
HAL Id: hal-01370425
https://inria.hal.science/hal-01370425

Submitted on 26 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Weak Dynamic Programming Principle for Combined
Optimal Stopping/Stochastic Control with

Ef-Expectations
Roxana Dumitrescu, Marie-Claire Quenez, Agnès Sulem

To cite this version:
Roxana Dumitrescu, Marie-Claire Quenez, Agnès Sulem. A Weak Dynamic Programming Principle
for Combined Optimal Stopping/Stochastic Control with Ef-Expectations. SIAM Journal on Control
and Optimization, 2016, 54 (4), pp.2090-2115. �10.1137/15M1027012�. �hal-01370425�

https://inria.hal.science/hal-01370425
https://hal.archives-ouvertes.fr


SIAM J. CONTROL OPTIM. c© 2016 Society for Industrial and Applied Mathematics
Vol. 54, No. 4, pp. 2090–2115

A WEAK DYNAMIC PROGRAMMING PRINCIPLE FOR
COMBINED OPTIMAL STOPPING/STOCHASTIC CONTROL WITH

Ef -EXPECTATIONS∗

ROXANA DUMITRESCU† , MARIE-CLAIRE QUENEZ‡ , AND AGNÈS SULEM§

Abstract. We study a combined optimal control/stopping problem under a nonlinear expecta-
tion Ef induced by a BSDE with jumps, in a Markovian framework. The terminal reward function
is only supposed to be Borelian. The value function u associated with this problem is generally
irregular. We first establish a sub- (resp., super-) optimality principle of dynamic programming
involving its upper- (resp., lower-) semicontinuous envelope u∗ (resp., u∗). This result, called the
weak dynamic programming principle (DPP), extends that obtained in [Bouchard and Touzi, SIAM
J. Control Optim., 49 (2011), pp. 948–962] in the case of a classical expectation to the case of an
Ef -expectation and Borelian terminal reward function. Using this weak DPP, we then prove that
u∗ (resp., u∗) is a viscosity sub- (resp., super-) solution of a nonlinear Hamilton–Jacobi–Bellman
variational inequality.
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1. Introduction. Markovian stochastic control problems on a given horizon of
time T can typically be written as

(1.1) u(0, x) = sup
α∈A

E

[∫ T

0

f(αs, X
α
s )ds+ g(Xα

T )

]
,

where A is a set of admissible control processes αs, and (Xα
s ) is a controlled process

of the form

Xα
s = x+

∫ s

0

b(Xα
u , αu)du+

∫ s

0

σ(Xα
u , αu)dWu +

∫ s

0

∫
Rn

β(Xα
u , αu, e)Ñ(du, de).

The random variable g(Xα
T ) may represent a terminal reward and f(αs, X

α
s ) an in-

stantaneous reward process. Formally, for all initial time t in [0, T ] and initial state
y, the associated value function is defined by

(1.2) u(t, y) = sup
α∈A

E

[∫ T

t

f(αs, X
α
s )ds+ g(Xα

T ) | Xα
t = y

]
.
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The dynamic programming principle (DPP) can formally be stated as

(1.3) u(0, x) = sup
α∈A

E

[∫ t

0

f(αs, X
α
s )ds+ u(t,Xα

t )

]
for t in [0, T ].

This principle is classically established under assumptions which ensure that the value
function u satisfies some regularity properties. From this principle, it can be derived
that the value function is a viscosity solution of the associated Hamilton–Jacobi–
Bellman (HJB) equation. Similar results are obtained for optimal stopping and mixed
optimal stopping/control problems.

The case of a discontinuous value function and its links with viscosity solutions has
been studied for deterministic control in the eighties. Barles and Perthame study in
[3] a deterministic optimal stopping problem with a reward map g only supposed to be
Borelian. To this purpose, they introduce a notion of viscosity solution which extends
the classical one to the discontinuous case: a function v is said to be a weak viscosity
solution of the HJB equation if its upper semicontinuous (u.s.c.) envelope, denoted by
v∗, is a viscosity subsolution of this PDE, and if its the lower semicontinuous (l.s.c.)
envelope, denoted by v∗, is a viscosity supersolution of this equation. Then, by the
classical DPP provided in the previous literature, they get that the u.s.c. envelope
u∗ of the value function satisfies a suboptimality principle in the sense of Lions and
Souganidis in [19]. Using this suboptimality principle, they then show that u∗ is a
viscosity subsolution of the HJB equation. Moreover, using the fact that the l.s.c.
envelop u∗ of u is the value function of a relaxed problem, they show that u∗ is a
viscosity supersolution and thus get that u is a weak viscosity solution of the HJB
equation. They stress that in general, the weak viscosity solution of this PDE is not
unique. However, under a regularity assumption on the reward g, by using the control
formulae, they obtain that the u.s.c. envelope u∗ of the value function is the unique
u.s.c. viscosity solution of the HJB equation. (See Remark 23 for additional references
and comments.)

More recently, in a stochastic framework, Bouchard and Touzi [8] have proved a
weak DPP when the terminal map g is irregular: they prove that the value function
u satisfies a suboptimality principle of dynamic programming involving its u.s.c. en-
velope u∗, and under an additional regularity (lower semicontinuity) assumption of
the reward g, they obtain a superoptimality principle involving the l.s.c. envelope u∗.
Then, using the suboptimality principle, they derive that u∗ is a viscosity subsolution
of the associated HJB equation. Moreover, when g is l.s.c., using the superoptimal-
ity principle, they show that u∗ is a viscosity supersolution and thus get that u is a
weak viscosity solution of this PDE in the same sense as above (or [3]). A weak DPP
has been further established, when g is l.s.c. for problems with state constraints by
Bouchard and Nutz in [7], and, when g is continuous, for zero-sum stochastic games
by Bayraktar and Yao in [4].

In this paper we are interested in generalizing these results to the case when g is
only Borelian and when the linear expectation E is replaced by a nonlinear expectation
induced by a backward stochastic differential equation (BSDE) with jumps. Typically,
such problems in the Markovian case can be formulated as

(1.4) sup
α∈A

Eα0,T [g(Xα
T )],

where Eα is the nonlinear expectation associated with a BSDE with jumps with
controlled driver f(αt, X

α
t , y, z, k). Note that problem (1.1) is a particular case of
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(1.4) when the driver f does not depend on the solution of the BSDE, that is, when
f(αt, X

α
t , y, z, k) ≡ f(αt, X

α
t ).

We first provide a weak DPP involving the u.s.c. and l.s.c. envelopes of the value
function. For this purpose, we prove some preliminary results, in particular some
measurability and “splitting” properties. No regularity condition on g is required to
obtain the sub- and super-optimality principles, which is not the case in the previous
literature in the stochastic case, even with a classical expectation (see [8], [7], and
[4]). Using this weak DPP, we then show that the value function, which is generally
neither u.s.c. nor l.s.c., is a weak viscosity solution (in the sense of [3]) of an associated
nonlinear HJB equation.

Moreover, in this paper, we consider the combined problem when there is an
additional control in the form of a stopping time. We thus consider mixed generalized
optimal control/stopping problems of the form

sup
α∈A

sup
τ∈T

Eα0,τ [h̄(τ,Xα
τ )],(1.5)

where T denotes the set of stopping times with values in [0, T ], and h̄ is an irregular
reward function.

Note that in the literature on BSDEs, some papers (see, e.g., Peng [20], Li and
Peng [18], Buckdahn and Li [9], and Buckdahn and Nie [10]) study stochastic control
problems with nonlinear E-expectation in the continuous case (without optimal stop-
ping). Their approach is different from ours and relies on the continuity assumption
of the reward function.

The paper is organized as follows: in section 2, we formulate our generalized mixed
control-optimal stopping problem. Using results on reflected BSDEs (RBSDEs), we
express this problem as an optimal control problem for RBSDEs. In section 3, we prove
a weak DPP for our mixed problem with Ef -expectation. This requires some specific
techniques of stochastic analysis and BSDEs to handle measurability and other issues
due to the nonlinearity of the expectation and the lack of regularity of the terminal
reward. Using the DPP and properties of RBSDEs, we prove in section 4 that the
value function of our mixed problem is a weak viscosity solution of a nonlinear HJB
variational inequality. In the appendix, we give several fine measurability properties
which are used in the paper.

2. Formulation of the mixed stopping/control problem. We consider the
product space Ω := ΩW ⊗ ΩN , where ΩW := C([0, T ]) is the Wiener space, that
is, the set of continuous functions ω1 from [0, T ] into Rp such that ω1(0) = 0, and
ΩN := D([0, T ]) is the Skorohod space of right-continuous with left limits (RCLL)
functions ω2 from [0, T ] into Rd, such that ω2(0) = 0. Recall that Ω is a Polish
space for the Skorohod metric. Here p, d ≥ 1, but, for notational simplicity, we shall
consider only R-valued functions, that is, the case p = d = 1.

Let B = (B1, B2) be the canonical process defined for each t ∈ [0, T ] and each
ω = (ω1, ω2) by Bit(ω) = Bit(ω

i) := ωit for i = 1, 2. Let us denote the first coordinate
process B1 by W . Let PW be the probability measure on (ΩW ,B(ΩW )) such that W
is a Brownian motion. Here B(ΩW ) denotes the Borelian σ-algebra on ΩW .

Set E := Rn\{0} equipped with its Borelian σ-algebra B(E), where n ≥ 1. We
define the jump random measure N as follows: for each t > 0 and each B ∈ B(E),

(2.1) N(., [0, t]×B) :=
∑

0<s≤t
1{ΔB2

s∈B}.
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The measurable set (E,B(E)) is equipped with a σ-finite positive measure ν such
that

∫
E(1 ∧ |e|)ν(de) < ∞. Let PN be the probability measure on (ΩN ,B(ΩN))

such that N is a Poisson random measure with compensator ν(de)dt and such that
B2
t =

∑
0<s≤tΔB

2
s a.s. Note that the sum of jumps is well defined up to a PN -null

set. We set Ñ(dr, de) := N(dr, de) − ν(de)dt. The space Ω is equipped with the
σ-algebra B(Ω) and the probability measure P := PW ⊗ PN . Let F := (Ft)t≥0 be
the filtration generated by W and N completed with respect to B(Ω) and P , defined
as follows (see [17, p. 3] or [13, IV]: let F be the completion σ-algebra of B(Ω) with
respect to P 1 For each t ∈ [0, T ], Ft is the σ-algebra generated by Ws, Ns, s ≤ t and
the P -null sets. Note that FT = F and F0 is the σ-algebra generated by the P -null
sets. Let P be the predictable σ-algebra on Ω× [0, T ] associated with the filtration F.

Let T > 0 be fixed. Let H2
T (denoted also by H2) be the set of real-valued pre-

dictable processes (Zt) such that E
∫ T
0 Z2

sds <∞ and let S2 be the set of real-valued
RCLL adapted processes (ϕs) with E[sup0≤s≤T ϕ

2
s] <∞. Let L2

ν be the set of measur-
able functions l : (E,B(E)) → (R,B(R)) such that ‖l‖2ν :=

∫
E
l2(e)ν(de) <∞. The set

L2
ν is a Hilbert space equipped with the scalar product 〈l, l′〉ν :=

∫
E l(e)l

′(e)ν(de) for
all l, l′ ∈ L2

ν × L2
ν . Let H

2
ν denote the set of predictable real-valued processes (kt(·))

with E
∫ T
0 ‖ks‖2L2

ν
ds <∞.

Let A be the set of controls, defined as the set of predictable processes α valued in
a compact subset A of Rp, where p ∈ N∗. For each α ∈ A and each initial condition
x in R, let (Xα,x

s )0≤s≤T be the unique R-valued solution in S2 of the stochastic
differential equation (SDE):
(2.2)

Xα,x
s = x+

∫ s

0

b(Xα,x
r , αr)dr +

∫ s

0

σ(Xα,x
r , αr)dWr +

∫ s

0

∫
E

β(Xα,x
r− , αr, e)Ñ(dr, de),

where b, σ : R × A → R, are Lipschitz continuous with respect to x and α, and
β : R × A × E → R is a bounded measurable function such that for some constant
C ≥ 0, and for all e ∈ E

|β(x, α, e)| ≤ C Ψ(e), x ∈ R, α ∈ A, where Ψ ∈ L2
ν ,

|β(x, α, e) − β(x′, α′, e)| ≤ C(|x− x′|+ |α− α′|)Ψ(e), x, x′ ∈ R, α, α′ ∈ A.

The criterion of our mixed control problem, depending on α, is defined via a
BSDE with driver function f satisfying the following hypothesis.

Assumption 1. f : A× [0, T ]×R3×L2
ν → (R,B(R)) is B(A)⊗B([0, T ])⊗B(R3)⊗

B(L2
ν)-measurable and satisfies
(i) |f(α, t, x, 0, 0, 0)| ≤ C(1 + |x|p) for all α ∈ A, t ∈ [0, T ], x ∈ R, where p ∈ N∗,
(ii) |f(α, t, x, y, z, k) − f(α′, t, x′, y′, z′, k′)| ≤ C(|α − α′| + |x − x′| + |y − y′| +

|z−z′|+‖k−k′‖L2
ν
) for all t ∈ [0, T ], x, x′, y, y′, z, z′ ∈ R, k, k′ ∈ L2

ν, α, α
′ ∈ A,

(iii) f(α, t, x, y, z, k2)− f(α, t, x, y, z, k1) ≥ 〈γ(α, t, x, y, z, k1, k2), k2 − k1〉ν for all
t, x, y, z, k1, k2, α,

where γ : A×[0, T ]×R3×(L2
ν)

2 → (L2
ν ,B(L2

ν)) is B(A)⊗B([0, T ])⊗B(R3)⊗B((L2
ν)

2)-
measurable, satisfying γ(.)(e) ≥ −1 and |γ(.)(e)| ≤ Ψ(e), dν(e)-a.s., where Ψ ∈ L2

ν .

For all x ∈ R and all control α ∈ A, let fα,x be the driver defined by

fα,x(r, ω, y, z, k) := f(αr(ω), r,X
α,x
r (ω), y, z, k).

1For the definition of the completion of a σ-algebra and the one of P -null sets, see, e.g., Lemma 26.
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We introduce the nonlinear expectation Efα,x

(denoted more simply by Eα,x)
associated with fα,x, defined for each stopping time τ and for each η ∈ L2(Fτ ) as

Eα,xr,τ [η] := Xα,x
r , 0 ≤ r ≤ τ,

where (Xα,x
r ) is the solution in S2 of the BSDE associated with driver fα,x, terminal

time τ , and terminal condition η, that is satisfying

−dXα,x
r = f(αr, r,X

α,x
r ,Xα,x

r , Zα,xr ,Kα,x
r (·))dr

− Zα,xr dWr −
∫
E

Kα,x
r (e)Ñ(dr, de); Xα,x

S = η,

and (Zα,xs ), (Kα,x
s ) are the associated processes, which belong respectively to H2 and

H2
ν . Condition (iii) ensures the nondecreasing property of the Efα,x

-expectation (see
[21]).

For all x ∈ R and all control α ∈ A, we define the reward by h(s,Xα,x
s ) for

0 ≤ s < T and g(Xα,x
T ) for s = T , where

• g : R → R is Borelian,
• h : [0, T ]×R → R is a function which is Lipschitz continuous with respect to
x uniformly in t, and continuous with respect to t on [0, T ],

• |h(t, x)|+ |g(x)| ≤ C(1 + |x|p) for all t ∈ [0, T ], x ∈ R, with p ∈ N∗.
Let T be the set of stopping times with values in [0, T ]. Suppose the initial time

is equal to 0. Note that Eα,t,x0,τ [h̄(τ,Xα,t,x
τ )] can be taken as constant.2 For each initial

condition x ∈ R, we consider the mixed optimal control/stopping problem:

(2.3) u(0, x) := sup
α∈A

sup
τ∈T

Eα,x0,τ [h̄(τ,X
α,x
τ )],

where
h̄(t, x) := h(t, x)1t<T + g(x)1t=T .

Note that h̄ is Borelian but not necessarily regular in (t, x).
We now make the problem dynamic. We define for t ∈ [0, T ] and each ω ∈ Ω the

t-translated path ωt = (ωts)s≥t := (ωs − ωt)s≥t. Note that (ω1,t
s )s≥t := (ω1

s − ω1
t )s≥t

corresponds to the realizations of the translated Brownian motionW t := (Ws−Wt)s≥t
and that the translated Poisson random measureN t := N(]t, s], .)s≥t can be expressed
in terms of (ω2,t

s )s≥t := (ω2
s − ω2

t )s≥t similarly to (2.1). Let Ft = (F t
s)t≤s≤T be the

filtration generated by W t and N t completed with respect to B(Ω) and P . Note that
for each s ∈ [t, T ], F t

s is the σ-algebra generated by W t
r , N

t
r , t ≤ r ≤ s, and F0.

Recall also that we have a martingale representation theorem for Ft-martingales as
stochastic integrals with respect to W t and Ñ t.

Let us denote by T t
t the set of stopping times with respect to Ft with values in

[t, T ]. Let Pt be the predictable σ-algebra on Ω × [t, T ] equipped with the filtration
Ft.

We now introduce the following spaces of processes. Let t ∈ [0, T ]. Let H2
t be the

Pt-measurable processes Z on Ω × [t, T ] such that ‖Z‖H2
t
:= E[

∫ T
t Z2

udu] < ∞. We

define H2
t,ν as the set of Pt-measurable processes K on Ω× [t, T ] such that ‖K‖H2

t,ν
:=

E[
∫ T
t
||Ku||2νdu] < ∞. We denote by S2

t the set of real-valued RCLL processes ϕ on
Ω× [t, T ], Ft-adapted, with E[supt≤s≤T ϕ

2
s] <∞.

2Indeed, the solution of a BSDE with a Lipschitz driver is unique up to a P -null set. Its initial
value may thus be taken constant for all ω, modulo a change of its value on a P -null set, because F0

is the σ-algebra generated by the P -null sets.
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Let At
t be the set of controls α : Ω × [t, T ] 
→ A, which are Pt-measurable.

We consider the solution denoted by Xα,t,x in S2
t of the following SDE driven by

the translated Brownian motion W t and the translated Poisson random measure N t

(with filtration Ft) :

(2.4)

Xα,t,x
s = x+

∫ s

t

b(Xα,t,x
r , αr)dr +

∫ s

t

σ(Xα,t,x
r , αr)dW

t
r

+

∫ s

t

∫
E

β(Xα,t,x
r− , αr, e)Ñ

t(dr, de).

For all (t, x) ∈ [0, T ]× R and all control α ∈ At
t, let f

α,t,x be the driver defined by

fα,t,x(r, ω, y, z, k) := f(αr(ω), r,X
α,t,x
r (ω), y, z, k).

Let Eα,t,x.,τ [h̄(τ,Xα,t,x
τ )] (denoted also by Xα,t,x

· ) be the solution in S2
t of the BSDE

with driver fα,t,x, terminal time τ , and terminal condition h̄(τ,Xα,t,x
τ ), driven by W t

and N t, which is solved on [t, T ]× Ω with respect to the filtration Ft:⎧⎪⎨
⎪⎩
−dXα,t,x

r = f(αr, r,X
α,t,x
r ,Xα,t,x

r , Zα,t,xr ,Kα,t,x
r )dr

− Zα,t,xr dW t
r −

∫
EK

α,t,x
r (e)Ñ t(dr, de)

Xα,t,x
τ = h̄(τ,Xα,t,x

τ ),

(2.5)

where Zα,t,x· , Kα,t,x
· are the associated processes, which belong, respectively, to H2

t

and H2
t,ν. Note that Eα,t,xt,τ [h̄(τ,Xα,t,x

τ )] can be taken deterministic modulo a change
of its value on a P -null set.3

For each initial time t and each initial condition x, we define the value function
as

(2.6) u(t, x) := sup
α∈At

t

sup
τ∈T t

t

Eα,t,xt,τ [h̄(τ,Xα,t,x
τ )],

which is a deterministic function of t and x.
For each α ∈ At

t, we introduce the function uα defined as

uα(t, x) := sup
τ∈T t

t

Eα,t,xt,τ [h̄(τ,Xα,t,x
τ )].

We thus get

(2.7) u(t, x) = sup
α∈At

t

uα(t, x).

For each α, uα(t, x) ≥ h̄(t, x), and hence u(t, x) ≥ h̄(t, x). Moreover, uα(T, x) =
u(T, x) = g(x).

By [22, Theorem 3.2], for each α, the value function uα is related to a reflected
BSDE. More precisely, let (Y α,t,x, Zα,t,x,Kα,t,x) ∈ S2

t × H2
t × H2

ν,t be the solution

of the reflected BSDE associated with driver fα,t,x := f(α·, ·, Xα,t,x
· , y, z, k), RCLL

3Indeed, the solution Eα,t,x
.,τ [h̄(τ,Xα,t,x

τ )](= Xα,t,x
. ) of the BSDE (2.5) is unique up to a P -null

set. Moreover, its value at time t is Ft
t -measurable, and Ft

t is equal to the σ-algebra generated by
the P -null sets (that is, F0). The same property holds for the solution of the reflected BSDE (2.8).
See also the additional Remarks 6 and 8.
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obstacle process ξα,t,xs := h̄(s,Xα,t,x
s )t≤s≤T , terminal condition g(Xα,t,x

T ), and with
filtration Ft, that is,
(2.8)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−dY α,t,xr = f(αr, r,X
α,t,x
r , Y α,t,xr , Zα,t,xr ,Kα,t,x

r )dr + dAα,t,xs

− Zα,t,xr dW t
r −

∫
EK

α,t,x(r, e)Ñ t(dr, de),

Y α,t,xT = g(Xα,t,x
T ) and Y α,t,xs ≥ ξα,t,xs = h(s,Xα,t,x

s ), 0 ≤ s < T a.s. ,

Aα,t,x is an RCLL nondecreasing Pt -measurable process with

Aα,t,xt = 0 and such that∫ T
0
(Y α,t,xs − ξα,t,xs )dAα,t,x,cs = 0 a.s. and ΔAα,t,x,ds

= −ΔAα,t,xs 1{Y α,t,x

s− =ξα,t,x

s− } a.s.

Here Aα,t,x,c denotes the continuous part of A and Aα,t,x,d its discontinuous part.
In the particular case when h(T, x) ≤ g(x), the obstacle ξα,t,x satisfies for all Ft-
predictable stopping time τ , ξτ− ≤ ξτ a.s., which implies the continuity of the process
Aα,t,x (see [22]).

In the following, for each α ∈ At
t, Y

α,t,x
· will be also denoted by Y α,t,x·,T [g(Xα,t,x

T )].
Note that its value at time t can be taken as deterministic modulo a change of its
value on a P -null set.

Using [22, Theorem 3.2], we get that for each α ∈ At
t,

(2.9) uα(t, x) = Y α,t,xt = Y α,t,xt,T [g(Xα,t,x
T )].

By using these equalities, we can reduce our mixed optimal stopping/control problem
(2.6) to an optimal control problem for reflected BSDEs.

Theorem 2 (characterization of the value function). For each (t, x) ∈ [0, T ]×R,
the value function u(t, x) of the mixed optimal stopping/ control problem (2.6) satisfies

(2.10) u(t, x) = sup
α∈At

t

uα(t, x) = sup
α∈At

t

Y α,t,xt,T [g(Xα,t,x
T )].

This key property will be used to solve our mixed problem. We point out that in
the classical case of linear expectations, this approach allows us to provide alternative
proofs of the DPP to those given in the previous literature.

Remark 3. Some mixed optimal control/stopping problems with nonlinear ex-
pectations have been studied in [5, 22]. In these papers, the reward process does not
depend on the control, which yields the characterization of the value function as the
solution of an RBSDE. This is not the case here.

3. Weak DPP. In this section, we prove a weak DPP for our mixed optimal
control/stopping problem (2.6). To this purpose, we first provide some splitting prop-
erties for the forward-backward system (2.4)–(2.8). We then show some measurability
properties of the function uα(t, x), defined by (2.9), with respect to both the state
variable x and the control α. Using these results, we show the existence of ε-optimal
controls satisfying some appropriate measurability properties. Moreover, we establish
a Fatou lemma for RBSDEs, where the limit involves both terminal condition and
terminal time. Using these results, we then prove a sub- (resp., super-) optimality
principle of dynamic programming, involving the u.s.c. (resp., l.s.c.) envelope of the
value function.
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3.1. Splitting properties. Let s ∈ [0, T ]. For each ω, let sω := (ωr∧s)0≤r≤T
and ωs := (ωr − ωs)s≤r≤T . We shall identify the path ω with (sω, ωs), which means
that a path can be split into two parts: the path before time s and the s-translated
path after time s.

Let α be a given control in A. We show below the following: at time s, for fixed
past path ω̃ :=sω, the process α(ω̃, .) which only depends on the future path ωs is
an s-admissible control, that is, α(ω̃, .) ∈ As

s; furthermore, the criterium Y α,0,x(ω̃, .)
from time s coincides with the solution of the reflected BSDE driven by W s and
Ñs, controlled by α(ω̃, .) and associated with initial time s and initial state condition
Xα,0,x
s (ω̃).
We introduce the following random variables defined on Ω by

Ss : ω 
→ sω ; T s : ω 
→ ωs.

Note that they are independent. For each ω ∈ Ω, we have ω = Ss(ω) + T s(ω)1]s,T ],
or equivalently ωr = ωr∧s + ωsr1]s,T ](r), for all r ∈ [0, T ].

For all paths ω, ω′ ∈ Ω, (sω, T s(ω′)) denotes the path such that the past trajectory
before s is that of ω, and the s-translated trajectory after s is that of ω′. This can
also be written as (sω, T s(ω′)) := sω + T s(ω′)1]s,T ]. Note that for each ω ∈ Ω, we
have (sω, T s(ω)) = ω.

Lemma 4. Let s ∈ [0, T ]. Let Z ∈ H2. There exists a P -null set N such that
for each ω in the complement N c of N , setting ω̃ := sω = ω.∧s, the process Z(ω̃, T s)
(denoted also by Z(ω̃, .)) defined by

Z(ω̃, T s) : Ω× [s, T ] → R ; (ω′, r) 
→ Zr(ω̃, T
s(ω′))

belongs to H2
s. Moreover, if Z ∈ A, then Z(ω̃, T s) ∈ As

s.
This property also holds for all initial time t ∈ [0, T ]. More precisely, let s ∈ [t, T ].

Let Z ∈ H2
t (resp., At

t). For a.e. ω ∈ Ω, the process Z(sω, .) = (Zr(
sω, T s))r≥s belongs

to H2
s (resp., As

s).

Proof. Classically, we have E[
∫ T
s
Z2
rdr] = E[E[

∫ T
s
Z2
rdr|Fs]] < +∞. Using the

independence of T s with respect to Fs and the measurability of Ss with respect to
Fs, we derive that

E

[∫ T

s

Z2
rdr| Fs

]
= E

[∫ T

s

Zr(S
s, T s)2dr| Fs

]
= F (Ss) < +∞, P -a.s.,

where F (ω̃) := E[
∫ T
s
Zr(ω̃, T

s(·))2dr].
Let us now prove that the process Z(ω̃, T s) : (ω′, r) 
→ Zr(ω̃, T

s(ω′)) is Ps-
measurable. There exists a process indistinguishable of (Zr), still denoted by (Zr),
which is measurable with respect to the predictable σ-algebra associated with the
filtration generated by W and N (see [13, IV, section 79]). We can thus suppose in
this proof (without loss of generality) that F (resp., Fs) is the filtration generated
by W and N (resp., W s and Ns), and P (resp., Ps) is its associated predictable
σ-algebra. Suppose we have shown that the map ψ : Ω× [s, T ] → Ω× [0, T ]; (ω′, r) 
→
((ω̃, T s(ω′)), r) is (Ps,P)-measurable. Now, we have Z(ω̃, T s)(ω′, r) = Z ◦ ψ(ω′, r)
for each (ω′, r) ∈ Ω× [s, T ]. Since Z is P-measurable, by composition, we derive that
Z(ω̃, T s) is Ps-measurable.

It remains to show the (Ps,P)-measurability of ψ. Recall that the σ-algebra
P is generated by the sets H×]v, T ], where v ∈ [0, T [ and H is of the form H =
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{Bti ∈ Ai, 1 ≤ i ≤ n}, where Ai ∈ B(R2) and t1 < t2 < · · · ≤ v. It is thus sufficient
to show that ψ−1(H×]v, T ]) ∈ Ps. Note that ψ−1(H×]v, T ]) = H ′×]v, T ], where
H ′ = {ω′ ∈ Ω, (ω̃, T s(ω′)) ∈ H}. If there exists i such that ti ≤ s and ω̃ti �∈ Ai, then
H ′ = ∅. Otherwise, we have H ′ = {ω′

ti − ω′
s ∈ Ai for all i such that ti > s}. Hence

H ′ ∈ Fs
v , which implies that ψ−1(H×]v, T ]) ∈ Ps. The proof is thus complete.

Let Z ∈ H2. Let us give an intermediary time s ∈ [0, T ] and a fixed past path
sω. Note that the Lebesgue integral (

∫ u
s Zrdr)(

sω, .) is equal a.s. to the integral∫ u
s Zr(

sω, .)dr. We now show that the stochastic integral (
∫ u
s ZrdWr)(

sω, .) coincides
with the stochastic integral of the process Z(sω, .) with respect to the translated
Brownian motion W s, that is,

∫ u
s
Zr(

sω, .)dW s
r .

Lemma 5 (splitting properties for stochastic integrals). Let s ∈ [0, T ]. Let
Z ∈ H2 and K ∈ H2

ν . There exists a P -null set N (which depends on s) such that for
each ω ∈ N c, and ω̃ := sω, we have (Zr(ω̃, T

s))r≥s ∈ H2
s and (Kr(ω̃, T

s))r≥s ∈ H2
s,ν ,

and (∫ u

s

ZrdWr

)
(ω̃, T s) =

∫ u

s

Zr(ω̃, T
s)dW s

r , P -a.s.,(3.1) (∫ u

s

∫
E

Kr(e)Ñ(dr, de)

)
(ω̃, T s) =

∫ u

s

∫
E

Kr(ω̃, T
s, e)Ñs(dr, de), P -a.s.

Remark 6. In the literature, the s-translated Brownian motion is often defined
by W ′

v := Ws+v −Ws = W s
s+v, 0 ≤ v ≤ T − s. For each Z ∈ H2

s and for each u ≥ s,

we have
∫ u
s
ZrdW

s
r =

∫ u−s
0

Zs+rdW
′
r a.s. The use of W s thus allows us to avoid a

change of time. The same remark holds for the Poisson random measure.
Note that equality (3.1) is equivalent to (

∫ u
s ZrdWr)(ω̃, T

s(ω′)) = (
∫ u
s Zr(ω̃, T

s)
dW s

r )(ω
′) for P -almost every ω′ ∈ Ω. The same remark holds for the second equality.

Proof. We shall only prove the first equality with the Brownian motion. The
second one with the Poisson random measure can be shown by similar arguments.

Let us first show that equality (3.1) holds for a simple process. Let a < T and let
H ∈ L2(Fa). For each ω ≡ (sω, ωs) = (Ss(ω), T s(ω)) ∈ Ω, we have(∫ u

s

H1]a,T ]dWr

)
(sω, ωs) = H(sω, ωs)(ωsu − ωsa∧u)

=

(∫ u

s

H(sω, T s
)
1]a,T ]dW

s
r )(ω).

Let now Z ∈ H2. Let us show that Z satisfies equality (3.1). The idea is to approxi-
mate Z by an appropriate sequence of simple processes (Zn)n∈N so that the sequence
(Zn)n∈N converges in H2 to Z and that, for almost every past path sω, the sequence
(Zn(sω, T s))n∈N converges to Z(sω, T s) in H2

s. For each n ∈ N∗, define

Znr := n

n−1∑
i=1

(∫ iT
n

(i−1)T
n

Zudu

)
1
] iTn ,

(i+1)T
n ]

(r).

By inequality (A.2) in the appendix, we have
∫ u
s
(Znr (ω))

2dr ≤
∫ u
s
Zr(ω)

2dr, and for

each ω ∈ Ω and s ≤ u,
∫ u
s
(Znr (ω)−Zr(ω))2dr → 0. Since

∫ u
s
Z2
rdr ∈ L1(Ω), it follows,

by the Lebesgue theorem for the conditional expectation, that

(3.2) E

[∫ u

s

(Znr − Zr)
2dr|Fs

]
→ 0
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except on a P -null set N . Since Ss is Fs-measurable and T s is independant of Fs,
there exists a P -null set included in the previous one, such that for each ω ∈ N c,
setting ω̃ = sω, we have

E

[∫ u

s

(Znr − Zr)
2dr|Fs

]
(ω̃) = E

[∫ u

s

(Znr (ω̃, T
s)− Zr(ω̃, T

s))2dr

]

= E

[(∫ u

s

Znr (ω̃, T
s)dW s

r −
∫ u

s

Zr(ω̃, T
s)dW s

r

)2
]
.(3.3)

The second equality follows by the classical isometry property. Now, for each square
integrable martingale M , M2 − 〈M〉 is a martingale. Hence, for each ω ∈ N c, where
N is a P -null set included in the previous one, setting ω̃ = sω, we have

E

[∫ u

s

(Znr − Zr)
2dr|Fs

]
(ω̃)

= E

[(∫ u

s

Znr dWr −
∫ u

s

ZrdWr

)2

|Fs

]
(ω̃)

= E

[((∫ u

s

Znr dWr

)
(ω̃, T s)−

(∫ u

s

ZrdWr

)
(ω̃, T s)

)2
]
.(3.4)

For each n ∈ N∗, since Zn is a simple process, it satisfies equality (3.1) everywhere,
that is, (

∫ u
s
Znr dWr)(ω̃, T

s) =
∫ u
s
Znr (ω̃, T

s)dW s
r . By the convergence property (3.2),

equalities (3.3) and (3.4), and the uniqueness property of the limit in L2, we derive that
for each ω ∈ N c, setting ω̃ = sω, equality (3.1) holds. The proof is thus complete.

Using the above lemmas, we now show that for each s ≥ t, for almost every
ω ∈ Ω, setting ω̃ = sω, the process Y α,t,x(ω̃, T s) coincides with the solution of
the reflected BSDE on Ω× [s, T ], associated with driver fα(ω̃,T

s),s,η(ω̃) with obstacle

h̄(r,X
α(ω̃,T s),s,Xα(ω̃),t,x

s (ω̃)
r ) and filtration Fs, and driven by W s and Ñs.

To simplify notation, T s will be replaced by · in the following. In particular
Y α,t,x(ω̃, T s) will be simply denoted by Y α,t,x(ω̃, .).

Theorem 7 (splitting properties for the forward-backward system). Let t ∈
[0, T ], α ∈ At

t, and s ∈ [t, T ]. There exists a P -null set N (which depends on t and
s) such that for each ω ∈ N c, setting ω̃ = sω, the following properties hold:

• There exists an unique solution (X
α(ω̃,·),s,η(ω̃)
r )s≤r≤T in S2

s of the following
SDE:

Xα(ω̃,·),s,η(ω̃)
r = η(ω̃) +

∫ r

s

b(Xα(ω̃,·),s,η(ω̃)
v , αv(ω̃, ·))dv

+

∫ r

s

σ(Xα(ω̃,·),s,η(ω̃)
v , αv(ω̃, ·))dW s

v

+

∫ r

s

∫
E

β(X
α(ω̃,·),s,η(ω̃)
v− , αv(ω̃, ·), e)Ñs(dv, de),(3.5)

where η(ω̃) := X
α(ω̃),t,x
s (ω̃). We also have Xα,t,x

r (ω̃, .) = X
α(ω̃,·),s,η(ω̃)
r , s ≤

r ≤ T P -a.s.
• There exists an unique solution (Y

α(ω̃,·),s,η(ω̃)
r , Z

α(ω̃,·),s,η(ω̃)
r ,K

α(ω̃,·),s,η(ω̃)
r )s≤r≤T

in S2
s × H2

s × H2
s,ν of the reflected BSDE on Ω× [s, T ] driven by W s and Ñs
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and associated with filtration Fs, driver fα(ω̃,.),s,η(ω̃), and obstacle

h̄(r,X
α(ω̃,·),s,η(ω̃)
r ). We have the following:

Y α,t,xr (ω̃, .) = Y α(ω̃,.),s,η(ω̃)r , s ≤ r ≤ T, P -a.s.,(3.6)

Zα,t,xr (ω̃, .) = Zα(ω̃,·),s,η(ω̃)r and Kα,t,x
r (ω̃, .)

= Kα(ω̃,·),s,η(ω̃)
r , s ≤ r ≤ T, dP ⊗ dr-a.s.,

Y α,t,xs (ω̃, .) = Y α(ω̃,·),s,η(ω̃)s = uα(ω̃,·)(s, η(ω̃)), P -a.s.(3.7)

Proof. Recall that by Lemma 4, there exists a P -null set N such that for each
ω ∈ N c, the process α(sω, ·) := (αr(

sω, Ts))r≥s belongs to As
s.

Let us show the first assertion. To simplify the exposition, we suppose that there
is no Poisson random measure. There exists a P -null set, still denoted by N , included
in the above one such that for each ω ∈ N c, setting ω̃ = sω,

Xα,t,x
r (ω̃, .) = η(ω̃) +

∫ r

s

b(Xα,t,x
v (ω̃, .), αv(ω̃, .))dv +

(∫ r

s

σ(Xα,t,x
v , αv)dWv

)
(ω̃, .),

on [s, T ], P -a.s. Now, by the first equality in Lemma 5, there exists a P -null set N
such that for each ω ∈ N c, setting ω̃ = sω, we have

(∫ r

s

σ(Xα,t,x
v , αv)dWv

)
(ω̃, .) =

∫ r

s

σ(Xα(ω̃,·),s,η(ω̃)
v , αv(ω̃, ·))dW s

v , P -a.s.,

which implies that the process (Xα,t,x
r (ω̃, ·))r∈[s,T ] is a solution of SDE (3.5), and

then, by uniqueness of the solution of this SDE, we have Xα,t,x
r (ω̃, .) = X

α(ω̃,.),s,η(ω̃)
r ,

s ≤ r ≤ T, P -a.s.
Let us show the second assertion. First, note that since the filtration Fs is

the completed filtration of the natural filtration of W s and Ñs (with respect to
the initial σ-algebra B(Ω)), we have a martingale representation theorem for Fs-
martingales with respect to W s and Ñs. Hence, there exists an unique solution

(Y
α(ω̃,·),s,η(ω̃)
r , Z

α(ω̃,·),s,η(ω̃)
r ,K

α(ω̃,·),s,η(ω̃)
r )s≤r≤T in S2

s × H2
s × H2

s,ν of the reflected

BSDE on Ω× [s, T ] driven by W s and Ñs and associated with filtration Fs and with

obstacle h̄(r,X
α(ω̃,·),s,η(ω̃)
r ). Equalities (3.6) then follow from similar arguments as

above together with the uniqueness of the solution of a Lipschitz RBSDE. Equality
(3.7) is obtained by taking r = s in equality (3.6) and by using the definition of
uα(ω̃,.).

Remark 8. In the above proofs, we have treated the P -null sets issues carefully.
We stress that all the filtrations are completed with respect to B(Ω) and P . The
underlying probability space is thus always the completion of the initial probability
space (Ω,B(Ω), P ) (that is, (Ω,FT , P )). Note that the P -null sets remain always the
same, which is particularly important for stochastic integrals (see Lemma 5) and also
for BSDEs because the solution of a BSDE is unique up to a P -null set.

Moreover, in the proof of Lemma 5, the choice of the sequence of step functions
approximating the process Z is appropriate to handle the issues of P -null sets.

Note that Theorem 7 applied to the simpler case when α ∈ As
s ensures that the

solution of (2.8) (with t replaced by s) coincides on [s, T ] × Ω with the solution in
S2 ×H2 ×H2

ν of the reflected BSDE similar to (2.8) but driven by W and Ñ instead
of W s and Ñs, and associated with F.
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3.2. Measurability properties and ε-optimal controls. We need to show a
measurability property of the function uα(t, x) with respect to control α and initial
condition x. To this purpose, we first provide a preliminary result, which will allow
us to handle the nonlinearity of the expectation.

Proposition 9. Let (Ω,F , P ) be a probability space. For each q ≥ 0, we denote
by Lq the set Lq(Ω,F , P ). Suppose that the Hilbert space L2 equipped with the usual
scalar product is separable.

Let g : R → R be a Borelian function such that |g(x)| ≤ C(1 + |x|p) for each real
x with p ≥ 0. The map ϕg defined by

ϕg : L2p ∩ L2 → L2; ξ 
→ g ◦ ξ (= g(ξ))

is then B′(L2p ∩L2)/B(L2)-measurable, where B(L2) is the Borelian σ-algebra on L2,
and B′(L2p ∩ L2) is the σ-algebra induced by B(L2) on L2p ∩ L2.

The proof of this proposition is postponed until the appendix.
Using this result, we now show the following measurability property.

Theorem 10. Let s ∈ [0, T ]. The map (α, x) 
→ uα(s, x); As
s × R → R, is

B′(As
s)⊗B(R)/B(R)-measurable, where B′(As

s) denotes the σ-algebra induced by B(H2
s)

on As
s.

Proof. Recall that uα(s, x) = Y α,s,xs,T [g(Xα,s,x
T )] is also denoted by Y α,s,xs,T [h̄(., Xα,s,x

. )].

Let x1, x2 ∈ R, and α1, α2 ∈ As
s. By classical estimates on diffusion processes and the

assumptions made on the coefficients, we get

(3.8) E

[
sup
r≥s

|Xα1,s,x1

r −Xα2,s,x2

r |2
]
≤ C(‖α1 − α2‖2

H2
s
+ |x1 − x2|2).

We introduce the map Φ : As
s × R× S2

s × L2
s → S2

s ; (α, x, ζ·, ξ) 
→ Y α,s,xs,T [η·, ξ], where

Y α,s,xs,T [ζ·, ξ] denotes here the solution at time s of the reflected BSDE associated with
driver fα,s,x := (f(αr, r,X

α,s,x
r , .)1r≥s), obstacle (ηs)s<T , and terminal condition ξ.

By the estimates on RBSDEs (see the appendix in [14]), using the Lipschitz
property of f w.r.t. x, α and estimates (3.8), for all x1, x2 ∈ R, α1, α2 ∈ As

s, η
1
· , η

2
· ∈ S2

s

and ξ1, ξ2 ∈ L2
s, we have

|Y α
1,s,x1

s,T [η1· , ξ
1]− Y α

2,s,x2

s,T [η2· , ξ
2]|2

≤ C(‖α1 − α2‖2
H2

s
+ |x1 − x2|2 + ‖η1· − η2· ‖2S2

s
+ ‖ξ1 − ξ2‖2L2

s
).

The map Φ is thus Lipschitz-continuous with respect to the norm ‖ . ‖2
H2

s
+ | . |2 +

‖ . ‖2S2
s
+ ‖ . ‖2L2

s
.

Recall that by assumption, |h(t, x)| ≤ C(1 + |x|p), and that h is Lipschitz contin-
uous with respect to x uniformly in t. One can derive that the map S2p

s ∩ S2
s → S2

s ,
η· 
→ h(., η·) is Lipschitz-continuous for the norm ‖.‖2S2

s
and thus Borelian, S2

s be-

ing equipped with the Borelian σ-algebra B(S2
s ) and its subspace S2p

s ∩ S2
s with the

σ-algebra induced by B(S2
s ).

Moreover, by Lemma 25, the Hilbert space L2
s is separable. We can thus apply

Proposition 9 and get that the map L2p
s ∩ L2

s → L2
s, ξ 
→ g(ξ) is Borelian.

We thus derive that the map (α, x) 
→ (α, x, h(., Xα,s,x
. ), g(Xα,s,x

T )) defined on
As
s×R and valued in As

s×R×S2
s×L2

s is B′(As
s)⊗B(R)/B′(As

s)⊗B(R)⊗B(S2
s )⊗B(L2

s)-
measurable. By composition, it follows that the map (α, x) 
→ Y α,s,xs,T [h(., Xα,s,x

. ),

g(Xα,s,x
T )] = uα(s, x) is measurable.
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For each (t, s) with s ≥ t, we introduce the set At
s of restrictions to [s, T ] of the

controls in At
t. They can also be identified to the controls α in At

t which are equal to
0 on [t, s].

Let η ∈ L2(F t
s). Since η is Fs-measurable, up to a P -null set, it can be written as

a measurable map, still denoted by η, of the past trajectory sω. (See the argument
used in the proof of Lemma 25 for details.) For each ω ∈ Ω, by using the definition
of the function u, we have

(3.9) u(s, η(sω)) = sup
α∈As

s

uα(s, η(sω)).

By Theorem 10 together with a measurable selection theorem, we show the exis-
tence of nearly optimal controls for (3.9) satisfying some specific measurability prop-
erties.

Theorem 11 (existence of ε-optimal controls). Let t ∈ [0, T ], s ∈ [t, T [, and
η ∈ L2(F t

s). Let ε > 0. There exists αε ∈ At
s such that, for almost every ω ∈ Ω,

αε(sω, T s) is ε-optimal for Problem (3.9), in the sense that

u(s, η(sω)) ≤ uα
ε(sω,T s)(s, η(sω)) + ε.

Proof. Without loss of generality, we may assume that t = 0. We introduce the
space sΩ := {(ωr)0≤r≤s;ω ∈ Ω}, equipped with its Borelian σ-algebra denoted by
B(sΩ), and the probability measure sP , which corresponds to the image of P by
sS : Ω →s Ω; ω 
→ (ωr)r≤s. The Hilbert space H2

s of square-integrable predictable
processes on Ωs× [s, T ], equipped with the norm ‖ · ‖H2

s
, is separable (see Lemma 25).

Moreover, As
s is a closed subset of H2

s. Also, the space sΩ of paths (RCLL) before
s is Polish for the Skorohod metric. Now, as seen above, since η is Fs-measurable,
up to a P -null set, we can suppose that it is of the form η ◦ Ss, where η is B(sΩ)-
measurable. Moreover, by Theorem 10, the map (ω̃, α) 
→ uα(s, η(ω̃)) is B(sΩ) ⊗
B(As

s)-measurable with respect to (x, α). We can thus apply [6, Proposition 7.50] to
the problem (3.9). Hence, there exists a map αε : sΩ 
→ As

s ; ω̃ 
→ αε(ω̃, ·), which is
universally measurable, that is U(sΩ)/B(As

s)-measurable, and such that

u(s, η(ω̃)) ≤ uα
ε(ω̃,·)(s, η(ω̃)) + ε ∀ω̃ ∈ sΩ.

Here, U(sΩ) denotes the universal σ-algebra on sΩ. Let us now apply Lemma 26
to X = sΩ, to E = H2

s, and to probability Q = P s. By definition of U(sΩ) (see,
e.g., [6]), we have U(sΩ) ⊂ BQ(sΩ), where BQ(sΩ) denotes the completion of B(sΩ)
with respect to Q. Hence, there exists a map α̂ε : sΩ 
→ As

s ; ω̃ 
→ α̂ε(ω̃, ·) which is
Borelian, that is B(sΩ)/B(As

s)-measurable, and such that

α̂ε(ω̃, ·) = αε(ω̃, ·) for sP -almost every ω̃ ∈ sΩ.

Since H2
s is a separable Hilbert space, for each ω̃, we have α̂εu(ω̃, ω) =

∑
i β

i,ε(ω̃)eiu(ω)
dP (ω) ⊗ du-a.s., where βi,ε(ω̃) =< α̂ε(ω̃, ·), ei(·) >H2

s
and {ei, i ∈ N} is a countable

orthonormal basis of H2
s. Note that β

i,ε is Borelian, that is, B(sΩ)/B(R)-measurable.
Let ᾱε : sΩ 
→ As

s ; ω̃ 
→ ᾱε(ω̃, ·) =
∑

i β
i,ε(ω̃)ei(·). It is Borelian, that is, B(sΩ)/B(As

s)-
measurable.

We now define a process αε on [0, T ] × Ω by αεr(ω) :=
∑

i β
i,ε(Ss(ω))ei(ω). It

remains to prove that it is P-measurable. Note that βi,ε ◦ Ss is Fs-measurable by
composition. Since the process (eiu)s≤u≤T is Ps-measurable, the process (βi,ε ◦Ss) eiu
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is P-measurable. Indeed, if we take ei of the form eiu = H1]r,T ](u) with r ≥ s and
H a random variable Fs

r -measurable, then the random variable (βi,ε◦Ss)H is Fr-
measurable and hence the process (βi,ε◦ Ss)H1]r,T ] is P-measurable. The process αε

is thus P-measurable.
Note also that αε(ω̃, T s(ω)) =

∑
i β

i,ε(ω̃)ei(ω̃, ω). Now, we have ei(ω̃, T s(ω)) =
ei(ω) because ei(ω) depends on ω only through T s(ω). Hence, αε(ω̃, T s(ω)) =
ᾱε(ω̃, ω), which completes the proof.

3.3. A Fatou lemma for reflected BSDEs. We establish a Fatou lemma for
reflected BSDEs, where the limit involves both terminal condition and terminal time.
This result will be used to prove a super- (resp., sub-) optimality principle involving
the l.s.c. (resp., u.s.c.) envelope of the value function u (see Theorem 17). We first
introduce some notation.

A function f is said to be a Lipschitz driver if f : [0, T ] × Ω × R2 × L2
ν →

R (ω, t, y, z, k(·)) 
→ f(ω, t, y, z, k(·)) is P ⊗ B(R2) ⊗ B(L2
ν)-measurable, uniformly

Lipschitz with respect to y, z, k(·), and such that f(., 0, 0, 0) ∈ H2.
A Lipschitz driver f is said to satisfy Assumption 12 if the following holds.

Assumption 12. Assume that dP ⊗ dt-a.s for each (y, z, k1, k2) ∈ R2 × (L2
ν)

2,

f(t, y, z, k1)− f(t, y, z, k2) ≥ 〈γy,z,k1,k2t , k1 − k2〉ν
with γ : [0, T ]×Ω×R2× (L2

ν)
2 → L2

ν ; (ω, t, y, z, k1, k2) 
→ γy,z,k1,k2t (ω, .), supposed to
be P⊗B(R2)⊗B((L2

ν)
2)-measurable, uniformly bounded in L2

ν, and satisfying dP (ω)⊗
dt⊗dν(e)-a.s., for each (y, z, k1, k2) ∈ R2× (L2

ν)
2, the inequality γy,z,k1,k2t (ω, e) ≥ −1.

This assumption ensures the comparison theorem for BSDEs with jumps (see [21,
Theorem 4.2]).

Let (ηt) be a given RCLL obstacle process in S2 and let f be a given Lipschitz
driver. In the following, we will consider the case when the terminal time is a stopping
time θ ∈ T and the terminal condition is a random variable ξ in L2(Fθ). In this case,
the solution, denoted (Y.,θ(ξ), Z.,θ(ξ), k.,θ(ξ)), of the reflected BSDEs associated with
terminal stopping time θ, driver f , obstacle (ηs)s<θ, and terminal condition ξ is defined
as the unique solution in S2 ×H2 ×H2

ν of the reflected BSDE with terminal time T ,
driver f(t, y, z, k)1{t≤θ}, terminal condition ξ, and obstacle ηt1t<θ+ξ1t≥θ. Note that
Yt,θ(ξ) = ξ, Zt,θ(ξ) = 0, kt,θ(ξ) = 0 for t ≥ θ.

We first prove a continuity property for reflected BSDEs where the limit involves
both terminal condition and terminal time.

Proposition 13 (a continuity property for reflected BSDEs). Let T > 0. Let
(ηt) be an RCLL process in S2. Let f be a given Lipschitz driver. Let (θn)n∈N be a
non increasing sequence of stopping times in T , converging a.s. to θ ∈ T as n tends to
∞. Let (ξn)n∈N be a sequence of random variables such that E[supn(ξ

n)2] < +∞, and
for each n, ξn is Fθn-measurable. Suppose that ξn converges a.s. to an Fθ-measurable
random variable ξ as n tends to ∞. Suppose that

(3.10) ηθ ≤ ξ a.s.

Let Y.,θn(ξ
n); Y.,θ(ξ) be the solutions of the reflected BSDEs associated with driver f ,

obstacle (ηs)s<θn (resp.. (ηs)s<θ), terminal time θn (resp., θ), and terminal condition
ξn (resp., ξ). We have

Y0,θ(ξ) = lim
n→+∞

Y0,θn(ξ
n) a.s.

When for each n, θn = θ a.s., the result still holds without assumption (3.10).
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By similar arguments as in the Brownian case (see, e.g., [16]), one can prove the
following estimate on reflected BSDEs, which will be used in the proof of the above
proposition.

Lemma 14. Let ξ1, ξ2 ∈ L2(FT ) and (η1t ), (η2t ) ∈ S2. Let f1, f2 be Lipschitz
drivers with Lipschitz constant C > 0. For i = 1, 2, let (Y i, Zi, ki, Ai) be the solution
of the reflected BSDE with driver f i, terminal time T , obstacle (ηit), and terminal
condition ξi. For s ∈ [0, T ], let Y s := Y 1

s − Y 2
s , ηs := η1s − η2s , ξ := ξ1 − ξ2 and

f(s) := f1(s, Y 2
s , Z

2
s , k

2
s)− f(s, Y 2

s , Z
2
s , k

2
s). Then, we have

(3.11) ‖Y ‖2S2 ≤ K

(
E[ξ

2
] + E

[∫ T

0

f
2
(s)ds

])
+ φ

∥∥∥∥ sup
0≤s<T

|ηs|
∥∥∥∥
L2

,

where the constant K is universal, that is, depends only on the Lipschitz constant
C and T , and where the constant φ depends only on C, T , ‖ηi‖S2 , ‖ξi‖L2, and
‖f i(s, 0, 0, 0)‖H2, i = 1, 2.

Proof of Proposition 13. Let n ∈ N. We apply (3.11) with f1 = f1t≤θn , f
2 =

f1t≤θ, ξ
1 = ξn, ξ2 = ξ, η1t = ηt1t<θn + ξn1θn≤t<T , and η

2
t = ηt1t<θ + ηθ1θ≤t<θn +

ξ1θn≤t<T . We have Y 1
· = Y.,θn(ξ

n) a.s. Moreover, since by assumption ηθ ≤ ξ a.s.,
we have Y 2

· = Y.,θ(ξ) a.s. Note that (Y 2
t , Z

2
t , k

2
t ) = (ξ, 0, 0) a.s. on {t ≥ θ}. We thus

obtain

(3.12)

|Y0,θn(ξn)− Y0,θ(ξ)|2 ≤ K

(
E[(ξn − ξ)2] + E

[∫ θn

θ

f2(s, ξ, 0, 0)ds

])

+ φ

∥∥∥∥ sup
θ≤s<θn

|ηs − ηθ|
∥∥∥∥
L2

,

where the constant K depends only on the Lipschitz constant C of f and the terminal
time T , and where the constant φ depends only on C, T , ‖η‖S2 , supn ‖ξn‖L2 , and
‖f(s, 0, 0, 0)‖H2. Since the obstacle (ηt) is right-continuous and θn ↓ θ a.s., we have
limn→+∞ ‖ supθ≤s≤θn |ηs− ηθ|‖L2 = 0. The right member of (3.12) thus tends to 0 as
n tends to +∞. The result follows.

Remark 15. Compared with the case of nonreflected BSDEs (see [21, Proposition
A.6]), there is an extra difficulty due to the presence of the obstacle (and the varia-
tion of the terminal time). The additional assumption (3.10) on the obstacle is here
required to obtain the result.

Using Proposition 13, we derive a Fatou lemma in the reflected case, where the
limit involves both terminal condition and terminal time.

Proposition 16 (a Fatou lemma for reflected BSDEs). Let T > 0. Let (ηt)
be an RCLL process in S2. Let f be a Lipschitz driver satisfying Assumption 12.
Let (θn)n∈N be a nonincreasing sequence of stopping times in T , converging a.s. to
θ ∈ T as n tends to ∞. Let (ξn)n∈N be a sequence of random variables such that
E[supn(ξ

n)2] < +∞, and for each n, ξn is Fθn-measurable.
Let Y.,θn(ξ

n); Y.,θ(lim infn→+∞ ξn) and Y.,θ(lim supn→+∞ ξn) be the solution(s)
of the reflected BSDE(s) associated with driver f , obstacle (ηs)s<θn (resp., (ηs)s<θ),
terminal time θn (resp., θ), and terminal condition ξn (resp., lim infn→+∞ ξn and
lim supn→+∞ ξn).
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Suppose that

lim inf
n→+∞

ξn ≥ ηθ

(
resp., lim sup

n→+∞
ξn ≥ ηθ

)
a.s.(3.13)

Then Y0,θ

(
lim inf
n→+∞

ξn
)

≤ lim inf
n→+∞

Y0,θn(ξ
n)(

resp., Y0,θ

(
lim sup
n→+∞

ξn
)

≥ lim sup
n→+∞

Y0,θn(ξ
n)

)
.

When for each n, θn = θ a.s., the result still holds without assumption (3.13).

Proof. We present only the proof of the first inequality, since the second one is
obtained by similar arguments. For all n, we have by the monotonicity of reflected
BSDEs with respect to terminal condition, Y0,θn(infp≥n ξ

p) ≤ Y0,θn(ξ
n). We derive

that

lim inf
n→+∞

Y0,θn(ξ
n) ≥ lim inf

n→+∞
Y0,θn

(
inf
p≥n

ξp
)

= Y0,θ

(
lim inf
n→+∞

ξn
)
,

where the last equality follows from assumption (3.13) together with Proposition 13.

3.4. A weak DPP. We will now provide a weak DPP that is both a (weak)
sub- and super-optimality principle of dynamic programming, involving, respectively,
the u.s.c. envelope u∗ and the l.s.c. envelope u∗ of the value function u, defined by

u∗(t, x) := lim sup
(t′,x′)→(t,x)

u(t′, x′); u∗(t, x) := lim inf
(t′,x′)→(t,x)

u(t′, x′) ∀(t, x) ∈ [0, T ]× R.

We now define the maps ū∗ and ū∗ for each (t, x) ∈ [0, T ]× R by

ū∗(t, x) := u∗(t, x)1t<T + g(x)1t=T ; ū∗(t, x) := u∗(t, x)1t<T + g(x)1t=T .

Note that the functions ū∗ and ū∗ are Borelian. We have ū∗ ≤ u ≤ ū∗ and ū∗(T, .) =
u(T, .) = ū∗(T, .) = g(.). Note that ū∗ (resp., ū∗) is not necessarily upper (resp.,
lower) semicontinuous on [0, T ]× R, since the terminal reward g is only Borelian.

To prove the weak DPP, we will use the splitting properties (Theorem 7), the
existence of ε-optimal controls (Theorem 11), and the Fatou lemma for RBSDEs
(Proposition 16).

Theorem 17 (a weak DPP). The value function u satisfies the following weak
suboptimality principle of dynamic programming: for each t ∈ [0, T ] and for each
stopping time θ ∈ T t

t , we have

(3.14) u(t, x) ≤ sup
α∈At

t

sup
τ∈T t

t

Eα,t,xt,θ∧τ
[
h(τ,Xα,t,x

τ )1τ<θ + ū∗(θ,Xα,t,x
θ )1τ≥θ

]
.

Moreover, the following weak superoptimality principle of dynamic programming holds:
for each t ∈ [0, T ] and for each stopping time θ ∈ T t

t , we have

(3.15) u(t, x) ≥ sup
α∈At

t

sup
τ∈T t

t

Eα,t,xt,θ∧τ
[
h(τ,Xα,t,x

τ )1τ<θ + ū∗(θ,X
α,t,x
θ )1τ≥θ

]
.

Remark 18. The proof given below also shows that this weak DPP still holds with
θ replaced by θα in inequalities (3.14) and (3.15), given a family of stopping times
indexed by controls {θα, α ∈ At

t}.



2106 R. DUMITRESCU, M.-C. QUENEZ, AND A. SULEM

Note that no regularity condition is required on g to ensure this weak DPP, even
(3.15). This is not the case in the literature even for classical expectation (see [8],
[7], [4]). Moreover, our DPPs are stronger than those given in these papers, where
inequality (3.14) (resp., (3.15)) is established with u∗ (resp., u∗) instead of ū∗ (resp.,
ū∗). Now, ū

∗ ≤ u∗ and ū∗ ≥ u∗.

Before giving the proof, we introduce the following notation. For each θ ∈ T and
each ξ in L2(Fθ), we denote by (Y α,t,x.,θ (ξ), Zα,t,x.,θ (ξ), kα,t,x.,θ (ξ)) the unique solution in

S2×H2×H2
ν of the reflected BSDE with driver fα,t,x1{s≤θ}, terminal time T , terminal

condition ξ, and obstacle h(r,Xα,t,x
r )1r<θ + ξ1r≥θ.

Proof. By estimates for reflected BSDEs (see [14, Proposition 5.1]), the function u
has at most polynomial growth at infinity. Hence, the random variables ū∗(θ,Xα,t,x

θ )

and ū∗(θ,X
α,t,x
θ ) are square integrable. Without loss of generality, to simplify nota-

tion, we suppose that t = 0.
We first show the second assertion (which is the most difficult), or equivalently:

(3.16) sup
α∈A

Y α,0,x0,θ

[
ū∗(θ,X

α,0,x
θ )

]
≤ u(0, x) ∀θ ∈ T .

Let θ ∈ T . For each n ∈ N, we define

(3.17) θn :=

2n−1∑
k=0

tk1Ak
+ T1θ=T ,

where tk := (k+1)T
2n and Ak := {kT2n ≤ θ < (k+1)T

2n }. Note that θn ∈ T and θn ↓ θ.
On {θ = T }we have θn = T for each n. We thus get ū∗(θ

n, Xα,0,x
θn ) = ū∗(θ,X

α,0,x
θ )

for each n on {θ = T }. Moreover, on {θ < T }, the lower semicontinuity of ū∗ on
[0, T [×R together with the right continuity of the process Xα,0,x implies that

ū∗(θ,X
α,0,x
θ ) ≤ lim inf

n→+∞
ū∗(θ

n, Xα,0,x
θn ) a.s.

Hence, by the comparison theorem for reflected BSDEs, we get

Y α,0,x0,θ

[
ū∗(θ,X

α,0,x
θ )

]
≤ Y α,0,x0,θ

[
lim inf
n→+∞

ū∗(θ
n, Xα,0,x

θn )

]
.

On {θ < T }, we have

lim inf
n→∞

ū∗(θ
n, Xα,0,x

θn ) ≥ lim inf
n→∞

h(θn, Xα,0,x
θn )

= lim
n→∞

h(θn, Xα,0,x
θn ) = h(θ,Xα,0,x

θ ) a.s.

by the regularity properties of h on [0, T [×R. On {θ = T }, θn = T and

ū∗(θ
n, Xα,0,x

θn ) = ū∗(T,X
α,0,x
T ) = g(Xα,0,x

T ) = h̄(T,Xα,0,x
T ).

Hence, we have lim infn→+∞ ū∗(θ
n, Xα,0,x

θn ) ≥ h̄(θ,Xα,0,x
θ ) a.s. Condition (3.13) is

thus satisfied with ξn = ū∗(θ
n, Xα,0,x

θn ) and ξt = h̄(t,Xα,0,x
t ). We can thus apply the

Fatou lemma for reflected BSDEs (Proposition 16). We thus get

(3.18)
Y α,0,x0,θ

[
ū∗(θ,X

α,0,x
θ )

]
≤ Y α,0,x0,θ

[
lim inf
n→+∞

ū∗(θ
n, Xα,0,x

θn )

]

≤ lim inf
n→∞

Y α,0,x0,θn

[
ū∗(θ

n, Xα,0,x
θn )

]
.
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Let ε > 0. Fix n ∈ N. For each k < 2n − 1, let Atk be the set of the restrictions
to [tk, T ] of the controls α in A. By Theorem 11, there exists a P -null set N (which
depends on n and ε) such that for each k < 2n − 1, there exists an ε-optimal control
control αn,ε,k in A0

tk (= Atk) for the control problem at time tk with initial condition

η = Xα,0,x
tk that is satisfying the inequality

(3.19) u(tk, X
α,0,x
tk

(tkω)) ≤ uα
n,ε,k(tkω,·)(tk, X

α,0,x
tk

(tkω)) + ε

for each ω ∈ N c. Using the definition of the maps uα
n,ε,k(tkω,·) together with the

splitting property for reflected BSDEs (3.7), we derive that there exists a P -null set
N which contains the above one such that for each ω ∈ N c and for each k < 2n − 1,
we have

uα
n,ε,k(tkω,·)(tk, X

α,0,x
tk (tkω)) = Y

αn,ε,k(tkω,·),tk,Xα,0,x
tk

(tkω)

tk,T
= Y

αn,ε,k,tk,X
α,0,x
tk

tk,T
(tkω).

Here, Y
αn,ε,k,tk,X

α,0,x
tk

.,T =Y f
αn,ε,k,tk,X

α,0,x
tk

.,T [h̄(r,X
αn,ε,k,tk,X

α,0,x
tk

r )] denotes the solution of the

reflected BSDE associated with terminal time T , obstacle (h̄(r,X
αn,ε,k,tk,X

α,0,x
tk

r ))tk≤r≤T ,

and driver fα
n,ε,k,tk,X

α,0,x
tk (r, y, z, k) := f(αn,ε,kr , r,X

α,tk,X
α,0,x
tk

r , y, z, k).
Set αn,εs :=

∑
k<2n−1 α

n,ε,k
s 1Ak

+ αs1{θn=T}. Since for each k, Ak ∈ Ftk , there
exists a P -null set N such that, on N c, for each k < 2n − 1, we have the following
equalities:

Y
αn,ε,k,tk,X

α,0,x
tk

tk,T
1Ak

= Y
f
αn,ε,k,tk,X

α,0,x
tk 1Ak

tk,T

[
h̄

(
r,X

αn,ε,k,tk,X
α,0,x
tk

r

)
1Ak

]

= Y
f
αn,ε,θn,X

α,0,x
θn 1Ak

tk,T

[
h̄

(
r,X

αn,ε,θn,Xα,0,x
θn

r

)
1Ak

]
,

where, for a given driver f , Y f1Ak denotes the solution of the reflected BSDE associ-

ated with f1Ak
. We thus get Y

αn,ε,k,tk,X
α,0,x
tk

tk,T
1Ak

= Y
αn,ε,θn,Xα,0,x

θn

θn,T 1Ak
on N c. Using

inequalities (3.19), we get

ū∗(θ
n, Xα,0,x

θn ) =
∑

0≤k<2n−1

u∗(tk, X
α,0,x
tk )1Ak

+ g(Xα,t,x
T )1{θn=T}

≤ Y
αn,ε,θn,Xα,0,x

θn

θn,T + ε on N c.

We set α̃n,εs := αs1s<θn + αn,εs 1θn≤s≤T . Note that α̃n,ε ∈ A. Using the comparison
theorem together with the estimates on reflected BSDEs (see [14]), we obtain

Y α,0,x0,θn [ū∗(θ
n, Xα,0,x

θn )] ≤ Y α,0,x0,θn

[
Y
αn,ε,θn,Xα,0,x

θn

θn,T

]
+Kε = Y α̃

n,ε,0,x
0,T +Kε,

where the last equality follows from the flow property. Since Y α̃
n,ε,0,x

0,T ≤ u(0, x), using

(3.18), we get Y α,0,x0,θ [ū∗(θ,X
α,0,x
θ )] ≤ Y α,0,x0,θn [ū∗(θ

n, Xα,0,x
θn )] ≤ u(0, x) + Kε. Taking

the supremum on α ∈ A and letting ε tend to 0, we obtain inequality (3.16).
It remains to show the first assertion. It is sufficient to show that for each θ ∈ T ,

(3.20) u(0, x) ≤ sup
α∈A

Y α,0,x0,θ

[
ū∗(θ,Xα,0,x

θ )
]
.
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Let θ ∈ T . Let α ∈ A. As above, we approximate θ by the sequence of stopping
times (θn)n∈N defined above. Let n ∈ N. By applying the flow property for reflected

BSDEs, we get Y α,0,x0,T = Y α,0,x0,θn [Y
α,θn,Xα,0,x

θn

θn,T ]. By similar arguments as in the proof of
the superoptimality principle (but without using the existence of ε-optimal controls),

we derive that Y
α,θn,Xα,0,x

θn

θn,T ≤ ū∗(θn, Xα,0,x
θn ) a.s. By the comparison theorem for

reflected BSDEs, it follows that

Y α,0,x0,T = Y α,0,x0,θn

[
Y
α,θn,Xα,0,x

θn

θn,T

]
≤ Y α,0,x0,θn [ū∗(θn, Xα,0,x

θn )].

Using the Fatou lemma for reflected BSDEs (Proposition 16), we get

Y α,0,x0,T ≤ lim sup
n→∞

Y α,0,x0,θn [ū∗(θn, Xα,0,x
θn )] ≤ Y α,0,x0,θ

[
lim sup

n→∞
ū∗(θn, Xα,0,x

θn )

]
.

Using the upper semicontinuity property of ū∗ on [0, T [×R and ū∗(T, x) = g(x), we
obtain

Y α,0,x0,T ≤ Y α,0,x0,θ

[
lim sup

n→∞
ū∗(θn, Xα,0,x

θn )

]
≤ Y α,0,x0,θ [ū∗(θ,Xα,0,x

θ )].

Since α ∈ A is arbitrary, we get inequality (3.20), which completes the proof.

4. Nonlinear HJB variational inequalities.

4.1. Some extensions of comparison theorems for BSDEs and reflected
BSDEs. We provide two results which will be used to prove that the value function
u, defined by (2.6), is a weak viscosity solution of some nonlinear HJB variational
inequalities (see Theorem 22). We first show a slight extension of the comparison
theorem for BSDEs given in [21], from which we derive a comparison result between
a BSDE and a reflected BSDE.

Lemma 19. Let t0 ∈ [0, T ] and let θ ∈ Tt0 . Let ξ1 and ξ2 ∈ L2(Fθ). Let f1
be a driver. Let f2 be a Lipschitz driver with Lipschitz constant C > 0, satisfying
Assumption 12. For i = 1, 2, let (X i

t , π
i
t, l

i
t) be a solution in S2 × H2 × H2

ν of the
BSDE associated with driver fi, terminal time θ, and terminal condition ξi. Suppose
that

f1(t,X
1
t , π

1
t , l

1
t ) ≥ f2(t,X

1
t , π

1
t , l

1
t ) t0 ≤ t ≤ θ, dt⊗ dP a.s., and ξ1 ≥ ξ2 + ε a.s.,

where ε is a real constant. Then, for each t ∈ [t0, θ], we have X1
t ≥ X2

t + ε e−CT a.s.

Proof. From inequality (4.22) in the proof of the comparison theorem in [21], we
derive that X1

t0 − X2
t0 ≥ e−CTE [Ht0,θ ε |Ft0 ] a.s., where C is the Lipschitz con-

stant of f2, and (Ht0,s)s∈[t0,T ] is the nonnegative martingale satisfying dHt0,s =

Ht0,s− [βsdWs +
∫
E γs(u)Ñ(ds, du)] with Ht0,t0 = 1, (βs) being a predictable process

bounded by C. The result follows.

Proposition 20 (a comparison result between a BSDE and a reflected BSDE).
Let t0 ∈ [0, T ] and let θ ∈ Tt0 . Let ξ1 ∈ L2(Fθ) and let f1 be a driver. Let (X1

t , π
1
t , l

1
t )

be a solution of the BSDE associated with f1, terminal time θ, and terminal condition
ξ1. Let (ξ2t ) ∈ S2 and let f2 be a Lipschitz driver with Lipschitz constant C > 0 which
satisfies Assumption 12. Let (Y 2

t ) be the solution of the reflected BSDE associated
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with f2, terminal time θ, and obstacle (ξ2t ). Suppose that

(4.1) f1(t,X
1
t , π

1
t , l

1
t ) ≥ f2(t,X

1
t , π

1
t , l

1
t ), t0 ≤ t ≤ θ, dt⊗ dP -a.s.

and X1
t ≥ ξ2t + ε, t0 ≤ t ≤ θ a.s.

Then, we have X1
t ≥ Y 2

t + εe−CT , t0 ≤ t ≤ θ a.s.

Proof. Let t ∈ [t0, θ]. By the characterization of the solution of the RBSDE as
the value function of an optimal stopping problem (see Theorem 3.2 in [21]), Y 2

t =

ess supτ∈T[t,θ]
Ef

2

t,τ (ξ
2
τ ). By Lemma 19, for each τ ∈ T[t,θ], X1

t ≥ Ef
2

t,τ (ξ
2
τ ) + e−CT ε.

Taking the supremum over τ ∈ T[t,θ], the result follows.

4.2. Links between the mixed control problem and HJB equation. We
introduce the following HJB variational inequality (HJBVI):
(4.2)⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min(u(t, x)− h(t, x),

infα∈A

(
−∂u
∂t

(t, x)− Lαu(t, x)− f

(
α, t, x, u(t, x),

(
σ
∂u

∂x

)
(t, x), Bαu(t, x)

))
= 0, (t, x) ∈ [0, T )× R,

u(T, x) = g(x), x ∈ R,

where Lα := Aα +Kα, and for φ ∈ C2(R),

• Aαφ(x) := 1
2σ

2(x, α)∂
2φ
∂x2 (x) + b(x, α)∂φ∂x (x) and B

αφ(x) := φ(x+ β(x, α, ·))−
φ(x),

• Kαφ(x) :=
∫
E(φ(x + β(x, α, e)) − φ(x) − ∂φ

∂x (x)β(x, α, e))ν(de).

Definition 21. A function u is said to be a viscosity subsolution of (4.2) if
it is u.s.c. on [0, T ] × R, and if for any point (t0, x0) ∈ [0, T [×R and for any φ ∈
C1,2([0, T ] × R) such that φ(t0, x0) = u(t0, x0) and φ − u attains its minimum at
(t0, x0), we have

(4.3)

min(u(t0, x0)− h(t0, x0),

inf
α∈A

(
− ∂φ

∂t
(t0, x0)− Lαφ(t0, x0)

− f

(
α, t0, x0, u(t0, x0),

(
σ
∂φ

∂x

)
(t0, x0), B

αφ(t0, x0)

))
≤ 0.

In other words, if u(t0, x0) > h(t0, x0), then

inf
α∈A

(
− ∂φ

∂t
(t0, x0)− Lαφ(t0, x0)

− f

(
α, t0, x0, u(t0, x0),

(
σ
∂φ

∂x

)
(t0, x0), B

αφ(t0, x0)

))
≤ 0.

A function u is said to be a viscosity supersolution of (4.2) if it is l.s.c. on
[0, T ]× R, and if for any point (t0, x0) ∈ [0, T [×R and any φ ∈ C1,2([0, T ]× R) such
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that φ(t0, x0) = u(t0, x0) and φ− u attains its maximum at (t0, x0), we have

min(u(t0, x0)− h(t0, x0),

inf
α∈A

(
− ∂

∂t
φ(t0, x0)− Lαφ(t0, x0)

− f

(
α, t0, x0, u(t0, x0),

(
σ
∂φ

∂x

)
(t0, x0), B

αφ(t0, x0)

))
≥ 0.

In other words, we have both u(t0, x0) ≥ h(t0, x0) and

(4.4)

inf
α∈A

(
− ∂φ

∂t
(t0, x0)− Lαφ(t0, x0)

− f

(
α, t0, x0, u(t0, x0),

(
σ
∂φ

∂x

)
(t0, x0), B

αφ(t0, x0)

))
≥ 0.

Using the weak DPP given in Theorem 17 and Proposition 20, we now prove that
the value function of our problem is a weak viscosity solution of the above HJBVI.

Theorem 22. The value function u, defined by (2.6), is a weak viscosity solution
of the HJBVI (4.2), in the sense that its u.s.c. envelope u∗ is a viscosity subsolution
of (4.2) and its l.s.c. envelope u∗ is a viscosity supersolution of (4.2) (with terminal
condition u(T, x) = g(x)).

Proof. We first prove that u∗ is a subsolution of (4.2). Let (t0, x0) ∈ [0, T [×R

and φ ∈ C1,2([0, T ]× R) be such that φ(t0, x0) = u∗(t0, x0) and φ(t, x) ≥ u∗(t, x) for
all (t, x) ∈ [0, T ]×R. Without loss of generality, we can suppose that the minimum of
u∗−φ attained at (t0, x0) is strict. Suppose for contradiction that u∗(t0, x0) > h(t0, x0)
and that

inf
α∈A

(
− ∂

∂t
φ(t0, x0)− Lαφ(t0, x0)

− f

(
α, t0, x0, φ(t0, x0),

(
σ
∂φ

∂x

)
(t0, x0), B

αφ(t0, x0)

))
> 0.

By uniform continuity of Kαφ and Bαφ : [0, T ]× R → L2
ν with respect to α, we can

suppose that there exists ε > 0 , ηε > 0 such that for all (t, x) such that t0 ≤ t ≤
t0 + ηε < T and |x− x0| ≤ ηε, we have φ(t, x) ≥ h(t, x) + ε and
(4.5)

− ∂

∂t
φ(t, x) − Lαφ(t, x) − f

(
α, t, x, φ(t, x),

(
σ
∂φ

∂x

)
(t, x), Bαφ(t, x)

)
≥ ε ∀α ∈ A.

We denote by Bηε(t0, x0) the ball of radius ηε and center (t0, x0). By definition of
u∗, there exists a sequence (tn, xn)n in Bηε(t0, x0), such that (tn, xn, u(tn, xn)) →
(t0, x0, u

∗(t0, x0)).
Fix n ∈ N. Let α be an arbitrary control of Atn

tn and Xα,tn,xn the associated state
process.

We define the stopping time θα,n as

θα,n := (t0 + ηε) ∧ inf{s ≥ tn, |Xα,tn,xn
s − x0| ≥ ηε}.
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Let ψα(s, x) := ∂
∂sφ(s, x) + Lαφ(s, x). Applying Itô’s lemma to φ(t,Xα,tn,xn

t ), we
derive that(

φ(s,Xα,tn,xn
s ),

(
σ
∂φ

∂x

)
(s,Xα,tn,xn

s ), Bαsφ(s,Xα,tn,xn

s− ); s ∈ [tn, θ
α,n]

)

is the solution of the BSDE associated with the driver process −ψαs(s,Xα,tn,xn
s ),

terminal time θα,n, and terminal value φ(θα,n, Xα,tn,xn

θα,n ). By (4.5) and by definition
of θα,n, we get

(4.6) − ψαs(s,Xα,tn,xn
s )

≥ f

(
αs, s,X

α,tn,xn
s , φ(s,Xα,tn,xn

s ),

(
σ
∂φ

∂x

)
(s,Xα,tn,xn

s ), Bφ(s,Xα,tn,xn
s )

)
+ ε

for each s ∈ [tn, θ
α,n]. This inequality gives a relation between the drivers −ψαs

(s,Xα,tn,xn
s ) and f(αs, ·) of two BSDEs. Now, since the minimum (t0, x0) is strict,

there exists γε such that

(4.7) u∗(t, x)− φ(t, x) ≤ −γε on [0, T ]× R \Bηε(t0, x0).

We have

φ(θα,n ∧ t,Xα,tn,xn

θα,n∧t ) = φ(t,Xα,tn,xn

t )1t<θα,n

+ φ(θα,n, Xα,tn,xn

θα,n )1t≥θα,n , tn ≤ t ≤ T a.s.

To simplify notation, set δε := min(ε, γε). Using (4.7) together with the definition of
θα,n, we get

φ(t,Xα,tn,xn

t ) ≥ (h(t,Xα,tn,xn

t ) + δε)1t<θα,n

+ (u∗(θα,n, Xα,tn,xn

θα,n ) + δε)1t=θα,n , tn ≤ t ≤ θα,n a.s.

This, together with inequality (4.6) on the drivers and the above comparison theorem
between a BSDE and a reflected BSDE (see Proposition 20) leads to

φ(tn, xn) ≥ Y α,tn,xn

tn,θα,n [h(t,Xα,tn,xn

t )1t<θα,n + u∗(θα,n, Xα,tn,xn

θα,n )1t=θα ] + δεK,

where K is a positive constant which only depends on T and the Lipschitz constant
of f .

Now, recall that (tn, xn, u(tn, xn)) → (t0, x0, u
∗(t0, x0)) and φ is continuous with

φ(t0, x0) = u∗(t0, x0). We can thus assume that n is sufficiently large so that
|φ(tn, xn)− u(tn, xn)| ≤ δεK/2. Hence,

u(tn, xn) ≥ Y α,tn,xn

tn,θα,n [h(t,Xα,tn,xn

t )1t<θα,n + u∗(θα,n, Xα,tn,xn

θα,n )1t=θα ] + δεK/2.

As this inequality holds for all α ∈ Atn
tn and since u∗ ≥ ū∗, we get a contradiction of

the suboptimality principle of DPP (3.14) (see also Remark 18).
We now prove that u∗ is a viscosity supersolution of (4.2). Let (t0, x0) ∈ [0, T [×R

and φ ∈ C1,2([0, T ]× R) be such that φ(t0, x0) = u∗(t0, x0) and φ(t, x) ≤ u∗(t, x) for
all (t, x) ∈ [0, T ]× R. Without loss of generality, we can suppose that the maximum
is strict in (t0, x0). Since the solution (Y α,t0,x0

s ) stays above the obstacle, for each
α ∈ A, we have u∗(t0, x0) ≥ h(t0, x0). Our aim is to show that inequality (4.4) holds.
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Suppose for contradiction that this inequality does not hold.
By continuity, we can suppose that there exists α ∈ A, ε > 0, and ηε > 0 such

that for all (t, x) with t0 ≤ t ≤ t0 + ηε < T and |x− x0| ≤ ηε, we have

(4.8) − ∂

∂t
φ(t, x) − Lαφ(t, x) − f

(
α, t, x, φ(t, x),

(
σ
∂φ

∂x

)
(t, x), Bαφ(t, x)

)
≤ −ε.

We denote by Bηε(t0, x0) the ball of radius ηε and center (t0, x0). Let (tn, xn)n
be a sequence in Bηε(t0, x0) such that (tn, xn, u(tn, xn)) → (t0, x0, u∗(t0, x0)). We
introduce the state process Xα,tn,xn associated with the above constant control α and
define the stopping time θn as

θn := (t0 + ηε) ∧ inf{s ≥ tn , |Xα,tn,xn
s − x0| ≥ ηε}.

By Itô’s formula, the process (φ(s,Xα,tn,xn
s ), (σ ∂φ∂x )(s,X

α,tn,xn
s ), Bαφ(s,Xα,tn,xn

s− ); s ∈
[tn, θ

n]) is the solution of the BSDE associated with terminal time θn, terminal value
φ(θn, Xα,tn,xn

θn ), and driver −ψα(s,Xα,tn,xn
s ). The definition of the stopping time θn

and inequality (4.8) lead to

(4.9) − ψα(s,Xα,tn,xn
s )

≤ f

(
α, s,Xα,tn,xn

s , φ(s,Xα,tn,xn
s ),

(
σ
∂φ

∂x

)
(s,Xα,tn,xn

s ), Bαφ(s,Xα,tn,xn
s )

)

for tn ≤ s ≤ θn ds ⊗ dP -a.s. Now, since the maximum (t0, x0) is strict, there exists
γε (which depends on ηε) such that u∗(t, x) ≥ φ(t, x) + γε on [0, T ]× R \ Bηε(t0, x0)
which implies φ(θn, Xα,tn,xn

θn ) ≤ u∗(θ
n, Xα,tn,xn

θn ) − γε. Hence, using inequality (4.9)
on the drivers, together with the comparison theorem for BSDEs, we derive that

φ(tn, xn) = E−ψα

tn,θn
[φ(θn, Xα,tn,xn

θn )] ≤ Eα,tn,xn

tn,θn
[u∗(θ

n, Xα,tn,xn

θ )− γε]

≤ Eα,tn,xn

tn,θn
[u∗(θ

n, Xα,tn,xn

θn )]− γεK,

where the second inequality follows from an extension of the comparison theorem
(Lemma 19). We can assume that n is sufficient large so that |φ(tn, xn)−u(tn, xn)| ≤
δεK/2. We thus get

(4.10) u(tn, xn) ≤ Eα,tn,xn

tn,θn
[u∗(θ

n, Xα,tn,xn

θn )]− γεK/2.

Since u satisfies the superoptimality DPP (Theorem 17), we have u(tn, xn) ≥ Eα,tn,xn

tn,θn

[ū∗(θ
n, Xα,tn,xn

θn )]. Since ū∗ ≥ u∗, this inequality with (4.10) leads to a contradiction.

Remark 23. When g is only Borelian, the weak solution of the HJB equation (4.2)
is generally not unique, even in the deterministic case (as stressed in [2], [1], [3]).

Note that when g is l.s.c., the value function u of our problem can be shown to be
the minimal (l.s.c.) viscosity supersolution of the HJB equation (4.2), with terminal
value greater than g (by using similar arguments as in the proof of [15, Theorem 6.5]).
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Note also that the paper [2] (see also [1]) provides a characterization of the u.s.c.
envelope u∗ of the value function of the deterministic control problem u(t, x) :=
supα∈At

g(Xt,x,α
T ), which corresponds to our problem with σ = f = 0 and no stopping

times controls. More precisely, when g is u.s.c., the map u∗ is characterized as the
unique u.s.c. viscosity solution of the HJB equation (i.e., satisfies u∗(T, x) = g(x) and
the analogous of (4.3) but with an equality). The proof is based on PDEs arguments
and deterministic control theory. An interesting further development of our paper
(and of [8]) would be to study analogous properties in the stochastic case.

Appendix A. Appendix. We give here some measurability results which are
used in section 3.2. We start by the proof of Proposition 9. To this purpose, we first
provide the following lemma.

Lemma 24. Let (Ω,F , P ) be a probability space. Suppose that the Hilbert space
L2 := L2(Ω,F , P ) equipped with the usual scalar product is separable. Let F ∈ L2.

Consider a sequence of functions (gn)n∈N such that for each n, gn : R → R

is Borelian with |gn(x)| ≤ C(1 + |x|p). Suppose that sequence (gn)n∈N converges
pointwise.

Let g be the limit, defined for each x ∈ R by g(x) := limn→+∞ gn(x).
Suppose also that for each n ∈ N, the map ψgn,F (denoted also by ψgn) defined

by ψgn : L2p ∩ L2 → R; ξ 
→ E[gn(ξ)F ] is Borelian, L2p ∩ L2 being equipped with the
σ-algebra induced by B(L2).

Then, the map ψg (denoted also by ψg,F ) defined by

(A.1) ψg : L2p ∩ L2 → R; ξ 
→ E[g(ξ)F ]

is Borelian.

Proof. By the Lebesgue theorem, for each ξ ∈ L2p ∩ L2, we have ψg(ξ) =
E[g(ξ)F ] = limn→+∞ E[gn(ξ)F ] = limn→+∞ ψgn(ξ). Since the pointwise limit of
a sequence of R-valued measurable maps is measurable, we derive that the map ψg is
Borelian.

Proof of Proposition 9. Since by assumption the Hilbert space L2 is separable,
there exists a countable orthonormal basis {ei, i ∈ N} of L2. For each ξ ∈ L2p ∩ L2,
we have ϕg(ξ) = g(ξ) =

∑
i ψ

g,i(ξ) ei in L
2, where ψg,i(ξ) := E[g(ξ) ei] for each i ∈ N.

Hence, in order to show the measurability of the map ψ, it is sufficient to show the
measurability of the maps ψg,F , F ∈ L2.

For this purpose, we introduce the set H of bounded Borelian functions g : R → R

such that for each F ∈ L2, the map ψg,F is Borelian. Note that H is a vector space.
Suppose we have shown that for all real numbers a, b with a < b, 1]a,b[ ∈ H. Then,
by Lemma 24 together with a monotone class theorem, we derive that H is equal
to the whole set of bounded Borelian functions. When g is not bounded, the result
follows by approximating g by a sequence of bounded Borelian functions, and by using
Lemma 24.

It remains to show that for all a, b ∈ R with a < b, we have 1]a,b[ ∈ H. Since
1]a,b[ is l.s.c., it follows that there exists a nondecreasing sequence (gn)n∈N of Lipschitz
continuous functions (taking their values in [0, 1]) such that for each x ∈ R, 1]a,b[(x) :=
limn→+∞ gn(x). For each n, since gn is Lipschitz continuous, by using the Cauchy–
Schwarz inequality, one can derive that the map ψgn : L2 → R; ξ 
→ E[gn(ξ)F ] is
Lipschitz continuous for the norm ‖ · ‖L2, and hence Borelian. The result then follows
from Lemma 24.
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We now state the following lemma, which is needed in the proof of Theorem 10.

Lemma 25. Let t ∈ [0, T ]. The Hilbert space L2(Ω,F t
T , P ) (simply denoted by

L2
t ) is separable. Moreover, the Hilbert space H2

t is separable.

Proof. The proof is given for completeness. Recall first that, given a probabilis-
tic space (Ω,B, P ), if B is countably generated, then L2(Ω,B, P ) is separable (see,
e.g., [11, Proposition 3.4.5]). In our case, Ω is separable, which implies that the
Borelian σ-algebra B(Ω) is countably generated. The space L2(Ω,B(Ω), P ) is thus
separable. Now let t be any real in [0, T ]. We introduce Fo,t = (Fo,t

s )s≥t, the nat-
ural filtration of W t and N t. By definition, Ft is the completed filtration of Fo,t

(with respect to B(Ω) and P ). For each ξ ∈ L2
t = L2(Ω,F t

T , P ), there exists an Fo,t
T -

measurable random variable ξ′ such that ξ = ξ′, P -a.s. Hence, L2
t can be identified

with L2(Ω,Fo,t
T , P ), which is separable because Fo,t

T = (T t)−1(B(Ω)) is countably
generated.

Now, denote by Po,t the predictable σ-algebra associated with Fo,t. For each
Pt-measurable process (Xs), there exists a Po,t-measurable process (X ′

s) indistin-
guishable of (Xs) (see [13, IV, section 79] or [17, I, Proposition 1.1, p. 8]). Hence,
the space H2

t= L2([t, T ] × Ω,Pt, ds ⊗ dP ) can be identified with the Hilbert space
L2([t, T ] × Ω,Po,t, ds ⊗ dP ). Since the paths are right-continuous, for every r > t,
Fo,t
r− = σ({ωtu, u ∈ Q and t ≤ u < r}) and is thus countably generated. The pre-

dictable σ-algebra Po,t is generated by the sets of the form [r, T [×H (or ]r, T ]×H),
where r is rational with r ≥ t, and H belongs to Fo,t

r− . It follows that Po,t is countably
generated. Hence, L2([t, T ] × Ω,Po,t, ds ⊗ dP ) is separable, which gives that H2

t is
separable.

Lemma 1.2 in [12] ensures the following property, which is used in the proof of
Theorem 11.

Lemma 26 (a result of measure theory). Let (X,F , Q) be a probability space.
Let FQ be the completion σ-algebra of F with respect to Q that is the class of sets
of the form B ∪M with B ∈ F and M being a Q-null set that is a subset of a set N
belonging to F with Q-measure 0. Let E be a separable Hilbert space, equipped with
its scalar product 〈. , .〉, and its Borel σ-algebra B(E).

Then, for each FQ-measurable map f : X → E, there exists an F-measurable
map fQ such that fQ(x) = f(x) for Q-almost every x, in the sense that the set
{x ∈ X, fQ(x) �= f(x)} is included in a set belonging to F with Q-measure 0.

A result of classical analysis (used in the proof of Lemma 5). For each n ∈ N, we
consider the linear operator Pn : L2([0, T ], dr) → L2([0, T ], dr) defined for each f ∈
L2([0, T ], dr) by Pn(f)(t) := n

∑n−1
i=1 (

∫ iT
n

(i−1)T
n

f(r)dr)1
] iTn ,

(i+1)T
n ]

(t). By the Cauchy–

Schwarz inequality, we have that for each t ∈] iTn ,
(i+1)T
n ], 1 ≤ i ≤ n− 1, Pn(f)2(t) ≤

n
∫ iT

n
(i−1)T

n

f2(r)dr. Hence,

(A.2) ||Pn(f)||L2
T
≤ ||f ||L2

T
; ||Pn(f)− f ||L2

T
→ 0, when n→ ∞.

The above convergence clearly holds when f is continuous, and the general case follows
by using the uniform continuity of f and the density of C([0, T ]) in L2

T .
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