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Observer-based Control for Linear Sampled-Data
Systems: An Impulsive System Approach

Héctor Ríos†, Laurentiu Hetel‡ and Denis Efimov§
∗

Abstract—This paper deals with the sampled-data control
problem based on state estimation for linear sampled-data
systems. An impulsive system approach is proposed based on
a vector Lyapunov function method. Observer-based control
design conditions are expressed in terms of LMIs. Some
examples illustrate the feasibility of the proposed approach.

Index Terms—Observer-based Control, Sampled-Data and
Impulsive systems.

I. INTRODUCTION

IN the last decades, an enormous interest has appeared
in the design of controllers and observers for continu-

ous and/or discrete dynamical systems with communication
constraints. This interest has its motivations in systems with
sampled-data control, quantization and more generally, in
networked control systems. However, all the communica-
tions constraints, i.e. delays, sampling intervals, quantization,
packet dropouts, and so on (for details, see [13]); imply
additional difficulties in the analysis and design compared
to the classical control systems. Regarding the observer
design problem, one of the main issues is the scheduling:
only a subset of sensors is allowed to send their data
to the observer at the transmission instants. The sporadic
and partial availability of system measurements requires the
development of appropriate observer designs. Moreover, for
controller design, it would be unreasonable to assume that
all states are measurable. Therefore an observer-based control
approach is needed.

In this paper the observer-based control problem will be
focused on sampled-data systems. Several methods have
been developed to study sampled-data systems, e.g. the
Input/Output stability approach [12], the discrete-time ap-
proach [11], but two approaches stand out: the input delay
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approach, where the system is modeled as a continuous
system with a delay in the control input (see, e.g. [9], [8]),
and the impulsive system approach, where the sampled-data
system is treated as an impulsive system (see, e.g. [20], [5],
[4], [3]).

The input delay approach has been applied in [10] to
design a sampled-data output-feedback H∞ control for linear
systems while the impulsive system approach was applied in
[14] to sampled-data stabilization of linear uncertain systems
in the case of constant sampling based on piece-wise linear
in time Lyapunov function. The case of variable sampling
based on a discontinuous Lyapunov function method was
introduced by [16]. Also based on discontinuous Lyapunov
functions, in [3] stability and stabilization conditions for
periodic and aperiodic sampled-data systems are introduced.

In the context of observer design, one approach is based
on continuous and discrete design. In [7], such an approach
is used to design a discrete-continuous version of the high-
gain observer for nonlinear systems. Based on a small gain
approach, in [1] an observer design is proposed for certain
classes of nonlinear systems with sampled and delayed
measurements. Using the hybrid system approach, in [6] an
observer-protocol pair is designed to estimate the states of
a linear system under communication constraints induced
by the network. Adopting a switched observer structure, in
[2] decentralized observer-based output-feedback controllers
are proposed for linear systems connected via a shared
communication network.

In this paper a vector Lyapunov function-based approach
[15] for stability of impulsive systems is used to design
an observer-based control for linear sampled-data systems.
Such an approach, proposed by [17] and [18], is based on
a 2D time domain equivalence (see, e.g. [19] and [21]),
and provides a stability analysis based on linear matrix
inequalities (LMIs) for linear impulsive dynamical systems.
It is possible to show that the sampled-data control problem
based on state estimation may turn into one of finding
conditions for the exponential stability of impulsive systems.
Then, this vector Lyapunov function approach is applied to
find such conditions expressed in terms of LMIs, and solve
the proposed problem for linear sampled-data systems.

The outline of this work is as follows. A motivating
problem is given in Section II. Some preliminary results
are given in Section III. The main result is described in
Section IV. Some simulation results are depicted in Section



V. Finally, some concluding remarks are discussed in Section
VI.

II. MOTIVATION

Let us consider the following sampled-data system

ẋ(t) = Ax(t) +Bu(t), (1)
y(t) = Cx(ti), ∀t ∈ [ti, ti+1), (2)
u(t) = −Kx̂(ti), ∀t ∈ [ti, ti+1), (3)

where x ∈ Rn is the state vector, u ∈ Rm is the sampled
control vector, and y ∈ Rp is the sampled output vector
at each time ti for all i ∈ N, and x̂ ∈ Rn represents an
estimation of the system state x. The sampling instants ti
are monotonously increasing, such that limi→∞ ti = +∞,
and ti+1 − ti ∈ [Tmin, Tmax], where Tmin and Tmax are
the minimum and maximum sampling intervals, respectively;
and t0 = 0. The constant matrices A, B, and C have corre-
sponding dimensions while K is a design control matrix. The
control u is designed by means of the following sampled-data
state observer

˙̂x(t) = Ax̂(t) +Bu(t)

+ L(y(t)− Cx̂(ti)), ∀t ∈ [ti, ti+1), (4)

where x̂ ∈ Rn is the estimated state vector and L is a
design observer matrix. Define the state estimation error
e(t) = x(t)−x̂(t). Then, the closed-loop and state estimation
error dynamics are given as follows

ẋ(t) = Ax(t)−BKx(ti) +BKe(ti), ∀t ∈ [ti, ti+1),

ė(t) = Ae(t)− LCe(ti), ∀t ∈ [ti, ti+1).

Let us define the extended state vector ξ(t) =
(xT (t) eT (t) xT (ti) eT (ti))

T ∈ R4n. Thus, the above
dynamics may be written as follows

ξ̇(t) = Aξξ(t), ∀t ∈ R+ \ I, (5)

ξ(t) = Iξξ(t
−), ∀t ∈ I, (6)

where I := {ti}i∈N is a set of impulse times, ξ(t) ∈ R4n

is the current state vector, ξ(ti) ∈ R4n represents the reset
vector state, ξ(t−i ) ∈ R4n denotes the value of ξ just before
the impulse at time ti, i.e. ξ(t−i ) = limt↑ti ξ(t), and the
corresponding matrices have the following structure

Aξ =

 A 0 −BK BK
0 A 0 −LC
0 0 0 0
0 0 0 0

 ,

Iξ =

 In 0 0 0
0 In 0 0
In 0 0 0
0 In 0 0

 .

Then, the sampled-data control problem based on state es-
timation, i.e. find the control gain matrix K and the observer
gain matrix L, may turn into one of finding conditions for
the stability of the impulsive systems described by (5)-(6),
under arbitrary variations of the sampling intervals.

III. STABILITY ANALYSIS FOR IMPULSIVE SYSTEMS

The entire state trajectory (ξT , τ)T can be viewed as a
sequence of the diagonal dynamics1 of the following 2D
system:

d

dt

(
ξtk
τ tk

)
=

(
Aξξ

t
k

1

)
, ∀τ tk ∈ [0, Ti], ∀i = k ∈ N, (7)(

ξ
ti+1

k+1

τ
ti+1

k+1

)
=

(
Iξξ

ti+1

k
0

)
, ∀τ tk = Ti, ∀i = k ∈ N, (8)

where τ ∈ R≥0 is a timer variable, ((ξtk)T , τ tk)T =
(ξT (t, k), τ(t, k))T ∈ R4n+1 is the current state vec-
tor, ((ξ

ti+1

k+1)T , τ
ti+1

k+1 )T = (ξT (ti+1, k + 1), τ(ti+1, k +
1))T ∈ R4n+1 represents the reset state vector, while
((ξ

ti+1

k )T , τ
ti+1

k )T = (ξT (ti+1, k), τ(ti+1, k))T ∈ R4n+1

denotes the value of (ξT , τ)T just before the jump k + 1.
It is assumed that the solutions of (7)-(8) are unique for the
diagonal dynamics, i.e. for all i = k.

Remark 1. In this approach the model (5)-(6) corresponds
only to the sequence of diagonal dynamics of the 2D model
(7)-(8). This model transformation is used to obtain sufficient
conditions for stability, based on vector Lyapunov functions.
An equivalence between models is not required since neces-
sary and sufficient conditions are not provided.

In the present section some definitions and results for
the stability of impulsive systems, in the framework of 2D
systems, are introduced (see [18]).

Let |q| denote the Euclidean norm of a vector q. The
following stability definition is introduced:

Definition 1. [18]. A 2D system described by (7)-(8), is said
to be exponentially diagonal ξtk-stable (EDξtk-S) if there exist
positive constants κ1, κ2, κ3, and c such that 0 < κ1 < 1
and

|ξti+1

k+1 |
2 ≤ cκk+1

1 |ξ0
0 |2, ∀τ tk = Ti, (9)

|ξtk|2 ≤ κ2|ξtik |
2, ∀τ tk ∈ [0, Ti], (10)

|τ tk| ≤ κ3, (11)

for all i = k ∈ N.

Note that condition (11) holds by definition, i.e. |τ tk| ≤ κ3,
with κ3 = Tmax. Denote ztk := ((ξtk)T , τ tk)T . In order to give
the stability conditions a vector Lyapunov approach is used2,
i.e.

V (ztk, z
ti+1

k+1) =

(
V1(ztk)

V2(z
ti+1

k+1)

)
,

where V1(·) > 0, V2(·) > 0, for all t ≥ 0, and V1(0) = 0,
V2(0) = 0. Now, let us introduce the following definition.

Definition 2. The divergence operator of a function V
along the trajectories of system (7)-(8) is defined for all

1The diagonal dynamics make reference only to those dynamics given by
(7)-(8) corresponding to i = k, for all i, k ∈ N and for all t ∈ R≥0.

2The use of vector Lyapunov functions offers a more flexible framework
since each component of the vector Lyapunov function can satisfy less rigid
requirements as compared to a single Lyapunov function (see e.g. [15]).



t ∈ [ti, ti+1) as follows

divV (ztk, z
ti+1

k+1) =
dV1(ztk)

dt
+ V2(z

ti+1

k+1)− V2(z
ti+1

k ). (12)

Note that V1 is differentiable with respect to continuous
time t while the difference in V2 is calculated in discrete
time k. Thus, the following theorem is introduced.

Theorem 1. [18]. Assume that there exist positive constants
c1, c2, c3, c4 and c5 such that the vector Lyapunov function
V (ztk, z

ti+1

k+1) and its divergence along the trajectories of the
system (7)-(8) satisfy, for all τ tk ∈ [0, Ti], i = k ∈ N, the
following inequalities:

c1|ξtk|2 ≤ V1(ztk) ≤ c2|ξtk|2, (13)

c3|ξpk|
2 ≤ V2(zpk) ≤ c4|ξpk|

2, ∀p = ti, ti+1 (14)

divV ≤ −c5(|ξtk|2 + |ξti+1

k |2), (15)

c2 (c4 − c5) ≤ c1c5 ∨ Ti ≤
c2
c5
α, (16)

c2
c5
γ ≤ Ti, (17)

where γ = − ln
[

c3
c5+c3

]
and α = − ln

[
1− c1c5

c2(c4−c5)

]
for all

c2 (c4 − c5) > c1c5. Then, the 2D system (7)-(8) is EDξtk-S
for any sequence {Ti}i∈N such that Ti ∈ [ c2c5 γ,

c2
c5
α].

A. Exponential Diagonal ξtk-Stability: Quadratic Lyapunov
Functions

Consider that V1 and V2 take the following quadratic
structure

V (ztk, z
ti+1

k+1) =

(
(ξtk)TP1(τ tk)ξtk

(ξ
ti+1

k+1)TP2(τ
ti+1

k+1 )ξ
ti+1

k+1

)
, (18)

where P1 is continuously differentiable with respect to t,
symmetric, bounded, and positive definite matrix for all τ tk ∈
[0, Ti], i = k ∈ N, while P2 is a symmetric and positive
definite matrix, i.e.

0 < c1I ≤ P1(τ tk) ≤ c2I, ∀τ tk ∈ [0, Ti], (19)
0 < c3I ≤ P2(τpk ) ≤ c4I, p = ti, ti+1. (20)

Thus, based on the previous choice for V1 and V2, if
Theorem 1 is applied to the ideal and uncertain impulsive
system (5)-(6), then the following result is obtained.

Corollary 1. Consider the vector Lyapunov function
V (ztk, z

ti+1

k+1) in (18). Assume that there exist matrices
P1(τ tk) = PT1 (τ tk) > 0, continuously differentiable on t and
bounded for all τ tk ∈ [0, Ti], i = k ∈ N, P2(0) = PT2 (0) > 0
and P2(Ti) = PT2 (Ti) > 0 satisfying (19)-(20), and a
constant c5 > 0, such that the following matrix inequality

P1(τ tk)Aξ +ATξ P1(τ tk)

+
dP1(t)
dt

+ c5I4n
0

0
ITξ P2(0)Iξ

−P2(Ti) + c5I4n

 ≤ 0, (21)

holds for all τ tk ∈ [0, Ti], for all i = k ∈ N, and constraints

(16)-(17) are satisfied with c1, c2, c3, c4 and c5. Then the
system (7)-(8), with f = 0, is EDξtk-S for any sequence
{Ti}i∈N such that Ti ∈ [ c2c5 γ,

c2
c5
α].

Now the goal is to apply the conditions for exponential
diagonal ξtk-stability of the impulsive systems (7)-(8) by
means of the statements given by Corollary 1; and solve
the sampled-data control problem based on state estimation
for system (1)-(3) in a constructive way.

IV. OBSERVER-BASED CONTROL DESIGN

In this section a particular choice for P1 and P2 is pro-
posed. Then, by means of the statements given by Corollary
1, the control gain matrix K and the observer gain matrix L
will be found to provide a stabilization of the state dynamics
x as well as an estimation x̂, i.e. stabilization of the extended
state ξ in (5)-(6). Thus, the following proposition gives a
solution to the sampled-data control problem based on state
estimation.

Theorem 2. Consider that P1 and P2 have the following
structure for all τ tk ∈ [0, Ti], i = k ∈ N

P1(τ tk) =
τ tkP11 + (Ti − τ tk)P12

Ti
, P2(τ tk) = P21 + τ tkP22,

where P1l = diag(P
−(1)
1l , P

(2)
1l , P

−(3)
1l , P

−(4)
1l ), for l = 1, 2,

with P
(q)
1l = P

(q)T

1l > 0, for l = 1, 2, q = 1, 4, P−(q)
1l =

(P
(q)
1l )−1, and P2l = PT2l > 0, for l = 1, 2. Then, the system

(5)-(6) is EDξtk-S if there exist matrices P (q)
1l , for j, l = 1, 2,

q = 1, 4, and P2l = PT2l > 0, for l = 1, 2; such that the
LMIs (22)-(23) with3

φ̄11(Θ) = AP
(1)
11 + P

(1)
11 A

T + P
(1)
11 /Θ− 2P

(1)
11 + ΘP

(1)
12 ,

φ12(Θ) = P
(2)
11 A+ATP

(2)
11 + (P

(2)
11 − P

(2)
12 )/Θ +Q12,

φ13(Θ) = −2P
(1)
11 + ΘP

(3)
12

, φ14(Θ) = −2P
(1)
11 + ΘP

(4)
12 ,

φ15(Θ) = ITξ P21Iξ − P21 −ΘP22 +Q15,

φ̄21(Θ) = AP
(1)
12 + P

(1)
12 A

T − P (1)
12 /Θ,

φ22(Θ) = P
(2)
12 A+ATP

(2)
12 + (P

(2)
11 − P

(2)
12 )/Θ +Q22,

φ23(Θ) = −2P
(1)
12 + ΘP

(3)
12

, φ24(Θ) = −2P
(1)
12 + ΘP

(4)
12 ,

φ25(Θ) = ITξ P21Iξ − P21 −ΘP22 +Q25,

hold for the finite set Θ ∈ {Tmin, Tmax}, Qj = Qj
T =

diag(Q−1
j1 , Qj2, Q

−1
j3 , Q

−1
j4 , Qj5) > 0 for j = 1, 2, fixed

Λj = Λj
T > 0 for j = 1, 2, and where

YK1 = KP
(1)
11 , YK2 = KP

(1)
12 , (24)

YL1 = P
(2)
11 L, YL2 = P

(2)
12 L; (25)

and constraints (16)-(17) also hold with c1 = λmin(P11),
c2 = λmax(P12), c3 = λmin(P21), c4 = λmax(P21 + ΘP22)
and c5 = min(λmin(Q1), λmin(Q2)).

3The LMI variables are P (q)
1l for l = 1, 2, q = 1, 4; P2l for l = 1, 2;

and YKj ,YLj for j = 1, 2. The matrices Qjl for j = 1, 2, l = 1, 5, can
be declared as variables or fixed values; while matrices Λj for j = 1, 2,
are fixed.





φ̄11(Θ) 0 −BYK1
BYK1

0 P
(1)
11 0 0 0 0 0 0

? φ12(Θ) 0 0 0 0 0 0 0 0 YL1
C 0

? ? φ13(Θ) 0 0 0 P
(1)
11 P

(1)
11 0 0 0 0

? ? ? φ14(Θ) 0 0 0 0 P
(1)
11 P

(1)
11 0 P

(1)
11

? ? ? ? φ15(Θ) 0 0 0 0 0 0 0
? ? ? ? ? −Q11 0 0 0 0 0 0

? ? ? ? ? ? −ΘP
(3)
11 0 0 0 0 0

? ? ? ? ? ? ? −Q13 0 0 0 0

? ? ? ? ? ? ? ? −ΘP
(4)
11 0 0 0

? ? ? ? ? ? ? ? ? −Q14 0 0

? ? ? ? ? ? ? ? ? ? −Λ−1
1 0

? ? ? ? ? ? ? ? ? ? ? −Λ1



≤ 0, (22)



φ̄21(Θ) 0 −BYK2
BYK2

0 P
(1)
12 P

(1)
12

0 0 0 0 0 0

? φ22(Θ) 0 0 0 0 0 0 0 0 0 YL2
C 0

? ? φ23(Θ) 0 0 0 0 P
(1)
12 P

(1)
12 0 0 0 0

? ? ? φ24(Θ) 0 0 0 0 0 P
(1)
12 P

(1)
12 0 P

(1)
12

? ? ? ? φ25(Θ) 0 0 0 0 0 0 0 0

? ? ? ? ? −ΘP
(1)
11 0 0 0 0 0 0 0

? ? ? ? ? ? −Q21 0 0 0 0 0 0

? ? ? ? ? ? ? −ΘP
(3)
11 0 0 0 0 0

? ? ? ? ? ? ? ? −Q23 0 0 0 0

? ? ? ? ? ? ? ? ? −ΘP
(4)
11 0 0 0

? ? ? ? ? ? ? ? ? ? −Q24 0 0

? ? ? ? ? ? ? ? ? ? ? −Λ
−1
2 0

? ? ? ? ? ? ? ? ? ? ? ? −Λ2



≤ 0. (23)

Υ1(Θ) =



P
−(1)
11 A + AT P

−(1)
11 +

(P
−(1)
11 −P−(1)

12 )

Θ
0 −P−(1)

11 BK P
−(1)
11 BK 0

?
P

(2)
11 A + AT P

(2)
11 +

(P
(2)
11 −P (2)

12 )

Θ
0 −P (2)

11 LC 0

? ?
(P

−(3)
11 −P−(3)

12 )

Θ
0 0

? ? ?
(P

−(4)
11 −P−(4)

12 )

Θ
0

? ? ? ? φ15(Θ)


≤ −Q1,

(26)

Υ2(Θ) =



P
−(1)
12 A + AT P

−(1)
12 +

(P
−(1)
11 −P−(1)

12 )

Θ
0 −P−(1)

12 BK P
−(1)
12 BK 0

?
P

(2)
12 A + AT P

(2)
12 +

(P
(2)
11 −P (2)

12 )

Θ
0 −P (2)

12 LC 0

? ?
(P

−(3)
11 −P−(3)

12 )

Θ
0 0

? ? ?
(P

−(4)
11 −P−(4)

12 )

Θ
0

? ? ? ? φ25(Θ)


≤ −Q2.

(27)

Proof: After some algebraic manipulations on matrix
inequality (21) given by Corollary 1, it is possible to obtain
inequalities (26) and (27), that should be hold for the finite
set Θ ∈ {Tmin, Tmax}.

Then, applying some quadratic non-singular transforma-
tions, Schur’s complement and Λ-inequality to (26) and (27),
respectively; one can obtain the LMIs given by (22) and (23).
The complete proof is omitted due to lack of space.

Remark 2. Theorem 2 provides a particular way to solve the
proposed problem, i.e. find the control gain matrix K and
the observer gain matrix L such that the system (5)-(6) is
stable. Then, one can obtain K from (24), and L from (25),
using any of the two equalities, respectively.

Note that a different selection for P1 and P2, even for Lya-
punov functions with non-quadratic structure, may decrease
the conservatism. More complex tools like sum-of-squares
[3], looped-functional approach [5], or convex characteriza-
tions [4], may be applied to improve the application of this
method.

V. SIMULATION RESULTS

Let us consider system (1)-(2) with

A =

(
0 1
0 0

)
, B =

(
0
1

)
C =

(
1 0

)
.

This example represents a double-integrator that has a
wide range of applications. Theorem 2 is applied together
with a bisection-like approach using SeDuMi solver among
YALMIP in MATLAB to find a solution for the LMIs (22)-
(23) and the corresponding control and observer gains.

Based on Theorem 2, it is possible to show that the
impulsive system (5)-(6) is EDS for all 2.40 > Ti > 0 with
a set of feasible control and observer gains. The following
feasible results are obtained for different fixed values of Ti:

L(Ti=0.5) =

(
4.0697
1.8351

)
, K(Ti=0.5) =

(
0.0441 0.4030

)
,

L(Ti=1.0) =

(
11.5031
5.4886

)
, K(Ti=1.0) =

(
0.0522 0.4188

)
,

L(Ti=2.0) =

(
9.4047
4.7571

)
, K(Ti=2.0) =

(
0.0708 0.5789

)
.

The trajectories of the system, for different values of Ti, are
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Figure 1. Trajectories of the sampled-data system, their estimations, and the state estimation error for different values of Ti.

depicted in Fig. 1.

VI. CONCLUSIONS

In this paper a vector Lyapunov function-based approach
for stability of impulsive systems is used to design an
observer-based control for linear sampled-data systems. This
approach is based on a 2D time domain equivalence and
provides a stability analysis based on LMIs. Since the
sampled-data control problem based on state estimation may
be turned into one of finding conditions for the exponential
stability of impulsive systems, the vector Lyapunov function
approach is applied to find such conditions expressed in
terms of LMIs, and solve the proposed problem for linear
sampled-data systems. Some numerical examples illustrate
the feasibility of the proposed approach. The analysis of
uncertain sampled-data linear/nonlinear systems is in the
scope of the future research.
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