G. Anastasi, M. Conti, M. D. Francesco, and A. Passarella, Energy conservation in wireless sensor networks: A survey, Ad hoc networks, pp.537-568, 2009.
DOI : 10.1016/j.adhoc.2008.06.003

G. Anastasi, A. Falchi, A. Passarella, M. Conti, and E. Gregori, Performance measurements of motes sensor networks, Proceedings of the 7th ACM international symposium on Modeling, analysis and simulation of wireless and mobile systems , MSWiM '04, pp.174-181, 2004.
DOI : 10.1145/1023663.1023695

H. Mirza-mansoor-baig and . Gholamhosseini, Smart health monitoring systems: an overview of design and modeling, Journal of medical systems, vol.37, issue.2, pp.1-14, 2013.

W. Farshid-hassani-bijarbooneh, . Du, C. Edith, X. Ngai, J. Fu et al., Cloud-assisted data fusion and sensor selection for internet of things, IEEE Internet of Things Journal, vol.3

M. Christopher and . Bishop, Pattern recognition and machine learning, Machine Learning, 2006.

. Council, Internet of things council, 2015.

P. Arthur, . Dempster, M. Nan, . Laird, B. Donald et al., Maximum likelihood from incomplete data via the em algorithm, Journal of the royal statistical society. Series B (methodological), pp.1-38, 1977.

Z. Ghahramani, Graphical models: parameter learning. Handbook of brain theory and neural networks, pp.486-490, 2002.

C. Komurlu and M. Bilgic, Active inference and dynamic gaussian bayesian networks for battery optimization in wireless sensor networks, Proceedings of AAAI workshop on artificial intelligence for smart grids and smart buildings, 2016.

B. Liu, Z. Xu, J. Chen, and G. Yang, Toward reliable data analysis for Internet of Things by Bayesian dynamic modeling and computation, 2015 IEEE China Summit and International Conference on Signal and Information Processing (ChinaSIP), pp.1027-1031, 2015.
DOI : 10.1109/ChinaSIP.2015.7230560

W. Hong, S. Madden, M. Paskin, P. Bodik, C. Guestrin et al., Intel lab data, 2016.

R. Petrolo, V. Loscri, and N. Mitton, Towards a smart city based on cloud of thoings, Proceedings of the 2014 ACM international workshop on Wireless and mobile technologies for smart cities, pp.61-66, 2014.

O. Qinghai, Z. Yan, L. Xianghen, Z. Yiying, and Z. Lingkang, Application of internet of things in smart grid power transmission, INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications, pp.1293-1303, 2003.

C. Razafimandimby, V. Loscri, and A. M. Vegni, A Neural Network and IoT Based Scheme for Performance Assessment in Internet of Robotic Things, 2016 IEEE First International Conference on Internet-of-Things Design and Implementation (IoTDI), pp.241-246, 2016.
DOI : 10.1109/IoTDI.2015.10

URL : https://hal.archives-ouvertes.fr/hal-01261842

N. Surender-kumar-soni, D. Chand, and . Singh, Reducing the data transmission in wsns using time series prediction model, Signal Processing, Computing and Control (ISPCC), 2012 IEEE International Conference on, pp.1-5, 2012.

L. Tan and M. Wu, Data Reduction in Wireless Sensor Networks: A Hierarchical LMS Prediction Approach, IEEE Sensors Journal, vol.16, issue.6, pp.1708-1715, 2016.
DOI : 10.1109/JSEN.2015.2504106

A. M. Vegni, V. Loscr, A. Neri, and M. Leo, A Bayesian Packet Sharing Approach for Noisy IoT Scenarios, 2016 IEEE First International Conference on Internet-of-Things Design and Implementation (IoTDI), pp.305-308, 2016.
DOI : 10.1109/IoTDI.2015.28

URL : https://hal.archives-ouvertes.fr/hal-01262024

C. Wang, N. Komodakis, and N. Paragios, Markov Random Field modeling, inference & learning in computer vision & image understanding: A survey, Computer Vision and Image Understanding, vol.117, issue.11, pp.1610-1627, 2013.
DOI : 10.1016/j.cviu.2013.07.004

URL : https://hal.archives-ouvertes.fr/hal-00858390

M. Wu, L. Tan, and N. Xiong, Data prediction, compression, and recovery in clustered wireless sensor networks for environmental monitoring applications, Information Sciences, vol.329, pp.800-818, 2016.
DOI : 10.1016/j.ins.2015.10.004

S. Jonathan, . Yedidia, T. William, Y. Freeman, and . Weiss, Understanding belief propagation and its generalizations. Exploring artificial intelligence in the new millennium, pp.236-239, 2003.

W. Zhao and Y. Liang, A systematic probabilistic approach to energy-efficient and robust data collections in wireless sensor networks, International Journal of Sensor Networks, vol.7, issue.3, pp.162-175, 2010.
DOI : 10.1504/IJSNET.2010.033118