An averaging technique for transport equations

Abstract : In this paper, we develop a new strategy aimed at obtaining high-order asymptotic models for transport equations with highly-oscillatory solutions. The technique relies upon averaging theory for ordinary differential equations, in particular normal form expansions in the vanishing parameter. Noteworthy, the result we state here also allows for the complete recovery of the exact solution from the asymptotic model. This is done by solving a companion transport equation that stems naturally from the change of variables underlying high-order averaging. Eventually, we apply our technique to the Vlasov equation with external electric and magnetic fields. Both constant and non-constant magnetic fields are envisaged, and asymptotic models already documented in the literature and re-derived using our methodology. In addition, it is shown how to obtain new high-order asymptotic models.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger
Contributeur : Philippe Chartier <>
Soumis le : lundi 10 octobre 2016 - 11:29:12
Dernière modification le : mardi 5 février 2019 - 14:40:03
Document(s) archivé(s) le : mercredi 11 janvier 2017 - 12:12:25


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01374655, version 1


Philippe Chartier, Nicolas Crouseilles, Mohammed Lemou. An averaging technique for transport equations. 2016. 〈hal-01374655〉



Consultations de la notice


Téléchargements de fichiers