Towards semi-episodic learning for robot damage recovery

Konstantinos Chatzilygeroudis 1 Antoine Cully 2 Jean-Baptiste Mouret 1
1 LARSEN - Lifelong Autonomy and interaction skills for Robots in a Sensing ENvironment
Inria Nancy - Grand Est, LORIA - AIS - Department of Complex Systems, Artificial Intelligence & Robotics
Abstract : The recently introduced Intelligent Trial and Error algorithm (IT&E) enables robots to creatively adapt to damage in a matter of minutes by combining an off-line evolutionary algorithm and an on-line learning algorithm based on Bayesian Optimization. We extend the IT&E algorithm to allow for robots to learn to compensate for damages while executing their task(s). This leads to a semi-episodic learning scheme that increases the robot's lifetime autonomy and adaptivity. Preliminary experiments on a toy simulation and a 6-legged robot locomotion task show promising results.
Type de document :
Communication dans un congrès
Workshop on AI for Long-Term Autonomy at the IEEE International Conference on Robotics and Automation (ICRA), May 2016, Stockholm, Sweden. 2016, 〈https://sites.google.com/site/icra2016ailta/〉
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01376288
Contributeur : Konstantinos Chatzilygeroudis <>
Soumis le : mardi 4 octobre 2016 - 16:17:45
Dernière modification le : jeudi 11 janvier 2018 - 06:27:29
Document(s) archivé(s) le : vendredi 3 février 2017 - 16:08:28

Fichiers

ailta.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01376288, version 1
  • ARXIV : 1610.01407

Collections

Citation

Konstantinos Chatzilygeroudis, Antoine Cully, Jean-Baptiste Mouret. Towards semi-episodic learning for robot damage recovery. Workshop on AI for Long-Term Autonomy at the IEEE International Conference on Robotics and Automation (ICRA), May 2016, Stockholm, Sweden. 2016, 〈https://sites.google.com/site/icra2016ailta/〉. 〈hal-01376288〉

Partager

Métriques

Consultations de la notice

193

Téléchargements de fichiers

32