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On Acceleration of a Class of Asymptotically
Stable Homogeneous Systems

Efimov D., Levant A., Polyakov A., Perruquetti W.

Abstract—A switched supervisory algorithm is proposed,
which ensures fixed-time convergence by commutation of finite-
time or exponentially stable homogeneous systems of a special
class, and a finite-time convergence to the origin by orchestrat-
ing among asymptotically stable systems. A particular attention
is paid to the case of exponentially stable systems. Performance
of the proposed control algorithms is illustrated by computer
experiments.

I. INTRODUCTION

State feedback stabilization of linear or nonlinear systems
is a central problem in the control systems theory. There are
many methods [1], [6], [8], which are differing by the re-
quirements imposed on the plant model and on the guaranteed
performance of the closed-loop system. By performance we
understand: robustness with respect to external disturbances,
measurement noises and small delays, rate and domain of
convergence, overshooting in the system, etc.

The present work studies the problem of adjustment of the
rate of convergence in a class of such closed-loop systems,
when they are homogeneous [15], [1]. It is a well-known fact
that if a system is homogeneous with a negative/zero/positive
degree and asymptotically stable, then actually it has a finite-
time/exponential/asymptotic rate of convergence (in the case
of positive degree the time of convergence to a sphere is
uniformly bounded by a constant for any initial conditions,
if the system is also locally finite-time converging, then it
is called fixed-time stable) [10], [11], [12]. Despite of that,
an additional problem of acceleration can be posed [4], [5],
i.e. the problem of changing of type of convergence (from
exponential to finite-time or fixed-time, for example) by
adjustment of parameters.

In [4], [5] for homogeneous systems with a negative
degree it has been proposed an algorithm of on-line switching
between parameters, which ensures a desired accelerated rate
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of convergence for the closed-loop system. The proposed
strategy consists in a proper decreasing the acceleration rate
by parameter commutation till the normal one close to the
origin. In the present work the following extensions are
proposed. First, the algorithms of fixed-time convergence are
developed for exponentially converging systems with zero
degree (linear systems). Second, the scenario with growing
acceleration is also analyzed (in such a case the time when
a control with augmented amplitude is applied can be seri-
ously limited). Third, the algorithm of parameter switching
for finite-time convergence to the origin is developed for
homogeneous systems with zero or positive degree.

The outline of this paper is as follows. Notation and pre-
liminary results are introduced in sections II and III. The pre-
cise problem statement is given in Section IV. The proposed
supervisory algorithms of switching among different sets of
parameters ensuring a required acceleration are presented
in Section V. All algorithms are illustrated by computer
experiments with a benchmark example. Concluding remarks
and discussion appear in Section VI.

II. NOTATION

Through the paper the following notation is used:
• R+ = {x ∈ R : x ≥ 0}, where R is the set of real

number.
• | · | denotes the absolute value in R, ‖.‖ denotes the

Euclidean norm on Rn.
• A continuous function α : R+ → R+ belongs to

the class K if α(0) = 0 and the function is strictly
increasing. The function α : R+ → R+ belongs to the
class K∞ if α ∈ K and it is increasing to infinity.

• A series of integers 1, 2, ..., n is denoted by 1, n.

III. PRELIMINARIES

In this work the following nonlinear system is considered:

ẋ(t) = f(x(t)), t ≥ 0, (1)

where x(t) ∈ Rn is the state, f : Rn → Rn ensures forward
existence of the system solutions at least locally, f(0) = 0.
For an initial condition x0 ∈ Rn define the corresponding
solution by X(t, x0) for any t ≥ 0 for which the solution
exists. If f is discontinuous, then the solutions are understood
in the Filippov’s sense [7].

Following [14], [8], [12], let Ω be an open neighborhood
of the origin in Rn.



Definition 1. At the steady state x = 0 the system (1) is said
to be

(a) Lyapunov stable if for any x0 ∈ Ω the solution
X(t, x0) is defined for all t ≥ 0, and for any ε > 0 there
is δ > 0 such that for any x0 ∈ Ω, if ‖x0‖ ≤ δ then
‖X(t, x0)‖ ≤ ε for all t ≥ 0;

(b) asymptotically stable if it is Lyapunov stable and
for any κ > 0 and ε > 0 there exists T (κ, ε) ≥ 0 such that
for any x0 ∈ Ω, if ‖x0‖ ≤ κ then ‖X(t, x0)‖ ≤ ε for all
t ≥ T (κ, ε);

(c) finite-time stable if it is Lyapunov stable and finite-
time converging from Ω, i.e. for any x0 ∈ Ω there exists
0 ≤ T < +∞ such that X(t, x0) = 0 for all t ≥ T . The
function T0(x0) = inf{T ≥ 0 : X(t, x0) = 0 ∀t ≥ T} is
called the settling time of the system (1);

(d) fixed-time stable if it is finite-time stable and
supx0∈Ω T0(x0) < +∞.

The set Ω is called the domain of stability/attraction.
If Ω = Rn, then the corresponding properties are

called global Lyapunov stability/asymptotic stability/finite-
time/fixed-time stability of (1) at x = 0.

Similarly stability notions can be defined with respect to
a set, by replacing the distance to the origin in Definition 1
with the distance to an invariant set.

A. Weighted homogeneity

Following [15], [1], [9], for strictly positive numbers ri,
i = 1, n called weights and λ > 0, one can define:
• the vector of weights r = (r1, . . . , rn)T , rmax =

max1≤j≤n rj and rmin = min1≤j≤n rj ;
• the dilation matrix function Λr(λ) = diag{λri}ni=1,

note that ∀x ∈ Rn and ∀λ > 0 we have Λr(λ)x =
(λr1x1, . . . , λ

rixi, . . . , λ
rnxn)T ;

• the r–homogeneous norm ‖x‖r = (
∑n
i=1 |xi|

ρ
ri )

1
ρ for

any x ∈ Rn and ρ ≥ rmax, then there exist σ, σ ∈ K∞
such that

σ(‖x‖r) ≤ ‖x‖ ≤ σ(‖x‖r) ∀x ∈ Rn;

• the unit sphere and the unit ball in the homogeneous
norm Sr = {x ∈ Rn : ‖x‖r = 1} and Br(ρ) = {x ∈
Rn : ‖x‖r ≤ ρ} for ρ ≥ 0.

Definition 2. A function g : Rn → R is r–homogeneous
with degree µ ∈ R if ∀x ∈ Rn and ∀λ > 0 we have:

λ−µg(Λr(λ)x) = g(x).

A vector field f : Rn → Rn is r–homogeneous with degree
ν ∈ R, with ν ≥ −rmin if ∀x ∈ Rn and ∀λ > 0 we have:

λ−νΛ−1
r (λ)f(Λr(λ)x) = f(x),

which is equivalent for i-th component of f being a
r–homogeneous function of degree ri + ν.

The system (1) is r–homogeneous of degree ν if the vector
field f is r–homogeneous of degree ν.

Theorem 1. [15], [13] For the system (1) with
r–homogeneous and continuous function f the following
properties are equivalent:

• the system (1) is (locally) asymptotically stable;
• there exists a continuously differentiable

r–homogeneous Lyapunov function V : Rn → R+ such
that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), LfV (x) ≤ −α(‖x‖),
λ−µV (Λr(λ)x) = V (x), µ > rmax,

∀x ∈ Rn and ∀λ > 0, for some α1, α2 ∈ K∞ and
α ∈ K.

The requirement on continuity of the function f has been
relaxed in [2] (the function V can also be selected smooth).

For r–homogeneous system (1) with degree ν, the solu-
tions also admit a kind of homogeneity as functions of time
∀x0 ∈ Rn and ∀t ∈ R:

X(t,Λr(λ)x0) = Λr(λ)X(λνt, x0) ∀λ > 0.

For q > 1 define Tq : Rn → R+ such that

‖X(Tq(x0), x0)‖r = q−1‖x0‖r,

i.e. it is the function of convergence in q times, then from
the properties stated above it is easy to show that it is
r–homogeneous with degree −ν:

Tq(Λr(λ)x0) = λ−νTq(x0) ∀x0 ∈ Rn ∀λ > 0.

This fact follows by applying dilation to the definition
expression:

‖X(Tq(Λr(λ)x0),Λr(λ)x0)‖r = q−1‖Λr(λ)x0‖r
‖X(λνTq(Λr(λ)x0), x0)‖r = q−1‖x0‖r

λνTq(Λr(λ)x0) = Tq(x0).

IV. PROBLEM STATEMENT

Consider a chain of integrators stabilized in finite time or
exponentially by a state feedback k : Rn → R:

ẋ(t) = f(x(t)) = Ax(t) + bk(x(t)), t ≥ 0, (2)

where x(t) ∈ Rn is the state vector, the matrices

A =


0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
. . .

...
0 0 0 . . . 0 1
0 0 0 . . . 0 0

 , b =


0
...
0
1


are in canonical forms; for ri = 1+(i−1)ν with i = 1, n and
ν ∈ [−n−1, 0] the function k is r–homogeneous of degree
1 + nν, i.e.

k(Λr(λ)x) = λ1+nνk(x) ∀x ∈ Rn ∀λ > 0,

then the system (2) is r–homogeneous of degree ν:

f(Λr(λ)x) = λνΛr(λ)f(x) ∀x ∈ Rn ∀λ > 0.



Since ν ∈ [−n−1, 0], if (2) is asymptotically stable, then it
has either finite-time or exponential rate of convergence [1].

The problem studied in this note: is it possible to ensure a
fixed-time stabilization in (2) by switching among different
sets of coefficients in the feedback k. Such a problem has
been already investigated in [4], [5], and following these
works instead of (2) we will consider for all integer i ≥ 0
the system:

ż(t) = Az(t) + bu(µi, z(t)), t ∈ [ti, ti+1), (3)
u(µi, z) = µni k(Miz),

where z(t) ∈ Rn is the state vector, A, b and k are as
before; Mi = diag{µ1−k

i }nk=1 and µi ≥ 1 is a sequence of
parameters, which stay constant on the interval [ti, ti+1) and
change their values at instants ti, i ≥ 0 (t0 = 0). It is required
to determine the instants ti, i ≥ 0 and the discrete-time
update law for µi such that (3) becomes fixed-time stable.
Obviously, (3) is r–homogeneous of degree ν for any i ≥ 0.

V. SUPERVISORY ALGORITHM DESIGN

Let us introduce a dynamical system

ẋ(t) = µif(x(t)) = µi[Ax(t)+bk(x(t))], t ∈ [ti, ti+1) (4)

where µi is the same as in (3), and after update of µi to µi+1

at the instant of time ti+1 we have a state resetting for x(t):

x(ti+1) = Mi+1M
−1
i x(t−i+1), (5)

where x(t−i+1) denotes the right limit of x(t) as t is approach-
ing ti+1 from the left. As we can conclude, (4), (5) is a hybrid
system, which has to be augmented by rules for assignment
of switching instants ti and for update of µi, for all i ≥ 0.

Obviously, z(t) = M−1
i x(t) for t ∈ [ti, ti+1) is the

corresponding solution of (3). Therefore, in order to design
the supervisory algorithms for selection of ti and µi we will
consider the hybrid system (4), (5) below.

A. Fixed-time stabilization for ν < 0

In this work the following algorithm is proposed for all
i ≥ 0:

ti+1 = min
t≥ti:‖x(t)‖r≤q−1−i‖z(0)‖r

t, (6)

where q > 1 is a tuning parameter, define i∗ =
ceil[max{0, lnq ‖z(0)‖r}] (the function ceil[s] provides the
smallest integer bigger than s) and

µi =

{
q−i(α−ν)‖z(0)‖−νr if i < i∗

1 otherwise
, (7)

where α ∈ (ν, 0) is another tuning parameter. It is necessary
to show that the solutions of (4), (5) are well defined for
the supervisory algorithm (6), (7), and that the closed loop
system converges to the origin in a fixed time.

Note that for each fixed µi the system (4) is converg-
ing to the origin (indeed, Xµi(t, x0) = X(µit, x0) where
Xµi(t, x0) is a solution of (4) and X(t, x0) is a solution of

(2)), then always there exists an instant ti+1 defined by (6)
for all i ≥ 0. Since α−ν > 0, from (7) we obtain that µi > 1
for all i ∈ [0, i∗) and µi = 1 for all i ≥ i∗. Therefore, for all
t ≥ ti∗ the system (4), (5), (6), (7) is reduced to (2), which
is finite-time stable, and ‖x(ti∗)‖r ≤ 1. The solutions of this
system are well defined for all t ≥ ti∗ (there is no more jump
in the state), and it is necessary to consider that happens for
t ∈ [0, ti∗) and estimate the time of convergence to the unit
ball ti∗ . To this end, from (7) we obtain for i ∈ [0, i∗ − 1]:

Mi+1M
−1
i = diag

{(
µi+1

µi

)1−k
}n
k=1

= diag
{
q(α−ν)(k−1)

}n
k=1

,

and Mi+1M
−1
i is stretching since q > 1 and α− ν > 0, i.e.

‖x(ti+1)‖r < ‖x(t+i+1)‖r ≤ q
(α−ν)(n−1)
1+ν(n−1) ‖x(ti+1)‖r

≤ q
(α−ν)(n−1)
1+ν(n−1)

−1−i‖z(0)‖r,

where the last step is obtained from (6). This property also
implies that ti+1 − ti > 0 and the solutions of the system
(4), (5), (6), (7) are well defined.

The instant ti+2 will be generated by (6) when
‖x(ti+2)‖r = q−2−i‖z(0)‖r and on the interval of
time [ti+1, ti+2) the dynamics of x(t) is governed by
(4) for µi+1 = q−(i+1)(α−ν)‖z(0)‖−νr . On this interval
[ti+1, ti+2) the state x(t) has to decrease in ρ = q

1+α(n−1)
1+ν(n−1)

times, i.e. the norm ‖x(t)‖r goes down from the level
q

(α−ν)(n−1)
1+ν(n−1)

−1−i‖z(0)‖r till q−2−i‖z(0)‖r. Let Tρ : Rn →
R+ be the function of convergence in ρ > 1 times for (2),
then

ti+2 − ti+1 = µ−1
i+1Tρ(x(ti+1))

≤ µ−1
i+1q

(1+i− (α−ν)(n−1)
1+ν(n−1) )ν‖z(0)‖−νr Tρ(ξ)

≤ qα(i+1)− (α−ν)(n−1)
1+ν(n−1)

νTρ(ξ)

where z(0) = Λr(λ)ξ for some ξ from the unit sphere Sr =
{ξ ∈ Rn : ‖ξ‖r = 1}. Let T̄ρ = sup‖ξ‖r=1 Tρ(ξ), then

ti∗ =

i∗−1∑
i=0

(ti+1 − ti)

≤
i∗−1∑
i=0

qαi−
(α−ν)(n−1)
1+ν(n−1)

ν T̄ρ

= q−
(α−ν)(n−1)
1+ν(n−1)

ν T̄ρ

i∗−1∑
i=0

qαi

≤ q−
(α−ν)(n−1)
1+ν(n−1)

ν

1− qα
T̄ρ,

where the fact that qα < 1 has been used on the last step.
Therefore, the time of convergence to the unit ball ti∗ in the
system (4), (5), (6), (7) is finite and independent in initial
conditions, as it was necessary to show. The following result
has been proven (see also [4], [5]).



Theorem 2. Let for the system (3) with ν < 0 the supervisory
algorithm be selected as in (6), (7) with q > 1 and ν <
α < 0, then the solutions of the closed-loop system are well
defined for all t ≥ 0 and it is fixed-time stable with the
settling time

T1 +
q−

(α−ν)(n−1)
1+ν(n−1)

ν

1− qα
T̄ρ,

where T1 is the time of convergence to the origin from
the homogeneous sphere for the system (2) and T̄ρ =

sup‖ξ‖r=1 Tρ(ξ) with ρ = q
1+α(n−1)
1+ν(n−1) .

Remark 1. The same result can be obtained substituting (7)
with

µi =

{
qi(α−ν)‖z(0)‖−νr if i < i∗

1 otherwise

for α ∈ (2ν, ν).
Remark 2. Clearly,

T1 +
q−

(α−ν)(n−1)
1+ν(n−1)

ν

1− qα
T̄ρ ≤

(
1 +

q−
(α−ν)(n−1)
1+ν(n−1)

ν

1− qα

)
T1,

and a straightforward analysis shows that the function

σ(q) = 1 +
q−

(α−ν)(n−1)
1+ν(n−1)

ν

1− qα

has its minimum for

q∗ = −α

√
1 +

1

ν(n− 1)
+

1 + α(n− 1)

(α− ν)(n− 1)

providing the optimal selection of q > 1 ensuring the fastest
convergence of (3), (6), (7).

Example 1. Let us consider the case n = 2 with

k(x) = −|x1|1+2νsign(x1)− |x2|
1+2ν
1+ν sign(x2),

from [3], which satisfies all required conditions. Select
ν = −0.25, q = 2 and α = −0.125, then all conditions of
Theorem 2 are satisfied and the closed loop hybrid system
(3), (6), (7) is fixed-time stable. An example of the system
trajectories is given in Fig. 1.

B. Fixed-time stabilization for ν ≤ 0

The algorithm for generation of instants ti will be selected
as previously in (6), and

µi =

{
qiα‖z(0)‖θr if i < i∗

1 otherwise
, (8)

where α ∈ R and θ ∈ R are tuning parameters. Again, it
is necessary to show that the solutions of (4), (5) are well
defined for the supervisory algorithm (6), (8), and that the
closed loop system converges to the origin in a fixed time.

For all t ≥ ti∗ the system (4), (5), (6), (8) is reduced to (2),
which is finite-time or exponentially stable, and ‖x(ti∗)‖r ≤
1. The solutions of this system are well defined for all t ≥

Figure 1. Fixed-time stabilization for ν < 0 with decreasing µi

ti∗ , and it is necessary to consider the system behavior for
t ∈ [0, ti∗) and estimate the time of convergence to the unit
ball ti∗ . From (8) we obtain for all i ∈ [0, i∗ − 1]:

Mi+1M
−1
i = diag

{(
µi+1

µi

)1−k
}n
k=1

= diag
{
qα(1−k)

}n
k=1

,

and Mi+1M
−1
i is stretching only if α < 0 (since q > 1):

‖x(t+i+1)‖r ≤ qγ(α)‖x(ti+1)‖r
≤ qγ(α)−1−i‖z(0)‖r

with

γ(α) =

{
−α(n−1)
1+(n−1)ν if α < 0

0 otherwise

The instant ti+2 will be generated by (6) when
‖x(ti+2)‖r = q−2−i‖z(0)‖r and on the interval of time
[ti+1, ti+2) the dynamics of x(t) is governed by (4) for
µi+1 = q(i+1)α‖z(0)‖θr . On this interval [ti+1, ti+2) the state
x(t) has to decrease in

ρ = q1+γ(α)

times. Let Tρ : Rn → R+ be the function of convergence in
ρ > 1 times for (2), then

ti+2 − ti+1 = µ−1
i+1Tρ(x(ti+1))

≤ q(i+1)(ν−α)−νγ(α)‖z(0)‖−θ−νr Tρ(ξ)

where z(0) = Λr(λ)ξ for some ξ from the unit sphere Sr =
{ξ ∈ Rn : ‖ξ‖r = 1} as before. From the expressions above,
the interval length ti+2− ti+1 is decreasing with i uniformly
in ‖z(0)‖r if

α > ν, −ν ≤ θ.



Indeed, in this case ‖z(0)‖−θ−νr ≤ 1 for all ‖z(0)‖r ≥ 1.
Let T̄ρ = sup‖ξ‖r=1 Tρ(ξ), then

ti∗ =

i∗−1∑
i=0

(ti+1 − ti)

≤
i∗−1∑
i=0

qi(ν−α)−νγ(α)T̄ρ

= q−νγ(α)T̄ρ

i∗−1∑
i=0

qi(ν−α)

≤ q−νγ(α)

1− qν−α
T̄ρ,

where the fact that qν−α < 1 has been used on the last step.
Therefore, the time of convergence to the unit ball ti∗ in the
system (4), (5), (6), (8) is finite and independent in initial
conditions, as it was necessary to show. The following result
has been proven.

Theorem 3. Let for the system (3) with ν ≤ 0 the supervisory
algorithm be selected as in (6), (8) with q > 1, α > ν and
−ν ≤ θ, then the solutions of the closed-loop system are
well defined for all t ≥ 0 and for any z(0) ∈ Rn the time of
convergence to the unit sphere Sr is less than

q−νγ(α)

1− qν−α
T̄ρ,

where T̄ρ = sup‖ξ‖r=1 Tρ(ξ) for the system (2) with ρ =

q1+γ(α).

If in the conditions of the latter theorem ν < 0, then
the system is fixed-time stable as in the case of Theorem
2 (for ν = 0 the system is exponentially converging to the
origin form the unit sphere Sr), and in general Theorem 3
is a generalization of Theorem 2. However, the supervision
provided in Theorem 3 is qualitatively different from the
case of Theorem 2 if α > 0, since in this case µi forms
an increasing sequence for i ∈ [0, i∗ − 1].

Example 2. Let us continue to consider the same example,
but with ν = 0 for q = 2, α = 0.5 and θ = 0.25. All
conditions of Theorem 3 are satisfied and the closed loop
hybrid system (3), (6), (8) has a finite time of convergence
to the unit sphere. An example of the system trajectories is
given in Fig. 2.

C. Finite-time convergence to the origin for ν ≥ 0

Let us consider the problem of finite-time convergence to
the origin from the unit sphere (z(0) ∈ Sr) by switching
among the systems having asymptotic rate of convergence,
i.e. with ν ≥ 0. For this purpose the following supervision
algorithm will be used:

ti+1 = min
t≥ti:‖x(t)‖r≤q−1−i

t, (9)

µi+1 = q(i+1)α,

Figure 2. Finite-time convergence to Sr for ν = 0 with increasing µi

where q > 1 and α > ν are tuning parameters. It is necessary
to show that the solutions of (4), (5) are well defined for the
supervisory algorithm (9) and that the closed loop system
converges to the origin in a finite-time time.

Remark 3. The difference here with respect to the cases
considered previously is that there is an infinite number of
switches and a Zeno behavior or a sliding mode appears. In
practice the switching may be stopped after reaching a certain
vicinity around the origin, i.e. when ‖z(ti)|‖r ≤ ε for a
given ε ∈ (0, 1), which is specifying the available precision
of computation, for example. In this case there is a finite
number i∗ = ceil[lnq ε] of switches as previously.

From (9) we obtain for all i ≥ 0:

Mi+1M
−1
i = diag

{(
µi+1

µi

)1−k
}n
k=1

= diag
{
qα(1−k)

}n
k=1

,

then

‖x(t+i+1)‖r ≤ ‖x(ti+1)‖r ≤ q−1−i.

Repeating the same argumentation, the instant ti+2 will be
generated by (9) when ‖x(ti+2)‖r = q−2−i and on the
interval of time [ti+1, ti+2) the dynamics of x(t) is governed
by (4) for µi+1 = q(i+1)α. On this interval [ti+1, ti+2) the
state x(t) has to decrease in q times, then

ti+2 − ti+1 = µ−1
i+1Tq(x(ti+1))

≤ q(i+1)(ν−α)Tq(z(0)),

and the interval length ti+2−ti+1 is decreasing with i. Denote
gain T̄q = sup‖ξ‖r=1 Tq(ξ), then the time of convergence to



Figure 3. Finite-time convergence from Sr to the origin for ν = 0 with
increasing µi

the origin t0 can be estimated as follows

t0 =
∑
i≥0

(ti+1 − ti)

≤
∑
i≥0

qi(ν−α)T̄q

= T̄q
∑
i≥0

qi(ν−α)

≤ T̄q
1− qν−α

since qν−α < 1. Therefore, the time of convergence to the
origin from the unit sphere Sr in the system (4), (5), (9)
is finite and independent of initial conditions. The following
result has been proven.

Theorem 4. Let for the system (3) with ν ≥ 0 the supervisory
algorithm be selected as in (9) with q > 1 and α > ν, then
the solutions of the closed-loop system are well defined for
all t ≥ 0 and for any z(0) ∈ Sr the time of convergence to
the origin is less than

T̄q
1− qν−α

,

where T̄q = sup‖ξ‖r=1 Tq(ξ) for the system (2).

Example 3. Continuing with the same example for ν = 0,
q = 2 and α = 0.2, we can observe that all conditions of
Theorem 4 are satisfied and the closed loop hybrid system
(3), (9) is finite-time converging to the origin from the unit
sphere. An example of the system trajectories is given in Fig.
3.

VI. CONCLUSION

The problem of convergence rate acceleration by switch-
ing among different values of parameters is addressed in
this work. Different algorithms are proposed, which can
be applied to homogeneous systems with all signs of de-
gree (negative, zero, positive), and ensuring acceleration of

convergence from infinity to the unit sphere or from the
sphere to the origin. The obtained results are based on
analysis of an auxiliary hybrid system. As a result, taking a
linear feedback for linear system it is shown how to scale
the gains and switch between them in order to ensure a
fixed-time convergence in the closed-loop system. Different
strategies are analyzed: decreasing or increasing acceleration
approaching the goal set. Note that the obtained results are
not related with dwell-time stability since switching stops
in a finite time, with interval length between commutations
converging to zero in Theorem 4. The results are illustrated
by computer simulations for a planar benchmark. Analysis
of finite-time and fixed-time stability for non autonomous or
hybrid systems can be directions of future research.
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