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Note on Minimax Sliding Mode Control Design for
Linear Systems

Sergiy Zhuk, Andrey Polyakov and Olexander Nakonechnyi

Abstract—The paper studies the problem of sliding mode
control design for linear systems with incomplete and noisy mea-
surements of the output and additive/multiplicative exogenous
disturbances. First, we construct a linear minimax observer to
have an estimate of the system’s state with minimal worst-case
error. Second, we establish the optimality of the constructed
observer in the class of all observers represented by measurable
functionals of the output. Finally, we propose an algorithm,
generating continuous and discontinuous feedbacks, which steers
the observer as close as possible to a given sliding hyperplane
in finite time. The optimality (sub-optimality) of the designed
feedbacks is proven for the case of bounded noises and additive
(multiplicative) disturbances of L2-class. The efficacy of the
proposed algorithm is illustrated by a numerical example.

Index Terms—sliding mode control

I. INTRODUCTION

Sliding mode method was introduced more that 50 years ago
(see [20] and references therein). Historically it was the first
approach to robust control design. Indeed, it is well-known
(see [7], [21], [18]) that sliding mode control is insensitive to
a wide class of disturbances and uncertainties.

Robust output-based feedback control algorithms are re-
quired for many practical applications. The output-based slid-
ing mode control design methodology is well-developed for
linear systems (see, for example, [6], [7], [21], [18] and
references therein). However, in practise, it is quite difficult
to apply the state of the art sliding mode methods in the
case of noisy measurements [19], [16] and/or mismatched
disturbances, e.g. [8], [2], [15]. The aim of this paper is
to propose a mathematically sound extension of the sliding
mode control methodology allowing one to deal with the
aforementioned cases efficiently. Specifically, we consider
conventional (first order) sliding mode control principles and
study the problem of observer-based sliding mode control
design for a linear plant with additive/multiplicative exogenous
disturbances and bounded (in L2) deterministic measurement
noises. Note that, in this case, it is impossible to ensure
the ideal sliding mode due to noisy measurements. Instead,
one can only design a control law u providing the system
motion as close as possible to the selected sliding surface.
To design such u we first construct a reachability set for the
plant and then solve the following optimal control problem:
find a feedback control u steering the minimax center of the
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reachability set towards the sliding surface. We show that, for
the case of noisy output measurements, the classical sliding
mode control algorithm is just one of many possible solutions
of the aforementioned optimal control problem (see Section
IV), which, in fact, admits both continuous and discontinuous
solutions in feedback form.

We rely upon the minimax state estimation framework [11],
[3], [10] and duality argument [22], [23], [24] in order to
construct the reachability set: the minimax state estimator or
observer constructs a linear estimate of the plant’s state with
minimal worst-case error, provided the uncertain parameters
(unknown initial condition, model disturbance, observation
noise) have bounded L2-energy. It turns out that (i) the state
of the minimax observer coincides with the minimax center of
the reachability set and (ii) the observer may be realized by
a linear time-variant system taking the output of the original
system as an input. The property (ii) allows us to apply linear
separation principle and design the sliding mode control u
in the state space of the observer. Specifically, (i) guarantees
that the state of the plant (with disturbances) is enclosed in
the ellipsoid, which is centered at the state of the minimax
estimator. Hence, if the control u steers the observer’s state
towards a sliding surface, it follows that the actual state of the
plant is guaranteed to be in a vicinity of the sliding surface,
provided u has been applied to the plant.

We prove that the minimax observer (in the form of a
linear functional of outputs), used in this paper, is optimal
among all observers represented by measurable functionals
of outputs. Thus, at least theoretically, the proposed control
design can not be further improved by using observers realized
by non-linear functionals of outputs. The latter agrees with
the numerical comparisons [25] of the control laws based on
the minimax observer and the fixed-time feedbacks [13] based
on the second order sliding mode (2-sm) observer [5], which
is nonlinear. We refer the reader to [18], [7], [21], [16] for
further information on sliding mode observers. Finally, we do
a numerical comparison of the proposed algorithm and the
H∞-observer based sliding mode control in Section V.

A preliminary version of this paper appeared in [26]. The
key differences with respect to [26] are as follows: we show
that the minimax observer in the form of a linear functional
of observations is optimal for a wide class of observers
(Proposition 1), show that optimal sliding mode control solves
a minimax control problem (Proposition 1) and prove the exis-
tence of the sub-optimal control for the case of multiplicative
disturbances (Proposition 3).

The paper is organized as follows. The next section presents
the problem statement and basic assumptions. The minimax
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observer for linear systems is discussed in Section III. The
problem of control design is studied in Section IV. Next the
numerical simulation results and conclusions are provided. The
proofs of all propositions are given in the appendix.

Throughout the paper the following notations are used:
R is the set of real numbers; ‖x‖ =

√
x2

1 + . . .+ x2
n for

x = (x1, . . . , xn)> ∈ Rn; L2
(a,b)(R

s) denotes Lebesgue space
of squared integrable functions mapping (a, b) to Rs; the sign
function is denoted by sign, i.e. sign[ρ] = 1 for ρ > 0,
sign[ρ] = −1 for ρ < 0 and sign[0] ∈ [−1, 1].

II. PROBLEM STATEMENT

Let us consider the following linear system:

ẋ(t) = Ax(t) + (B + p(t)E)u(t) +Dd(t), x(0) = x0 (1)
y(t) = Cx(t) + w(t) , t ∈ [0, T ) , (2)

where 0 < T < +∞, x(t) ∈ Rn is the vector of system
state, u(t) ∈ Rm is the vector of the control inputs, y(t) ∈ Rk
is the measured output, d ∈ L2

(0,T )(R
r) and p ∈ L2

(0,T )(R)

are unknown external disturbances; w ∈ L2
(0,T )(R

k) is un-
known deterministic measurement noise, the matrices A ∈
Rn×n, B,E ∈ Rn×m, D ∈ Rn×r, C ∈ Rk×n are assumed
to be known and time-invariant.

We study this system under the standard assumptions:
namely, the pair {A,C} is observable and the pair {A,B} is
controllable. We do not restrict matrices E and D (recall that
for D ∈ range(B) and E = B the exogenous disturbances
become matched [21], [7]).

We further assume that x0, p, d, w are uncertain and
deterministic, and satisfy the following inequality:

x>0P
−1
0 x0+

T∫
0

w>(τ)Rw(τ)+d>(τ)Qd(τ)+p2(τ)
α dτ ≤ 1, (3)

where P0 ∈ Rn×n, R ∈ Rk×k and Q ∈ Rr×r are given
symmetric positive definite matrices, α > 0.

The classical sliding mode control problem is (see, [21],
[7]) to find a feedback control law u which steers the state
of (1) towards a given linear hyperplane:

Fx = 0, F ∈ Rm×n, det(FB) 6= 0,

and guarantees that the state does not leave this plane. It
is worth noting [21], [7] that the condition det(FB) 6= 0
is necessary for existence of a control law, which ensures
sliding mode on the surface Fx = 0. The problem of optimal
selection of the matrix F in order to minimize the effects
of disturbances is well studied in the literature (see, e.g. [2],
[15]). We assume that some matrix F is selected and we
need to realize the reaching phase, i.e. to find the control
law u such that Fx(T ) = 0. The considered problem can
be equivalently formulated as ‖Fx(T )‖ → min subject to (1)
- (3). Indeed, obtaining a solution of this optimization problem
with zero value of the cost functional guarantees the successful
reaching of the sliding surface. However, due to unknown
measurement noises and uncertain system disturbances, the
exact reaching Fx(T ) = 0 cannot be guaranteed. In order to

construct a feedback control, which will realize the motion of
the system as close as possible to the given surface provided
the parameters x0, p, d, w are unknown and satisfy (3), we
consider a minimax version of the classical Mayer optimal
control problem ‖Fx(T )‖ → minu (see, for example, [17],
[1]):

sup
(x0,d,p,w)∈ΩT

‖Fx(T )‖ → min
u

s.t. (1) - (2)
(4)

where ΩT is the ellipsoidal set composed of all x0, d, p, w
verifying (3). The main goal of this technical note is to find
(sub)optimal solution to the minimax optimization problem (4)
in the feedback form. Note that we restrict our considerations
to causal feedback laws, i.e. u(t) may depend only on mea-
surements y(τ) with τ ∈ [0, t].

III. MINIMAX OBSERVER DESIGN

According to the classical methodology of the sliding mode
control design, the precise knowledge of the so-called sliding
variable σ(t) := Fx(t) is required in order to ensure the
motion of the system (1) on the surface Fx = 0. We stress
that this information is not available as the given output y(t)
is incomplete and noisy. In this situation, the best available
information about the value of Fx(t) can be represented by a
minimax estimate of x(t). Following [23] we introduce

Definition 1: Assume that l ∈ Rn and Û ∈ L2
(0,t∗)(R

k).

A linear functional Ûl(y) :=
∫ t∗

0
Û>(τ)y(τ)dτ is called a

minimax estimate of l>x(t∗) iff
σ(Û , l, t∗) ≤ σ(U, l, t∗), ∀U ∈ L2

(0,t∗)

where σ(Û , l, t∗) := sup(x0,d,p,w)∈Ωt∗
|l>x(t∗) − Ûl(y)| and

the set Ωt∗ is defined by (3) with T = t∗.
The number σ̂(l, t∗) := σ(Û , l, t∗) is called the minimax
estimation error.

Proposition 1: Let G denote a set of all continuous map-
pings of L2

(0,t∗) into R and let g ∈ G. It then follows that

σ(Û , l, t∗) = inf
g∈G

sup
(x0,d,p,w)∈Ωt∗

|l>x(t∗)− g(y)| . (5)

In other words, the worst-case estimation error of any contin-
uous mapping g, defined by the sup{} in (5), cannot be less
than the minimax error of the linear functional Ûl(y), which
has minimal worst-case estimation error σ̂. We refer the reader
to Appendix for proofs of all the propositions.

Proposition 2: Let x̂(t) ∈ Rn be the solution of the ODE:{
dx̂(t)

dt
= Ax̂(t) + P (t)C>R(y(t)−Cx̂(t)) +Bu(t),

x̂(0) = 0.
(6)

where P (t) ∈ Rn×n is the solution to the differential Riccati
equation:

Ṗ (t) = AP (t)+P (t)A>+DQ−1D>+

αEu(t)u>(t)E>−P (t)C>RCP (t),
P (0) = P0, (7)

Then Ûl(y) = l>x̂(t∗), σ̂(l, t∗) = (l>P (t∗)l)
1
2 .

A priori reachability set. Note that ∀t∗ ∈ [0, T ] the
definition of the minimax error σ̂ implies

l>(x(t∗)− x̂(t∗) ≤ (l>P (t∗)l)
1
2 ,∀l ∈ Rn . (8)
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On the other hand, if (8) holds true for any l ∈ Rn and t ∈
[0, T ] then, (see, for example, [10]) it follows that

x(t) ∈ {z ∈ Rn : z = x̂(t) + e, e>P−1(t)e ≤ 1} , (9)

i.e. the state vector x(t) belongs to the ellipsoid centered at
x̂(t) with axes defined by the eigenvectors of P−1(t). It is
worth noting that the estimate (9) is sharp, namely, for any
t ∈ [0, T ] and for any e∗ ∈ Rn such that e>∗ P

−1(t)e∗ ≤ 1
there exist (x∗0, d

∗, w∗, p∗) ∈ ΩT such that the equality
x(t) = x̂u(t) + e∗ holds for some x(t) satisfying (1)-(2). In
fact, (9) describes the worst-case realisation of the reachability
set of (1), i.e., it takes into account all (x0, d, w, p) ∈ ΩT . The
estimate (9) can be further improved if one “conditions” the
reachability set on the output signal y (see [10]). We do not use
this result, however, as our controller design is supposed to be
implemented without prior knowledge of y. Finally, we stress
that the matrix P does not depend on the control parameter u,
provided E = 0. This suggests to design the controller u as a
function of the center of the ellipsoid, x̂ (see Section IV).

Stability of the observer for the case T = +∞. If
E = 0 then, for an observable (or just detectable) pair {A,C}
there exist a unique symmetric matrix P∞ ≥ 0 such that
limt→∞ P (t) = P∞, A − P∞C>RC is stable, and P∞

solves the algebraic Riccati equation:0 = AP + PA> +
DQ−1D> − PC>RCP . The proof of this well-known fact
can be found in [17]. Thus, the inclusion (9) holds true for
any t ≥ 0. Moreover, if one sets P (t) := P∞, then, x̂ solves
a stable system (6), and, asymptotically, all the states x(t)
are contained in the ellipsoid defined by (9). In the case of
multiplicative disturbances (E 6= 0) the separation principle
does not apply and stability of the observer depends on the
control law u (see Proposition 3).

We stress that d ∈ L2
(0,T ) “vanish on infinity”, i.e., the

measure of the set {t > T : ‖d(t)‖ > 0} tends to 0
provided T → +∞. However, it is not hard to modify the
observer in order to handle the case of d 6∈ L2

(0,T ). For
instance, the external perturbation d may contain an unknown
absolutely continuous function v such that v(0)>Sv(0) ≤ 1
and limt→∞ v(t) 6= 0. In this case we introduce an augmented
system ẋ(t) = Ax(t) + (B + p(t)E)u(t) + Dd(t) + Dv(t),
v̇(t) = ξ(t) and v(0) = v0, and extend (3) by adding v>0 Sv0,
and placing the term ξ>(s)Wξ(s) under the integral sign to
account for v0 and the unknown function ξ ∈ L2

(0,T )(R
r)

respectively. The matrices W,S are assumed to be symmet-
ric and positive definite. Then we set xnew := (x, v)>,
Anew = (A D

0 0 ), Cnew = (C 0) and apply Proposition 2
for any T < +∞. Now, to ensure stability of the observer for
T = +∞ we should assume that the pair {Anew, Cnew} is
observable and use the arguments of the previous paragraph.
Note that this condition is sufficient for the so-called strong
observability [18] of the augmented system in the noise-free
case (w = 0).

IV. CONTROL DESIGN

A. The case of additive disturbances: E = 0

Denote the sliding variable by σ = Fx. By using (9) (recall
from Section III that (9) is sharp) we derive

σ(t) = Fx(t) = σ̂(t) + Fe(t), e>(t)P−1(t)e(t) ≤ 1 ,

where σ̂(t) = Fx̂(t) and x̂ satisfies (6). Moreover, the
equation

dσ̂

dt
= FAx̂+ FP (t)C>R(y(t)− Cx̂) + FBu(t). (10)

defines dynamics of the variable σ̂.
Theorem 1: Any control u which verifies the equality:

σ̂(T ) = 0 (11)

is a solution to the minimax control problem (4) for E = 0.
Let us consider the classical sliding mode control [21]

usm(t) = −(FB)−1K(t)sign[σ̂(t)], K(t) > 0. (12)

then it follows that
dσ̂

dt
= FAx̂+ FP (t)C>R(y(t)− Cx̂)−K(t)sign[σ̂(t)]

and taking into account x̂(0) = 0 we derive that (11) holds
true if the relay feedback gain K is selected as follows:

K(t)=‖FAx̂+FP (t)C>R(y(t)−Cx̂)‖+µ, ∀µ > 0 . (13)

Therefore, the conventional sliding mode control is the solu-
tion of the minimax control problem (4) for E = 0.

The right-hand side of the closed-loop sliding mode control
system is discontinuous with respect to the extended state
variables (x, x̂, P ). Its solution is understood in the sense of
Filippov. Since the system is affine with respect to control
input, then other definitions (Utkin and Aizerman-Pyatnickii)
are equivalent to Filippov one (see, for example, [19], [14]). In
particular, Utkin’s method applied to the closed-loop system
(1), (7), (6), (12), (13) gives the equivalent control of the form
(14). Therefore, to fulfill the condition (11), the continuous
control can be designed:

ueq(t)=−(FB)−1F
[
Ax̂(t)+P (t)C>R(y(t)−Cx̂(t)

]
, (14)

which is also optimal for the problem (4). Indeed, this feed-
back provides F dx̂

dt = 0, and so, taking into account x̂(0) = 0,
we obtain Fx̂(T ) = 0. In fact, we have proved the following

Corollary 1: The control laws (12)-(13) and (14) solve the
minimax control problem (4) for E = 0.
The latter suggests that one may use linear feedback (14)
instead of the discontinuous one (12) in order to guarantee the
optimal reaching (as close as possible) of the sliding surface
in the state space of the original system.

B. The general case: E 6= 0 and D 6= 0

Motivated by the results of the previous section, we consider
control laws, which guarantee sliding motion on the surface
Fx̂ = 0 starting from the initial instant of time t = 0.
Evidently, the output-based feedback law (14) as well as the
sliding mode algorithm (12), (13) are admissible sub-optimal
solutions for the optimization problem (4).

In the case of multiplicative disturbances the matrix P
depends on u and formula (7) implies that the volume of
the ellipsoid {e : e>P−1(t)e ≤ 1} increases if ‖u(t)‖
grows. In this case, the chattering phenomenon, introduced by
applying the sliding mode control, could imply the significant
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degradation of the control performance compared to the linear
control strategy.

We stress that the closed-loop system (1), (6), (7), (14) has
an internal dynamic loop : the control signal u(t) depends
on P (t) which in turn depends on u(t)u>(t). The following
proposition proves existence and uniqueness of the control.

Proposition 3: Let FAF+ = 0. For any T > 0 there exists
a sufficiently small α > 0 such that the closed-loop system
(1), (6), (7), (14) has the unique bounded solution on (0, T ).

The restriction FAF+ = 0 is introduced for simplicity. The
same statement can be proven for the general case. Clearly,
the control (14) exists on (0, T ), T < +∞.

V. NUMERICAL EXAMPLE

First, we compare the linear feedback (14) against the
sliding mode control (12) for the case of multiplicative distur-
bances. The case of additive disturbances has been studied in
[25]. Consider the system (1) with

A =

 0 1 0.5
−1 0 −0.7
−0.5 0.7 0

, B = E =

 0.25
0.5
1

, D = 0,

C =
(

1 0 0
)
,

F =
(

1 −1 1
)
,

R = 10, Q = 0, α = 1,
P0 =

 1 0 0
0 2 0
0 0 4

, T = 10.

We also set: w(t) = 5 sin(10t)
100 , p(t) = 5 · 10−

3
2 and take x0 =

( 1/6
√

2/6 2/6 )>. We used explicit Euler discretization
with the time step 10−2 for the simulations.

Fig. 1 compares the evolution of the sliding variable σ
corresponding to the linear feedback ueq (14) (red) and the
sliding mode control usm (12), (13) with µ = 0.5 (blue). The
precision of ueq appears to be better than that of usm. If µ
tends to zero the precision of usm improves. The simulations
exhibit the chattering phenomenon which takes place due to
imperfections of numerical discretization of the closed-loop
system with the discontinuous control. As noted, we use Euler
discretization in order to model sampling effects of digital
control devices. Increase of the sampling time leads to further
degradation of usm. In practice, non-ideal relays (with delays
or/and hysteresis) may provoke additional chattering.

0 2 4 6 8 10−0.1

0

0.1

0.2

0.3

t

σ

 

 ueq
usm

Fig. 1. Comparison of sliding mode and linear control application

0 2 4 6 8 10−0.4

0

0.4

0.8

1

t

σ

 

 

linear feedback+H∞ observer
linear feedback+minimax observer

Fig. 2. Comparison of minimax and H∞ observers for linear control (14)

The volume of the ellipsoid (9) defined by the matrix P (T )
has decreased by factor 105 compared to the initial one,
namely det(P (T ))/ det(P0) ≈ 10−5.

Comparison with H∞ observer. Let us now compare the
performance of the linear feedback ueq (14) for the minimax
and H∞ observers. The H∞ observer also deals with L2

(0,T )-
disturbances, so it is applicable in our case. The difference
between H∞ observer and minimax estimator is in that
the latter requires a priori bounds for L2

(0,T ) disturbances
(the ellipsoid (3)) unlike the former. However, prior to im-
plementing H∞ observer one needs to select a so-called
“performance parameter” γ ∈ (0,+∞), which bounds the
H∞-norm of the transfer function from the disturbance in-
puts to the states [12]. In fact, the state equation of H∞

observer coincides with (6), and the gain P solves the Riccati
equation (7) with an additional additive term 1

γ2P
2(t) in the

right hand side. This immediately implies that the ellipsoidal
estimate of the observation error (see, formula (9)) has ”larger”
shape matrix P (t). In other words, H∞-observers provide
more conservative but more robust estimates as opposed to the
sharp (less conservative) estimate (9) of the minimax observer.
In addition, H∞ observer performance is quite sensitive to the
choice of γ, as it needs to be chosen so that the difference
1
γ2P

2(t) − P (t)C>RCP (t) does not grow too fast. The
figure 2 compares the evolution of the sliding variable σ
for the minimax and H∞ observers (with γ = 2.75, and
x0 = 2

3 (1,
√

2, 2)>).

VI. CONCLUSION

The paper studies a problem of sliding mode control design
for linear time invariant systems with incomplete and noisy
measurements of the output and additive/multiplicative exoge-
nous disturbances. The key outcomes of the presented study
for the case of additive disturbances are as follows:
• The conventional sliding mode control provides one of

many possible solutions of the problem of optimal reach-
ing of the sliding surface (4).

• Sliding motion of the observer variable may be attained
using a linear optimal feedback (14). In fact, the latter
coincides with the equivalent control of the sliding mode
system. Since all the parameters of the observer state
equation are known, this equivalent control can be always
found explicitly!

Despite of the fact that both solutions (sliding mode and linear
feedback) theoretically provide the same precision, the chat-
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tering phenomenon significantly decreases the performance
of the sliding mode control. In the case of multiplicative
disturbances, the estimation precision depends on the control
magnitude implying the additional degradation of the perfor-
mance. This fact is confirmed by numerical simulations.

We conclude that the linear feedback control provides
an optimal solution of output-based sliding mode control
design problem for linear systems with L2 noises and ad-
ditive disturbances. This fact together with practical issues
encountered while applying the discontinuous sliding mode
output-based control under the same assumptions suggests that
the conventional sliding mode control methodology requires a
radical rethink for linear systems. Perhaps, the conventional
sliding mode control becomes the unique optimal solution of
(4) provided the class of noises and disturbances is restricted
to L∞. The rigorous study of this conjecture is left for the
future research.

VII. APPENDIX

A. Proof of Proposition 1

To prove the proposition we first rewrite the minimax
estimation problem (see definition 1) in the operator form.
As noted below (see proof of proposition 2) to estimate
l>0 x(T ) one needs to estimate just the “noisy part” of x(T ),
namely xg(T ) defined by the 2nd equation of (15). Let us
recall that the latter induces a linear bounded integral operator
W : H1 → H2. Indeed, define H1 := L2

(0,T ) × L
2
(0,T ) × Rn,

H2 := L2
(0,T ), q := (p, d, x0) and set Wq := eAtx0 +∫ t

0
eA(t−s)(Dd(s) + p(s)Eu(t))ds for any q ∈ H1. We also

note that l>0 xg(T ) = x>0 e
A>T l +

∫ T
0
d>(s)eA

>(T−s)D>l +

p(s)(Eu(s))>eA
>(T−s)lds := `(q), and `(q) is a linear

continuous functional over H1. In other words, computing
the minimax estimate of l>0 xg(T ) given yg ∈ H2 (see (16))
and assuming that (3) holds true, is equivalent to computing
the minimax estimate of `(q) provided yg = CWq + w
and (q, w) ∈ E where E := {(q, w) : ρ(q, w) ≤ 1} and
ρ(q, w) := ‖(α− 1

2 p,Q
1
2 d, P

− 1
2

0 x0)‖2H1
+ ‖R 1

2w‖2H2
.

Let us now prove the proposition. Our proof relies upon
Banach separation principle. Let G (Hi) denote the set of all
continuous functionals f : Hi → R and let H?

i denote a
subset of G (Hi) composed of all linear functionals, i = 1, 2.
We claim that:

inf
f∈G (H2)

sup
(q,w)∈E

|`(q)−f(yg)| = inf
V ∈H?

2

sup
(q,w)∈E

|`(q)−V (yg)| .

Indeed, the inequality inf
f∈G (H2)

sup
(q,w)∈E

≤ infV ∈H?
2

sup(q,w)∈E

is obvious as H?
2 ⊂ G (H2). Let us prove that for any ` ∈ H?

1

there exists q0 and V ∈ H?
2 such that

sup
(q,w)∈E

|`(q)−V (yg)|≤`(q0)≤ inf
f∈G (H2)

sup
(q,w)∈E

|`(q)− f(yg)| (∗)

Indeed, define E0 := {(q, w) ∈ E : 0 = CWq + w}. Clearly,
E0 is a closed convex bounded set and so supE0

`(q) = `(q0) <
+∞ for some (q0, w0) ∈ E0. Note that (q, w) ∈ E0 implies
−(q, w) ∈ E0. Hence, infE0

`(q) = −`(q0). Now, define Y :=
{(`(q), yg) : yg = CWq+w, (q, w) ∈ E }. Clearly, (±`(q0), 0)

are extreme points of Y (as ±q0 is the maximizer/minimizer
of ` over E0). Since the set Y is convex and m ∈ Y implies
−m ∈ Y , it follows that there exist a scalar s > 0 and a
linear functional V0 ∈ H?

2 such that the hyperplanes H± :=
{(`(q), yg) : s(`(q)± `(q0)) + V0(yg) = 0} are supporting for
the set Y , i.e., s`(q − q0) + V0(yg) ≤ 0 and s`(q + q0) +
V0(yg) ≥ 0 for all (`(q), yg) ∈ Y . Set V (yg) := s−1V0(yg).
We have: |`(q)+V (yg)| ≤ `(q0) for all (`(q), yg) ∈ Y so that

sup(q,w)∈E |`(q) + V (yg)| ≤ `(q0) . (∗∗)
On the other hand, we note that 0 ≤ 2`(q0) = `(q0)−V (yg)+
V (yg) − `(−q0) ≤ |`(q0) − V (yg)| + |V (yg) − `(−q0)| ≤
2 sup(q,w)∈E |`(q) − V (yg)|. The latter and (∗∗) prove (∗).
This completes the proof of the proposition’s claim.

B. Proof of Proposition 2

Let xu, xg denote the solutions of the following ODEs:

dxu(t)

dt
= Axu(t)+Bu(t), xu(0)=0,

dxg(t)

dt
= Axg(t)+Dd(t)+p(t)Eu(t), xg(0)=x0.

(15)

Then, clearly, x(t) = xu(t) + xg(t) and

yg(t) := y(t)− Cxu(t) = Cxg(t) + w(t). (16)

The function xg may be considered as a “noisy” part of x cor-
responding to disturbances from the ellipsoid (3). In contrast,
xu represents the “mean” value of x which corresponds to the
case: x0 = 0, p = 0 and d = 0. Let us estimate xg . To do so
we use classical results on minimax filters, namely it can be
demonstrated (see for instance [9]) that the minimax estimate
of l>xg(t∗) is given by Ûl(yg) = l>x̂g(t

∗) and the minimax
estimation error can be represented as σ̂(l, t∗) = (l>P (t∗)l)

1
2

provided yg is defined by (16) and{
dx̂g(t)

dt
= Ax̂g(t) + P (t)C>R(yg(t)− Cx̂g(t)),

x̂g(0) = 0.
(17)

Now we recall that x(t∗) = xu(t∗)+xg(t
∗) and so x(t∗) =

xu(t∗) + x̂g(t
∗) + e(t∗), where e(t∗) = xg(t

∗) − x̂g(t
∗).

Then, by definition of the minimax error we get: l>e(t∗) ≤
(l>P (t∗)l)

1
2 . Define x̂ := xu + x̂g . Then it is straightforward

to check that x̂ satisfies (6) and the error estimate holds.

C. Proof of Theorem 1

Let J(u) be the value of the functional defined by (4).
Having in mind (15) we write:

σ(T ) = Fxu(T ) + Fxg(T ) = Fxu(T ) + Fx̂g(T ) + Fe(T )
= Fx̂(T ) + Fe(T ) = σ̂(T ) + Fe(T ),

where e(T ) ∈ E = {z ∈ Rn : zTP−1(T )z ≤ 1}. Since
x̂+ E is the reachability set of the system (15) it follows that
x̂ − x ∈ E if and only if x solves equation (1) provided x0,
p, d and v verify (3) and, hence, we obtain:

J(u) = sup
e∈E
‖Fxu(T ) + Fx̂g(T ) + Fe‖

If E = 0 then xg and P (T ) do not depend on u, so for
any u : σ̂(T ) = 0 we have J(u) = supe∈E ‖Fe‖. We
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now note that supe∈E ‖η + Fe‖ = supe∈E supl:‖l‖=1 l
>(η +

Fe) = supl:‖l‖=1(l>η + supe∈E l
>Fe) = supl:‖l‖=1(l>η +

((P (T )Fl)>Fl)
1
2 ) ≥ supl:‖l‖=1(((P (T )Fl)>Fl)

1
2 ) =

supe∈E ‖Fe‖, where the inequality used in the previous line
follows from the fact that the sphere l : ‖l‖ = 1 is symmetric
w.r.t. 0. Hence, supe∈E ‖Fe‖ ≤ supe∈E ‖η + Fe‖, ∀η ∈ Rm.

D. Proof of Proposition 3

I. We prove this proposition under assumption that
FAF+ = 0, where F+ = I − B(FB)−1F is the projector
onto the hyperplane Fx̂ = 0. The general case can be treated
in the similar way.

Substitution of (14) into (6) gives

dx̂(t)
dt = F+

(
Ax̂(t) + P (t)C>R[Ce(t) + w(t)]

)
, x̂(0) = 0.

Hence, we derive

x̂(t) =

∫ t

0

eF+A(t−s)F+P (s)C>R[Ce(s) + w(s)]ds.

and, due to FAF+ = 0,

FAx̂(t)=FA

∫ t

0

eF+A(t-s)F+P (s)C>R[Ce(s)+w(s)]ds = 0.

We proved that u(t) = (FB)−1FP (t)C>R[Ce(t) + w(t)].
II. Denoting L(t)=(FB)−1FP (t)C>R

(
CP

1
2 (t) R−

1
2

)
we

get u(t)u>(t) = L(t)

(
P−

1
2 (t)e(t)

R
1
2w(t)

)(
P−

1
2 (t)e(t)

R
1
2w(t)

)>
L>(t).

Recalling that vv> ≤ v>vIn for any v ∈ Rn and taking into
account e>(t)P−1(t)e(t) ≤ 1 we derive:

u(t)u>(t) ≤ L(t)

(
P−

1
2 (t)e(t)

R
1
2w(t)

)>(
P−

1
2 (t)e(t)

R
1
2w(t)

)
L>(t) ≤(

1+w>(t)Rw(t)
)
L(t)L>(t)

III. Let us consider the closed loop system

Ṗ (t)=AP (t)+P (t)A>+DQ−1D>−P (t)NP (t)+αu(t)u>(t),

ė(t) = Ae(t)−P (t)C>R(Ce(t)+w(t))+p(t)Eu(t) +Dg(t),

u(t) = (FB)−1FP (t)C>R[Ce(t) + w(t)].

with P (0) = P0, e(0)TP−1
0 e(0) ≤ 1.

Let us denote the right-hand side of the considered system
by RHS(t, e, P, α), where e, P are components of the ex-
tended state vector and α considered as a constant parameter.

In order to prove the existence and uniqueness of the
solution of this equation for t ∈ [0, T ] and for suffi-
ciently small α > 0, we can use the theorem on con-
tinuous dependence on the parameter (see, for example,
[4], Chapter 2, Theorem 4.2.). All conditions of the afore-
mentioned theorem hold for the considered system. Indeed,
for α = 0 the system has a unique solution. The right-
hand side RHS is a continuous function with respect to
e, P , α for any fixed t. Since for any h ∈ Rn we have

|h>p(t)Ξw(t)| ≤ p2(t)h>ΞR−1Ξh+ w>(t)Rw(t),
where Ξ = E(FB)−1FP (t)C>R, then taking into account
the estimate of u>u obtained above we derive that RHS

is measurable with respect to t for any fixed e, P , α and
its norm is bounded (locally) by an integrable function m:
|RHS(t, e, P )| < m(t) for t ∈ [0, T ].
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