Iterative observer-based state and parameter estimation for linear systems

Atte Aalto 1
1 M3DISIM - Mathematical and Mechanical Modeling with Data Interaction in Simulations for Medicine
LMS - Laboratoire de mécanique des solides, Inria Saclay - Ile de France
Abstract : We propose an iterative method for joint state and parameter estimation using measurements on a time interval [0,T] for systems that are backward output stabilizable. Since this time interval is fixed, errors in initial state may have a big impact on the parameter estimate. We propose to use the back and forth nudging (BFN) method for estimating the system's initial state and a Gauss–Newton step between BFN iterations for estimating the system parameters. Taking advantage of results on the optimality of the BFN method, we show that for systems with skew-adjoint generators, the initial state and parameter estimate minimizing an output error cost functional is an attractive fixed point for the proposed method. We treat both linear source estimation and bilinear parameter estimation problems.
Type de document :
Pré-publication, Document de travail
To appear in ESAIM: Control, Optimisation and Calculus of Variations. 2016
Liste complète des métadonnées

Littérature citée [34 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01370430
Contributeur : Atte Aalto <>
Soumis le : jeudi 22 septembre 2016 - 15:04:33
Dernière modification le : jeudi 11 janvier 2018 - 06:25:27

Fichier

iterative.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Atte Aalto. Iterative observer-based state and parameter estimation for linear systems. To appear in ESAIM: Control, Optimisation and Calculus of Variations. 2016. 〈hal-01370430〉

Partager

Métriques

Consultations de la notice

311

Téléchargements de fichiers

52