
bile device. The only part that needs to be implemented as a native application
for each mobile platform is the MobileAuthenticator. The MobileAuthenticator
itself provides generic security functionality. As a consequence, it can serve as a
trusted interface for more than one mobile web application.

3.1 Providing a Trusted Path Through an App

We propose to introduce the MobileAuthenticator as a dedicated system app
that serves as a trust anchor for the user in the communication with the web
application. It establishes a trusted path between the UI and the application’s
back-end. However, as extending modern mobile operating systems is out of our
scope, we describe the approach as an app that can be installed by the user.

Concept The MobileAuthenticator is a dedicated application that encapsu-
lates the user’s credentials and authorization state and that maintains a trust
relationship with the web server. Authorized actions are routed through the
MobileAuthenticator on behalf of the web application. The mobile web browser
never receives, processes, or sends credentials that can be utilized for conducting
authorized actions. This way, the MobileAuthenticator serves both as a trusted
UI for the mobile web interface as well as a second authentication factor, effec-
tively elevating all supporting web applications to using an implicit two-factor
authentication scheme.

Interaction Pattern For most purposes, the interaction between the web
browser and the mobile web application remains unchanged. Only in cases,
when the user initiates an authorized action, the control flow is routed via the
MobileAuthenticator, implementing a challenge/response scheme to capture the
user’s intend.



1. Using a dedicated interaction bridge between the web browser and the Mo-
bileAuthenticator, the authorized action, which is supposed to be triggered,
as well as all needed parameters including the server’s challenge are passed
over to the app.

2. The user explicitly acknowledges the authorized action in the trusted UI of
the MobileAuthenticator. This causes the MobileAuthenticator to compute
the response to the server’s challenge.

3. The MobileAuthenticator passes the control back to the browser including
a dedicated credential which allows the triggered authorized action to be
conducted.

4. This credential is passed from the web front-end to the server.

Please note: This process is only executed when authorized actions are con-
ducted. For the vast majority of a user’s web interaction, the web application
remains unchanged (see Sec. 5.3). This also entails, that general authentication
tracking is done the regular way, i.e., using HTTP cookies, and that application
handling does not change significantly from a user’s perspective.

3.2 Components

The overall architecture consists of three main components: The actual Mo-
bileAuthenticator that runs on the mobile device and provides the trusted UI,
a server-side module that evaluates incoming requests and checks the integrity
of the authentication token, and a JavaScript library that is delivered to the
browser and takes care of delegation between all participants.

MobileAuthenticator The client-side component, the MobileAuthenticator,
maintains a repository of preconfigured authorized actions (see Sec. 3.3) includ-
ing a human understandable description of each action’s impact. Upon receiving
a security critical request from the browser, it looks up the respective action’s
details in its repository, displays the description to the user, and asks for consent.
The MobileAuthenticator signs the request using a shared secret (see Sec. 3.3)
with the web application, and passes it back to the browser, if the user agreed.

Server-side Module On the web application’s server side a counterpart is
needed that maintains a trust relationship with the user’s MobileAuthentica-
tor instance and implements the challenge/response process to accept incoming
authorized actions.

AuthenticationBroker The AuthenticationBroker is a small JavaScript library
that provides the necessary interface to the application’s web front-end to dele-
gate authorized actions to the MobileAuthenticator for obtaining user consent.
Upon receiving the MobileAuthenticator’s response, the acknowledged request
is routed to the web application for processing. It is evident that the Authenti-
cationBroker itself is not security critical. This is an important fact because oth-
erwise malicious injected script code might be able to manipulate or disable the
AuthenticationBroker and, thus, run an attack. The worst impact of an attack
against the AuthenticationBroker, however, is a denial-of-service that prevents
authenticated requests from being routed towards the MobileAuthenticator.



3.3 Initial Enrollment on the Mobile Device

Each instance of the MobileAuthenticator that the user wants to use has to be
enrolled individually. In this process, the web application’s server-side and the
application instance initiate a device specific trust context, represented through
a shared secret. This enrollment process works as follows:

After account setup, the web application provides the user with a unique
URL pointing back to the application, which carries parameters that identify
the enrollment process. The user copies this URL to the MobileAuthenticator.
The MobileAuthenticator displays the application’s domain to ask the user for
confirmation. The user confirms by entering her password which is then used
by the MobileAuthenticator for authentication. If the initial authentication step
terminated successfully, the MobileAuthenticator and the web application com-
pute a shared secret using the Diffie-Hellman key exchange. This secret is not
only specific for the user but also for this particular MobileAuthenticator in-
stance. The MobileAuthenticator then discards the user password as it is no
longer needed. All further app-to-server interaction uses the shared secret for
authentication. As long as this secret is valid, the user will not be required to
enter her password again. Finally, the web application supplies a repository of
configured authorized actions, including parameters and actionID, and a human
understandable description of each request’s impact. The MobileAuthenticator
is able to maintain several of such (shared key,repository) records and can thus
protect all user accounts for compatible web applications on the device.

3.4 User Login

After the MobileAuthenticator and the web application are synchronized, the
overall login procedure adheres to the following protocol: The user first accesses
the web application’s login page in her mobile browser. As the user is not au-
thenticated yet, the server can not utilize user-specific credentials at this step.
Instead, it issues a challenge consisting of its AppID, the login’s ActionID and a
timestamp (see Sec. 3.7). The challenge is signed using the web application’s pri-
vate key. The respective public key is stored in the MobileAuthenticator during
enrollment (see Sec. 3.3). When tapping the login button, the control is delegated
by the AuthenticationBroker (see Sec. 3.2) to the MobileAuthenticator. In this
step, the server challenge is pushed to the MobileAuthenticator that takes over
and asks the user whether she wants to login to this web application. A phishing
attack would fail at this point, as the password is never entered to the mobile
device for login. If the signature is valid, the MobileAuthenticator compiles the
response from the server’s challenge, the username, and the device ID and signs
it using HMAC with the shared secret, and control is transferred back to the
browser. Finally, the AuthenticationBroker sends the signed login request to the
web application.

Upon receiving this request, the web server extracts the username and device
ID and verifies that the request was indeed signed using the shared secret and,
thus, finishes the user’s login process. Username and device ID are required to
pick the correct shared secret for signing and verification.



3.5 Conducting Authorized Actions

The process for conducting further authorized actions is similar to the login pro-
cess (see Sec. 3.4). For the login, the MobileAuthenticator witnesses the user’s
consent and proves the request’s integrity and its own authentication by signing
the request using the shared secret. The same features are necessary for autho-
rized actions: First, in the browser, the user taps a link or a button requesting
an authorized action. The respective request is then relayed to the MobileAu-
thenticator that obtains the user’s consent, signs, and returns the request to the
browser. The AuthenticationBroker forwards the request to the web application
that checks the signature and performs the requested authorized action.

3.6 Unknown Authorized Actions

During enrollment, the server pushes a list of allowed authorized actions to the
MobileAuthenticator. If the web application has been updated since the enroll-
ment of the MobileAuthenticator instance, it can happen that the MobileAu-
thenticator receives a request for an unknown authorized action. In this case,
the MobileAuthenticator updates its local repository by a new list from the web
application. This update process can also be triggered in a regular manner or
based on push messages. After receiving the updated list from the web server,
the MobileAuthenticator verifies that the requested authorized action is indeed
contained in the list. If this is not the case, the app rejects the action request.

3.7 Challenge and Response Formats

In this section, we briefly specify the challenge/response formats.
Server Challenge For a given authorized action challenge, the server compiles
a tuple consisting of: CTuple = {AppID,UserID,ActionID, timestamp}. The
server HMAC-signs this tuple with the user-specific shared secret to allow the
MobileAuthenticator to verify the challenge’s authenticity. The values in this
tuple have the following meanings:
– AppID & UserID: Identifiers of the web application and the user account, to

allow the MobileAuthenticator to choose the correct authentication context.
– ActionID: Unambiguous identifier of the requested authorized action.
– timestamp: To mitigate potential replay attacks, each challenge can be as-

signed a dedicated lifespan.
The resulting challenge consists of the tuple and the corresponding HMAC sig-
nature: SChallenge = HMAC(CTuple, shared secret). On the server-side, the
challenge is bound to the user’s session and, thus, to her session identifier.
Client Response After interacting with the user to capture her explicit consent,
the MobileAuthenticator creates the response by assembling the response tuple:
RTuple = {SChallenge, (Parameter1), ..., (Parameteri)}. Again, this tuple is
HMAC-signed using the shared secret: CResponse = HMAC(RTuple, shared secret).
The existence and number of the parameters depends on the authorized ac-
tion. For instance, the login procedure requires the username and device ID (see



Sec. 3.4), while the transfer of money in a banking application will most likely
include the amount and the receiving account number in the signed response
value.

4 Implementation

To practically evaluate the feasibility of our concept, we implemented the solu-
tion for the two leading mobile operating systems, iOS and Android. Further-
more, we outfitted the popular CMS Wordpress with server-side support for our
system.

4.1 Client-side Implementation

In this section, we point out the platform dependent differences between the
implementations for iOS and Android respectively. Our implementation shows
that the approach can be put into practice without support by platform providers
though we favor an integration into the mobile platforms.

Fig. 2. Triggering an au-
thorized action

Implementation for iOS On iOS, communica-
tion between apps, such as the web browser and the
MobileAuthenticator is severely limited. The only -
for our purpose - usable channel is leveraging cus-
tom URL schemes: An iOS app can register a URL
scheme, such as mobileauth:, which is registered
with the operating system on app installation. When
a different app accesses a URL that starts with this
custom URL scheme, iOS conducts a context switch
and activates the application that has registered the
scheme while pushing the calling app into back-
ground. The activated app receives the full URL in
form of a string for further processing.

We use this mechanism to delegate the autho-
rized action from the web browser to the Mo-
bileAuthenticator: The AuthenticationBroker (see
Sec. 3.2) compiles a mobileauth-URL which carries
the server’s challenge and the required parameters. Furthermore, the location of
the active web document is attached to the URL as the callback URL. Then, the
script makes the browser request the compiled mobileauth URL via assigning
it to document.location. This, in turn, causes the operating system to activate
the MobileAuthenticator. After user acknowledgment, the MobileAuthenticator
calls the callback (http-)URL and appends the CResponse as a hash identifier.
This prevents a page reload in the browser and submits the response to the
AuthenticationBroker.
Implementation for Android The MobileAuthenticator provides a back-
ground service that is started right after the boot process completed. This service
hosts a WebSocket server and is therefore accessible from the device’s browser



using the AuthenticationBroker and the HTML5 WebSocket API. The Authen-
ticationBroker establishes a WebSocket connection to the MobileAuthenticator’s
background service when it hooks an attempt for an authorized action. It ob-
tains the challenge from the action’s HTML meta data and pushes the request
together with the challenge to the background service. The background service
then launches an activity bringing the MobileAuthenticator to foreground (see
Fig. 2). After the user took a decision (either consent or denial, see Fig. 3),
the app computes the HMAC on the entire request, including the challenge, ap-
pends it and sends the whole string back to the AuthenticationBroker using the
established WebSocket connection.

4.2 Server-side Implementation

Fig. 3. Obtaining user con-
sent to perform an autho-
rized action

We implemented server-side components to support
the MobileAuthenticator and integrated them into
the popular PHP weblog Wordpress as a plug-in.
This allows to support legacy web applications with-
out changing the existing codebase. There are three
logical components of the plug-in: First, a client
administration component manages the enrollment
process for new devices, including a device confirma-
tion in the user account, and the revocation of au-
thorized device connections, e.g. because the device
was lost or stolen (see Sec. 5). Second, an action veri-
fication component issues new challenges and checks
incoming requests for valid response tokens. These
two components are generic and need no adaption to
the particular web application. The last component,
however, is application specific. It glues the above
components into the legacy code, incorporates the
client administration function into the user profile
pages, and activates a central request filter that checks if an incoming request
targets an authorized action. If so, it forwards the request to the action verifica-
tion component. The AuthenticationBroker is a JavaScript file that is included
with every web page. It is roughly 10kb, is stored in the browser’s LocalStorage
together with a list of authorized actions, and hooks requests for those actions.

5 Evaluation

We evaluate the MobileAuthenticator with respect to its security and protection
properties as well as to its usability.

5.1 Security Evaluation

Phishing: An attack can only succeed if the user enters credentials on a phishing
site ignoring the fact that this is not necessary on her device. Expecting a redirect



to the MobileAuthenticator, users become suspicious if their used comfort is
missing.

Clickjacking: An attacker can still lure his victim into clicking on links but
the target web application then redirects the victim to the MobileAuthenticator
where, of course, the attack becomes obvious and the victim does not acknowl-
edge the targeted authorized action.

CSRF: An attack is only detectable for a potential victim if the attacker can
forward his payload to the MobileAuthenticator (see Sec. 4). Even if the attacker
manages to do so, the victim suddenly faces the MobileAuthenticator asking for
permission to perform an authorized action on a different website.

XSS: Injected JavaScript code can perform all actions on the user’s behalf. It
can raise new authorized actions and redirect the respective requests to the Mo-
bileAuthenticator. However, due to the missing shared secret, it can not sign the
requests. So, as long as users do not acknowledge unintended actions, no autho-
rized action can be triggered. The only damage an XSS attacker can cause is a
denial-of-service by discarding all signed requests and, thus, preventing intended
authorized actions.

Session fixation: The attacker can still get access to the user’s account. The
login step elevates the session cookie to an authorized state granting access to
the owner. However, the attacker can not perform authorized actions because he
has no access to the shared secret.

No more password entry: Felt and Wagner discussed the fact that mobile
keyboards actively discourage the usage of complicated, and thus secure, pass-
words, as the entry of numbers or special characters require cumbersome context
switches [2]. Our scheme obliterates the necessity of entering passwords com-
pletely. Hence, the password cannot be stolen, as it is neither stored nor entered
again. Moreover, this process allows the usage of arbitrarily complicated appli-
cation (master) passwords, as the usability drawbacks upon password entry do
not apply for our system.

Device-specific credentials: As a matter of fact, mobile devices get lost or
stolen from time to time. A thief or finder can use the MobileAuthenticator to log
into accounts and conduct authorized actions, once he vanquished the display
lock. However, there is built-in protection against this threat: During enroll-
ment (see Sec. 3.3), the MobileAuthenticator and the web application compute
a shared secret. The MobileAuthenticator does not store the user password. So,
the user only has to revoke the shared secret in her account to prevent any access
using the lost device. A thief, in contrast, can not exclude the user as changing
the password is not possible without knowing the old password.

5.2 Attacking the MobileAuthenticator

We briefly discuss attacks that might apply directly to our implemented mecha-
nism. The proposed solution as a system app is not susceptible to these attacks.

App Spoofing An attacker may offer a malicious app via the respective plat-
form’s market, i.e., Apple’s App Store or Google Play. When installed on a user’s



device, it could try to obtain user credentials pretending to be the legitimate Mo-
bileAuthenticator. The only occasion is the registration of new accounts in the
MobileAuthenticator. This, however, is initialized by the user, usually by short-
cuts on her home screen. So, as long as this malicious app is not able to replace
the legitimate app shortcut with its own, the attacker can not gain confidential
knowledge. We want to emphasize that spoofing the legitimate app when the
AuthenticationBroker forwards them for signing does not reveal any credentials
to the malicious app, because the user only confirms or denies but does not
enter anything. The implementation as a system app can register an exclusive
protocol scheme such that the registration URL is instantly forwarded to the
MobileAuthenticator.
Task Interception There is a task interception attack on Android devices. A
malicious app having the necessary permissions (given by the user at installa-
tion time) can poll running tasks and display a phishing screen as soon as the
target app is started. The user, expecting this screen, would probably enter the
credentials. Finally, the malicious app can exit and call the genuine app. This
kind of attack is not promising when run on the MobileAuthenticator because
the background service is permanently running, thus, revealing no indication for
the moment to spoof the MobileAuthenticator screen.

5.3 Usability

Felt et al. phrase crucial criteria for user-friendly interaction with respect to
questions and user-based decisions [8]. We generalize and apply their criteria
though they study mobile apps and their questions for permissions. In fact, the
MobileAuthenticator is similar because it needs a user’s decision on the permis-
sion to perform an authorized action. We show that the MobileAuthenticator
complies with their criteria.

Their first point is to conserve user attention and only ask if the respective
question has severe consequences. The MobileAuthenticator only comes into play
when such confirmation is necessary. This way, we limit user interaction to the
absolute minimum while, in the end, the web application determines the actual
authorized actions (see Sec. 2.3).

Second, a usable security mechanism avoids interrupting the user’s primary
task with explicit security decisions. We achieve this by integrating the user
question into the usual workflow. For instance, the MobileAuthenticator can
ask the user for consent while presenting an overview of the purchase, including
payment information, goods, shipping, etc. The user expects such a final inquiry.
So, the integration of the MobileAuthenticator does not interrupt the user’s
primary task.

Finally, Felt et al. recommend using a trusted UI for non-revertible, severe,
and user initiated actions. The authorized actions are generally not revertible,
which means that the MobileAuthenticator can not let them happen and revert if
needed. They are severe, meaning that carelessness is not an option and drawing
the user’s attention is justified. Finally, authorized actions are generally user
initiated. This is an important point why one can expect the user to confirm her



intent. Other, i.e., implicit, actions can not be confirmed that easily because the
user does not know what to decide and why that dialogue popped up.

For instance, a usual shopping workflow and an online banking transaction
only require one acknowledgment using the MobileAuthenticator respectively.
This acknowledgment can be smoothly embedded in the workflow as a last step
being expected by the user anyway. Social networks need to assess their users’
risk: publicly posted messages on the one hand are deletable (i.e., revertible),
so there is no need for a trusted UI. On the other hand, however, annoying or
insulting posts might damage the victim’s reputation which is non-revertible and
severe. This decision could also be left to each customer weighing her personal
or business interests respectively. As a rule of thumb, an acknowledgment step
using the MobileAuthenticator is at least necessary when a re-authentication
(providing the password again) or second factor authentication (e.g., via Google
Authenticator, one-time passcodes, flicker codes) has been in place.

6 Related work

There is no other approach covering the whole range of authentication-based
attacks. Existing approaches either protect the login process against phish-
ing [9–11] or target session-based attacks [6, 12–15] Finally, the related body
of work includes authentication and authorization protocols in the web [16–18].
GuarDroid [19] aims at establishing a trusted path between the user and the web
application using a modified execution platform (firmware). It protects against
malicious apps installed on the mobile device and prevents leakage of the user’s
password. GuarDroid does not require changes of the installed apps nor of the
remote web application, however, it can not protect against session-based attacks
which still allow a malicious app to impersonate the user towards the web ap-
plication. GuarDroid causes considerable network latency and requires the user
to set, remember, and check a secure passphrase that authenticates the secure
login form and delays the system boot process. Finally, the user is responsible
to verify the target URL for login requests to prevent phishing attacks, thus,
demanding a high level of awareness and increasing the risk that users just click
through the dialog. Other existing approaches for trusted paths concerning user
login [7] and user actions in authenticated sessions [20] focus on surfing web
applications using desktop browsers.

7 Conclusion

In this paper, we presented a web authorization delegation scheme for mobile
devices that utilizes a native companion app, the MobileAuthenticator, to realize
a trusted UI. For a set of predefined authorized actions, our system reliably
mitigates state changing effects of currently known user impersonation attacks,
such as phishing, CSRF, or clickjacking.

Furthermore, the MobileAuthenticator effectively becomes the user’s authen-
tication credential, obliterating the necessity to frequently enter passwords on



the mobile device, thus, correcting the usability drawbacks that are observed
when entering secure passwords on mobile keyboards.

The MobileAuthenticator itself is independent from specific characteristics
of the protected web application and, thus, can serve as the central trust anchor
for many different, independent applications. In consequence, a future integra-
tion of such a service on a platform-level into the mobile operating system is a
compelling option.

References

1. Amrutkar, C., Traynor, P., van Oorschot, P.C.: Measuring SSL Indicators on
Mobile Browsers: Extended Life, or End of the Road? In: ISC. (2012)

2. Felt, A., Wagner, D.: Phishing on Mobile Devices. In: W2SP. (2011)
3. Luo, T., Jin, X., Ananthanarayanan, A., Du, W.: Touchjacking attacks on web in

android, ios, and windows phone. In: Foundations and Practice of Security. (2012)
4. Rydstedt, G., Gourdin, B., Bursztein, E., Boneh, D.: Framing Attacks on Smart

Phones and Dumb Routers: Tap-jacking and Geo-localization Attacks. In: wOOt.
(2010)

5. Niu, Y., Hsu, F., Chen, H.: iPhish: Phishing Vulnerabilities on Consumer Elec-
tronics. In: UPSEC. (2008)

6. Ryck, P.D., Desmet, L., Heyman, T., Piessens, F., Joosen, W.: CsFire: Transparent
Client-Side Mitigation of Malicious Cross-Domain Requests. In: ESSoS. (2010)

7. Bursztein, E., Soman, C., Boneh, D., Mitchell, J.C.: SessionJuggler: Secure Web
Login from an Untrusted Terminal Using Session Hijacking. In: WWW. (2012)

8. Felt, A., Egelman, S., Finifter, M., Akhawe, D., Wagner, D.: How to Ask for
Permission. In: HotSec. (2012)

9. Chou, N., Ledesma, R., Teraguchi, Y., Boneh, D., Mitchell, J.C.: Client-side De-
fense against Web-Based Identity Theft. In: NDSS ’04. (2004)

10. Dhamija, R., Tygar, J.: The Battle Against Phishing: Dynamic Security Skins. In:
SOUPS. (2005)

11. Balfanz, D., Smetters, D., Upadhyay, M., Barth, A.: TLS Origin-Bound Certifi-
cates. [IETF draft], http://tools.ietf.org/html/draft-balfanz-tls-obc-01

12. Huang, L.S., Moshchuk, A., Wang, H.J., Schechter, S., Jackson, C.: Clickjacking:
Attacks and Defenses. In: 21st USENIX Security Symposium. (August 2012)

13. Jovanovic, N., Kruegel, C., Kirda, E.: Preventing cross site request forgery attacks.
In: Securecomm. (2006)

14. Sterne, B., Barth, A.: Content Security Policy. W3C Working Draft, http://www.
w3.org/TR/2011/WD-CSP-20111129/ (November 2012)

15. Johns, M., Braun, B., Schrank, M., Posegga, J.: Reliable Protection Against Session
Fixation Attacks. In: ACM SAC. (2011)

16. Mozilla: Persona. [online], https://developer.mozilla.org/en-US/docs/

Mozilla/Persona, (09/19/13)
17. Lockhart, H., Campbell, B.: SAML V2.0. https://www.oasis-open.org/

committees/download.php/27819/sstc-saml-tech-overview-2.0-cd-02.pdf

(March 2008)
18. Internet2: Shibboleth. [online], http://shibboleth.net/
19. Tong, T., Evans, D.: GuarDroid: A Trusted Path for Password Entry. In: Mobile

Security Technologies (MoST) 2013. (2013)
20. Braun, B., Kucher, S., Johns, M., Posegga, J.: A User-Level Authentication Scheme

to Mitigate Web Session-Based Vulnerabilities. In: TrustBus ’12. (2012)


