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Fault Detection, Isolation and Quantification from Gaussian Residuals with Application to
Structural Damage DiagnosisI

Michael Döhler∗, Laurent Mevel, Qinghua Zhang

Inria / IFSTTAR, I4S, Campus de Beaulieu, 35042 Rennes, France

Abstract

Despite the general acknowledgment in the Fault Detection and Isolation (FDI) literature that FDI are typically accomplished
in two steps, namely residual generation and residual evaluation, the second step is by far less studied than the first one. This
paper investigates the residual evaluation method based on the local approach to change detection and on statistical tests. The local
approach has the remarkable ability of transforming quite general residuals with unknown or non Gaussian probability distributions
into a standard Gaussian framework, thanks to a central limit theorem. In this paper, the ability of the local approach for fault quan-
tification will be exhibited, whereas previously it was only presented for fault detection and isolation. The numerical computation
of statistical tests in the Gaussian framework will also be revisited to improve numerical efficiency. An example of vibration-based
structural damage diagnosis will be presented to motivate the study and to illustrate the performance of the proposed method.

Keywords: Fault detection and isolation, Fault quantification, Local approach, Residual evaluation, Hypothesis tests, Minmax
tests, Structural damage diagnosis

1. Introduction

The complexity of modern engineering systems grows with
the requirements on economic performance and on quality of
production or service, while subject to safety and environmen-
tal constraints. In this trend, fault diagnosis is becoming an
integrated functionality of more and more systems, from indus-
trial processes to consumer products. Model-based methods for
Fault Detection and Isolation (FDI) have been widely studied
since several decades (Basseville and Nikiforov, 1993; Gertler,
1998; Chen and Patton, 1999; Simani et al., 2003; Korbicz,
2004; Isermann, 2006; Ding, 2008; Blanke et al., 2015). In this
research field, most studied systems are dynamic, in the sense
that the current outputs of a system depend not only on the cur-
rent inputs, but also on the history of the system. Such systems
are typically described by differential equations. The resulting
methods for FDI typically follow two steps, namely residual
generation and residual evaluation (Hwang et al., 2010).

The purpose of residual generation is to generate, through the
processing of raw sensor signals, some residual signals that are
typically close to zero in the fault-free case and significantly
different from zero in the faulty case. Because of the dynamic
nature of the considered systems and the lack of sensors for full
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state measurement, residual generation is by far not a trivial
task. Most methods for residual generation are based on fault
detection filters (Massoumnia, 1986; Edelmayer et al., 1997;
Chen and Speyer, 2000; Zhong et al., 2010), state observers
(Hammouri et al., 1998; Besançon, 2003; Xu and Zhang, 2004;
Hammouri and Tmar, 2010), and parity relations (Medvedev,
1995; Gertler, 1997). Essentially these methods compensate the
lack of sensors by taking into account the dynamic nature of the
considered system. Some methods lead to residuals focusing
on part of the possible faults for the purpose of fault isolation
(Gertler, 1998; Blanke et al., 2015). Some other methods de-
sign robust residuals, which are fully or partly decoupled from
unknown disturbances (Chen and Patton, 1999; Henry et al.,
2014).

Due to measurement noises and modeling errors, residuals
are not perfectly zero in the fault-free case. Residual evalua-
tion is thus not a trivial task, either. Despite the general ac-
knowledgment of the two steps in FDI methods and the im-
portance of each step, most publications focus on the resid-
ual generation step. The major methods for residual evalua-
tion are based on the theory of statistics (Basseville and Niki-
forov, 1993; Basseville, 1997) by assuming random uncertainty
models, whereas some other methods rely on interval computa-
tions by assuming bounded uncertainties (Puig, 2010; Raka and
Combastel, 2013).

Statistical methods for residual evaluation usually start by as-
suming some probability distribution of measurement and mod-
eling errors, typically Gaussian, or sometimes even directly
making such assumptions about the residuals. Such an ap-
proach is more for theoretic convenience than for physical rea-
sons. To relax these assumptions, the local approach to change
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detection (Benveniste et al., 1987) has the remarkable ability
of transforming quite general residuals with unknown probabil-
ity distributions into a standard Gaussian framework, thanks to
a Central Limit Theorem (CLT). The local approach is thus a
powerful tool for statistical evaluation of residuals. The essen-
tial assumption behind the local approach is that the considered
faults are characterized by small parametric changes. It is thus
particularly suitable for incipient fault diagnosis. The mean-
ing of “small” will be explained later in this paper when some
details of this approach are presented. While many FDI meth-
ods concern additive faults, e.g. (Dong and Verhaegen, 2009;
Dong et al., 2012), our approach assumes a more general de-
scription of incipient faults linked to small parameter changes.
While the detection and diagnosis of incipient faults from ran-
dom noise-corrupted data are considered in this paper, other as-
pects of incipient faults have been studied in the literature, for
instance, the dynamics of observer based residuals in (Escobet
et al., 2014), and the variabilities of data covariance eigenval-
ues in (Harmouche et al., 2014). Concerning fault estimation
or quantification, some methods are focused on additive sen-
sor faults, e.g. the sliding mode observer-based method (Tan
and Edwards, 2002). Other methods are based on parameter es-
timation or system identification techniques (Isermann, 2005).
These methods do not consider the particular case of incipient
fault quantification from noise-corrupted sensor data, which is
addressed in the present paper.

The purpose of the present paper is twofold. First, the ability
of the local approach for fault quantification will be exhibited,
whereas previously this approach was only presented for fault
detection and isolation. In this way, a common framework for
fault detection, isolation and quantification is achieved. Second,
the numerical computation of statistical tests in the Gaussian
framework will be revisited, in order to improve the numerical
efficiency of the residual evaluation method based on the local
approach.

To motivate the results presented in this paper, an example of
vibration-based damage diagnosis in the context of Structural
Health Monitoring (SHM) will be presented in detail. SHM
consists in detecting and characterizing damages in engineer-
ing structures, such as civil, aeronautical or mechanical struc-
tures from measurements (Farrar and Worden, 2007; Brown-
john, 2007). We consider the monitored structure as a linear
time-invariant system subject to state and measurement noise.
Usually, measurements are output-only, since the inputs are
typically ambient excitations (like traffic or wind), which can-
not be measured with a sufficient accuracy for vibration analy-
sis. Damage diagnosis consists of several levels of increasing
difficulty, beginning with damage detection (corresponding to
fault detection), damage localization (fault isolation) and dam-
age quantification (fault quantification). The faults – structural
damages – affect the dynamic properties of the monitored struc-
ture, inducing changes in the modal parameters (natural fre-
quencies, damping ratios, mode shapes), or in the equivalent
eigenstructure representation of the linear system (eigenvalues
and observed eigenvectors). It is of interest to diagnose dam-
ages at an early stage before they grow to dangerous extents.
Damage detection thus amounts to detecting small changes in

the eigenstructure of the monitored structure. Damage localiza-
tion usually requires a finite element (FE) model of the struc-
ture and links changes in the eigenstructure to changes in the
FE parameters. The location of the damage then corresponds
to regions in the model where the respective FE parameters
have changed. Damage quantification corresponds to estima-
tion of the parameter change. Together with an appropriate
residual function, it is shown how these diagnosis problems can
be solved with the techniques developed in this paper.

In this context, subspace-based residuals and detection tests
have been proposed in (Basseville et al., 2000; Döhler and
Mevel, 2013; Döhler et al., 2014b) with field applications,
e.g. in (Döhler et al., 2014a). For damage localization, it can
be decided with minmax or sensitivity approaches which com-
ponents in the FE parameter set have changed. While sensitiv-
ity tests have been used for damage localization in (Basseville
et al., 2004; Balmès et al., 2008), we show in this paper that
minmax tests have more appropriate properties and are better
suited for the damage localization problem when the normal-
ized parameter sensitivities are not orthogonal. In the context
of vibration monitoring, minmax approaches have also been ap-
plied to damping monitoring (Zouari et al., 2009) or damage de-
tection with temperature rejection (Balmès et al., 2009). While
these studies have been focused on FDI, it has never been at-
tempted to quantify the absolute change in the faulty parameter
components.

This paper is organized as follows. In Section 2, the prob-
lems of fault detection, isolation and quantification in the con-
text of the asymptotic local approach to change detection are
introduced. The appropriate hypothesis tests for fault detection
and isolation are introduced in Section 3. Schemes for an ef-
ficient numerical computation of these tests are developped in
Section 4. In Section 5, fault quantification is addressed and
applied to structural damage diagnosis in Section 6. Numeri-
cal applications of the proposed methods are presented in Sec-
tion 7.

2. Problem statement

Let a system be characterized by a parameter vector θ. As-
sume that measurements YN = {Y1, . . . ,YN} of length N col-
lected from the system are the realization of an asymptotically
stationary stochastic process depending on the parameter vec-
tor θ.

We consider the problems of detecting, isolating and quanti-
fying faults, which are deviations of the considered system from
the nominal behavior characterized by some nominal parame-
ter value θ0. In particular, small deviations are considered for
the diagnosis of incipient faults. With the asymptotic local ap-
proach to change detection (Le Cam, 1956, 1986; Benveniste
et al., 1987), the fault diagnosis problem for a parametrized
stochastic process is transformed into monitoring the mean of a
Gaussian residual vector. The local approach assumes the close
hypotheses

H0 : θ = θ0 (reference system),
H1 : θ = θ0 + δ/

√
N (faulty system),

(1)
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where vector δ is unknown but fixed. This corresponds to a very
general description of a fault linked to any small change in the
system parameter θ. The system dynamics can be parametrized
by θ in a complex manner, and generally parameter changes
affect measured outputs in a non-additive manner (see exam-
ple in Section 6). With this framework, very small changes in
θ can be detected if the number of measurements N is large
enough, by linking this change to 1/

√
N. Confronting the mea-

surements to the nominal system parameter, a residual vec-
tor ζ(θ0,YN) def

= 1
√

N

∑N
k=1 h(θ0,Yk) is designed, through a so-

called primary residual h(θ0,Yk) satisfying some basic condi-
tions (Benveniste et al., 1987). First, the identifiability property

Eθh(θ0,Yk) = 0 iff θ = θ0

is assumed, where Eθ denotes the expectation over realizations
of Yk under the true system parameter θ. Second, differentiabil-
ity with respect to θ is assumed in a neighborhood of θ0, and fur-
thermore the process h(θ0,Yk) satisfies some mild mixing con-
ditions. Then, the main result of the local approach based on
assumptions (1) is a central limit theorem (CLT) ensuring that

ζ(θ0,YN)
d
−→

{
N(0,Σ) under H0
N(J δ,Σ) under H1

(2)

for N → ∞, where J and Σ are the asymptotic sensitivity at
θ0 and covariance of the residual, respectively. For example, as
recalled in Section 6, an appropriate residual vector for vibra-
tion monitoring has been proposed based on subspace proper-
ties (Basseville et al., 2000; Döhler and Mevel, 2013; Döhler
et al., 2014b). Note that the modeling of the change in θ as
δ/
√

N in hypothesis (1) has been introduced to obtain CLT (2)
with constant mean J δ under H1, resulting from a first-order
Taylor expansion of the residual.

In detail, we consider the following diagnosis problems in
this framework:

• Fault detection, i.e. change detection in θ, corresponds to
deciding if δ , 0;

• Fault isolation, i.e. deciding which parameters in θ are
faulty, corresponds to deciding which components of δ are
non-zero;

• Fault quantification corresponds to estimating the change
(θ − θ0) in the faulty components.

Based on the asymptotic residual distribution in (2), the consid-
ered diagnosis problems can be solved in a standard Gaussian
framework with statistical tests and parameter estimation meth-
ods, as described in the following sections.

3. Basic fault detection and isolation tests

In this section, we recall hypotheses tests for a parametrized
Gaussian residual vector ζ ∈ Rh between the two hypotheses

ζ ∼

N (0,Σ) Hypothesis H0

N (J δ,Σ) Hypothesis H1
(3)

where δ ∈ Rl is an unknown vector with δ , 0 under H1, the
sensitivity matrix J ∈ Rh×l has full column rank and the co-
variance matrix Σ ∈ Rh×h is positive definite. It is assumed that
the sensitivity and covariance matrices J and Σ are known or
estimated somehow in practice. Many methods have been pro-
posed in the literature for statistical fault detection (decide if
δ = 0 or δ , 0) and isolation (decide which components of vec-
tor δ are non-zero) in the framework of such a Gaussian residual
vector ζ (Basseville and Nikiforov, 1993; Basseville, 1997). In
the following, we recall the appropriate generalized likelihood
ratio (GLR) tests.

3.1. Fault detection: global test

The global test is intended to make a decision between δ = 0
and δ , 0 based on residual vector ζ in (3). The GLR test
applied to this problem leads to the test statistic (Basseville,
1997)

tglobal = ζT Σ−1J
(
JT Σ−1J

)−1
JT Σ−1ζ, (4)

which follows a χ2 distribution with l degrees of freedom and
the non-centrality parameter δT Fδ, where F = JT Σ−1J is the
Fisher information matrix. To decide between H0 and H1, the
test variable tglobal is compared to a threshold. Typically the
threshold is chosen so that the probability of false alarms is
below some chosen level. In theory this choice can be made
according to the χ2 distribution of tglobal from the reference sys-
tem.

3.2. Fault isolation: sensitivity and minmax tests

For the problem of fault isolation it has to be decided which
components of vector δ are non-zero, which can be done by
testing each component (or group of components) of δ sepa-
rately. Thus, consider different partitions of the vector δ into
two subvectors, where one of the subvectors is tested. Without
loss of generality, let this partition be

δ =

[
δa

δb

]
.

For fault isolation, δa = 0 is tested against δa , 0 for each
partition. Let the sensitivity and Fisher information matrices be
partitioned accordingly as

J =
[
Ja Jb

]
, F =

[
Faa Fab

Fba Fbb

]
=

[
JT

a Σ−1Ja JT
a Σ−1Jb

JT
b Σ−1Ja JT

b Σ−1Jb

]
. (5)

In the following subsections, two isolation tests are recalled.

3.2.1. Sensitivity test
The simplest possibility for testing δa = 0 against δa , 0 is

to assume δb = 0 and thus ζ ∼ N (Ja δa,Σ). The corresponding
GLR test statistic writes as (Basseville, 1997)

tsens = ζT Σ−1Ja

(
JT

a Σ−1Ja

)−1
JT

a Σ−1ζ, (6)

which is called sensitivity test. The test variable tsens is χ2-
distributed with dim(δa) degrees of freedom and non-centrality
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parameter δT
a Faa δa. For a decision, the test variable is com-

pared to a threshold, which is obtained for a given probability
of false alarms according to the χ2 distribution of the reference
system.

This holds if δb = 0 is actually true. If the assumption δb = 0
does not hold, the non-centrality parameter of tsens writes as

δT
a Faa δa + 2δT

a Fabδb + δT
b FbaF−1

aa Fabδb, (7)

which follows from the properties of ζ̃
def
=(

JT
a Σ−1Ja

)−1/2
JT

a Σ−1ζ. Since ζ ∼ N (J δ,Σ) and
J δ = Ja δa +Jb δb,

ζ̃ ∼ N
(
F1/2

aa δa + F−1/2
aa Fab δb, I

)
using (5). From this normal distribution, the χ2 distribution of
tsens = ζ̃T ζ̃ follows immediately with non-centrality parame-
ter (7).

3.2.2. Minmax test
Instead of assuming δb = 0, the variable δb is replaced by

its least favorable value for a decision about δa, leading to the
minmax test (Basseville, 1997) as presented in the following.
Define the partial residuals as

ζa
def
= JT

a Σ−1ζ, (8a)

ζb
def
= JT

b Σ−1ζ, (8b)

the robust residual as

ζ∗a
def
= ζa − FabF−1

bb ζb (9)

and
F∗a

def
= Faa − FabF−1

bb Fba. (10)

Then, the mean of the robust residual ζ∗a is sensitive to changes
δa, but blind to δb, and it holds

ζ∗a ∼ N
(
F∗a δa, F∗a

)
. (11)

The corresponding GLR test statistic for δa = 0 against δa , 0
writes as

tmm = ζ∗Ta F∗−1
a ζ∗a , (12)

which is called minmax test. The test variable tmm is χ2-
distributed with dim(δa) degrees of freedom and non-centrality
parameter δT

a F∗a δa, independently of δb. For a decision, the
test variable is compared to a threshold, which is obtained for
a given probability of false alarms from the χ2 distribution of
the reference system. Note that the invertibility of all matrices
in the computation is guaranteed, when J has full column rank
and Σ is positive definite as assumed.

3.2.3. Discussion
The sensitivity and the minmax approaches differ by their as-

sumption on δb, where the minmax approach provides a more
general setting. The sensitivity test assumes δb = 0, which may
lead incoherent results if in reality δb , 0, while the minmax

test is not influenced by the true value of δb. Only in the special
case Fab = 0, i.e. if the normalized sensitivities Σ−1/2Ja and
Σ−1/2Jb are orthogonal to each other, the sensitivity test statis-
tic is independent of δb, as can be seen in (7). In general, the
sensitivity approach may have an unexpected behavior if the
assumption δb = 0 is not satisfied. Thus, in a general setting
the minmax should be preferred to the sensitivity test, while in
related previous works (Basseville et al., 2004; Balmès et al.,
2008) only the sensitivity approach was considered.

4. Numerically efficient computation of the test statistics

The tests from the previous section require a number of ma-
trix inversions, which may be numerically critical due to pos-
sible ill-conditioning of the sensitivity and covariance matri-
ces. In this section, we present numerical computations of the
test statistics, where the number of matrix inversions is kept to
a minimum. Instead, properties of the QR decomposition are
efficiently used. Based on this development, we furthermore
propose a fast computation scheme for multiple minmax tests,
where different subvectors of δ are tested.

4.1. Inverting the covariance matrix Σ

Common to all tests is the inversion of the covariance matrix
Σ. In the efficient computation method presented below, it turns
out that only the matrix square root of the inverse, Σ−1/2 will be
needed with the property

Σ−1 = (Σ−1/2)T Σ−1/2. (13)

Its computation is usually made through the singular value de-
composition (SVD) of Σ. By assumption, matrix Σ is positive
definite. From its SVD

Σ = UΛUT ,

where U is an orthogonal matrix (UT U = I) and Λ =

diag(λ1, . . . , λh) with the singular values λ1, . . . , λh in decreas-
ing order, the matrix Σ−1/2 can be obtained from

Σ−1/2 = Λ−1/2UT ∈ Rh×h,

where Λ−1/2 = diag(λ−1/2
1 , . . . , λ−1/2

h ), fulfilling (13). In order
to prevent large numerical errors when Σ is badly conditioned,
λ−1/2

i may be replaced by 0 if λi is too small compared to the
largest singular value λ1, i.e., for i > s where s be the number
of retained singular values. Then,

Σ−1/2 = Λ−1/2
s UT

s ∈ Rs×h, (14)

where Λ
−1/2
s = diag(λ−1/2

1 , . . . , λ−1/2
s ) and Us consists of the first

s columns of U.

Remark 1. The definition and computation of the considered
tests from Section 3 can be extended to the case when Σ is only
positive semidefinite (Döhler and Mevel, 2013, Theorem 11),
replacing Σ−1 by Σ†, where † denotes the pseudoinverse. In
this case, Σ−1/2 is defined similarly for the non-zero singular
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values as in (14), satisfying Σ† = (Σ−1/2)T Σ−1/2. This case ap-
pears especially when computing the sample covariance from
measurement data, for which an efficient computation of Σ−1/2

is detailed in (Döhler and Mevel, 2011; Döhler et al., 2014b).
The numerical computations in the following sections remain
valid for the rank deficient case, if the product Σ−1/2J has full
column rank, requiring in particular s ≥ l where l = dim(δ).

4.2. Computation of global test

Theorem 2 (Zhang and Basseville (2003)). Let the thin QR
decomposition (Golub and Van Loan, 1996)

Σ−1/2J = QR (15)

be given, where Q is an orthonormal matrix (QT Q = I) and R
is a square matrix. Then, the global test in (4) writes as

tglobal = αTα, where α = QT Σ−1/2ζ. (16)

Proof. Because Σ is positive definite, Σ−1/2 has full rank, and
because J has full column rank, matrix R is invertible. Using
(13), (15) and QT Q = I, the global test (4) writes

tglobal = ζT (Σ−1/2)T QR
(
RT QT QR

)−1
RT QT Σ−1/2ζ

= ζT (Σ−1/2)T QQT Σ−1/2ζ = αTα.

The advantage of the computation in (16) is the handling of
numerical errors when Σ or J are badly conditioned. For ex-
ample, the direct computation of the test variable in (4) may be
negative due to rounding errors, while the computation in (16)
amounts to a squared Euclidean norm that is always positive.
Moreover, the number of multiplications with potentially badly
conditioned matrices and thus the propagation of rounding er-
rors is reduced. The QR decomposition of Σ−1/2J is used to
obtain the orthonormal matrix Q, which is known to be numer-
ically well behaved. The extra computational cost for obtaining
Q is compensated by less matrix multiplications in the test com-
putation, in particular avoiding the computation of the Fisher
information matrix and its inverse.

4.3. Computation of isolation tests

4.3.1. Sensitivity test
The computation of the sensitivity test (6) is similar to the

global test. Hence, using the thin QR decomposition

Σ−1/2Ja = QaRa (17)

an efficient computation is given by

tsens = αT
aαa, where αa = QT

a Σ−1/2ζ (18)

with the same advantages as for the global test in the previous
section.

4.3.2. Minmax test
The computation of the minmax test (12) in Section 3.2.2 is

more sophisticated. After the preliminary work in (Zhang and
Basseville, 2003), we show in the following theorem that the
computation simplifies significantly when using an appropriate
QR decomposition, leading to a direct and efficient computa-
tion.

Theorem 3. Let the thin QR decomposition of

Σ−1/2
[
Jb Ja

]
=

[
Qb Qa

] [Rbb Rba

0 Raa

]
(19)

be given and partitioned accordingly. Then, the minmax test in
(12) writes as

tmm = βT
a βa, where βa = QT

a Σ−1/2ζ. (20)

Proof. From the QR decomposition (19) it follows

Σ−1/2Ja = QbRba + QaRaa,

Σ−1/2Jb = QbRbb,

where QT
a Qa = I, QT

b Qb = I and QT
b Qa = 0, and thus in (5)

F =

[
Faa Fab

Fba Fbb

]
=

[
RT

baRba + RT
aaRaa RT

baRbb

RT
bbRba RT

bbRbb

]
. (21)

The partial residuals in (8a) and (8b) write as

ζa = RT
baQT

b Σ−1/2ζ + RT
aaQT

a Σ−1/2ζ,

ζb = RT
bbQT

b Σ−1/2ζ,

and the robust residual in (9) yields

ζ∗a = ζa − RT
baRbb(RT

bbRbb)−1ζb

= RT
baQT

b Σ−1/2ζ + RT
aaQT

a Σ−1/2ζ

−RT
baRbb(RT

bbRbb)−1RT
bbQT

b Σ−1/2ζ

= RT
aaQT

a Σ−1/2ζ.

Similarly, substituting the elements of F∗a in (10) with (21)
yields

F∗a = (RT
baRba + RT

aaRaa) − RT
baRbb(RT

bbRbb)−1RT
bbRba

= RT
aaRaa.

Finally, replacing ζ∗a and F∗a in the minmax test (12) yields

tmm = ζT (Σ−1/2)T QaRaa(RT
aaRaa)−1RT

aaQT
a Σ−1/2ζ

= ζT (Σ−1/2)T Qa QT
a Σ−1/2ζ,

leading to the assertion.

The computation in (20) requires less multiplications with
potentially badly conditioned matrices compared to the direct
computation in Section 3.2.2, avoiding thus the accumulation
of rounding errors. Instead, the minmax test statistic boils down
to a simpler expression using the QR decompositions, which is
numerically well behaved.

Moreover, Theorem 3 makes the operation of the minmax
test directly visible, when writing it equivalently as tmm = β̄T β̄
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with β̄ = QaQT
a Σ−1/2ζ. Note that QaQT

a defines an orthogo-
nal projection. So in fact the squared norm of a vector β̄ is
computed, which is the orthogonal projection of the covariance-
normalized residual into the subspace of the normalized sensi-
tivities Σ−1/2Ja that are of interest and that are orthogonal to
the normalized sensitivities Σ−1/2Jb. Like this, the projection
is blind to changes δb, while only possible changes δa remain
in the projected vector. Note that this means in practice that the
sensitivities of all parameters in J need to be sufficiently pair-
wise distinct, otherwise the effect of a tested change δa might
be removed by another parameter in the projection. This also
corresponds to the necessity of (numerical) invertibility of the
R matrix in (19) and thus of Raa and Rbb in the proof of The-
orem 3, which is in theory given through the full column rank
of J and the positive definiteness of Σ. However, if these ma-
trices are too badly conditioned because some components of
the parametrization are too close, the minmax test might not
perform as expected, which is even worse in its original formu-
lation in Section 3.2.2.

Besides, a fast iterative update of the QR decomposition for
testing multiple subsets becomes possible thanks to the direct
computation in the new approach, as described in the following
section.

4.3.3. Minmax tests on multiple parameter subsets
For the purpose of fault isolation, typically different minmax

tests are performed, each focusing on a different subset δa of the
vector δ and requiring a QR decomposition in (19). The entire
task implies a significant computational burden if the number
of parameters l is high. In what follows we propose a method
to reduce the computational burden in such situations.

We assume δa to be one-dimensional in the following
for simplicity of notation. Denote the elements of δ =[
δ1 δ2 . . . δl

]T
. Thus, when testing parameter δi = 0

against δi , 0, denote δa and δb from the previous section as

δi
a = δi, (22a)

δi
b =

[
δi+1 · · · δl δ1 · · · δi−1

]T
, (22b)

and the corresponding sensitivity matrices as J i
a and J i

b, re-
spectively.

Instead of directly computing the QR decomposition in (19)
for each parameter i, the fact that the columns of the sensitivity
matrix J are the same all the time up to permutations will be
used to reduce the cost of the QR decompositions. Only one
thin QR decomposition is computed at the start for i = 1. Then,
an updating step is carried out iteratively for parameter i to i+1,
which is developed in the following.

Assume that the QR decomposition is available for parameter
i in (19) as

K i def
= Σ−1/2

[
J i

b J i
a

]
= QiRi, (23)

whereK i ∈ Rs×l. At this stage, the vector Qi
a in Qi =

[
Qi

b Qi
a

]
is used for the minmax test regarding δi

a in Theorem 3, where
the test statistic

ti
mm = (βi

a)Tβi
a, where βi

a = (Qi
a)T Σ−1/2ζ (24)

is computed.
In the next step, the update for parameter i + 1 will be per-

formed to compute the respective minmax test statistic, where
the decomposition

K i+1 = Σ−1/2
[
J i+1

b J i+1
a

]
= Qi+1Ri+1. (25)

is required. It can be obtained efficiently as follows. The ma-
trices K i and K i+1 are related by a permutation of one column
due to the definition in (22a)–(22b): partitioningK i =

[
k1 K2

]
with k1 being the first column leads to K i+1 =

[
K2 k1

]
.

Partitioning Ri =
[
r1 R2

]
analogously, it follows K i =[

Qir1 QiR2

]
from (23) and thus

K i+1 = Qi
[
R2 r1

]
.

The matrix
[
R2 r1

]
is upper Hessenberg due to the upper tri-

angular structure of Ri =
[
r1 R2

]
. Hence, there are Givens ro-

tations G1, . . . ,Gl−1, such that the product GT
l−1 · · ·G

T
1

[
R2 r1

]
is upper triangular (Golub and Van Loan, 1996), and the QR
decomposition of the next iteration in (25) can be obtained effi-
ciently from

Qi+1 = QiG1 · · ·Gl−1, Ri+1 = GT
l−1 · · ·G

T
1

[
R2 r1

]
. (26)

This update for Qi+1 and Ri+1 takes only 6sl flops and 3l2 flops,
respectively, compared to 4sl2 − 4

3 l3 flops for the direct com-
putation of the thin QR decomposition (Golub and Van Loan,
1996). Moreover, the explicit computation of Qi+1 in (26) is
not even required for the test computation, since it follows from
(24) and (26)

βi+1
a = (Qi+1

a )T Σ−1/2ζ

= GT
l−1 · · ·G

T
1 (Qi

a)T Σ−1/2ζ

= GT
l−1 · · ·G

T
1 β

i
a. (27)

Thus, βi
a can be directly updated to βi+1

a based on the Givens
rotations in order to compute the test ti+1

mm = (βi+1
a )Tβi+1

a . This
update takes only 6l flops, plus the 3l2 flops for updating to
Ri+1 in (26). Thus, the updating for all parameters i = 1, . . . , l
takes 3l3 flops, which is of the same order as the cost of one
initial QR decomposition. The QR decomposition is the dom-
inant operation in the computation of the minmax tests, and it
holds s ≥ l. Thus, testing all parameters i = 1, . . . , l with the
minmax test requires altogether O(sl2) flops with the described
iterative scheme, compared to O(sl3) flops based on the explicit
computation of the QR decompositions for all parameters in
Theorem 3.

5. Fault quantification

With the tests in the previous sections, a decision between
δa = 0 and δa , 0 is made for the components of the vector
δ based on the sensitivity and the minmax approach. If the re-
spective test exceeds a threshold and it is decided that the com-
ponent is faulty, i.e. δa , 0, the question for the actual value of

6



δa arises. In this section, estimates of the change δa are derived
based on the properties of the sensitivity and minmax tests, re-
spectively. Special care is also taken of a numerically sensible
computation of these estimates. Note that the discussion of the
choice between the sensitivity and the minmax approach in Sec-
tion 3.2.3 also applies to the following developments.

5.1. Sensitivity approach
Based on the sensitivity test from Section 3.2.1, an estimate

of δa can be obtained as follows.

Theorem 4. Define

δ̂sens
a

def
= (JT

a Σ−1Ja)−1JT
a Σ−1ζ. (28)

Then, under the assumption δb = 0,

δ̂sens
a ∼ N

(
δa, F−1

aa

)
.

Proof. Since ζ ∼ N (J δ,Σ), it follows under the assumption
δb = 0 (see Section 3.2.1) that

ζ ∼ N (Ja δa,Σ) .

It follows easily

JT
a Σ−1ζ ∼ N(JT

a Σ−1Ja δa,J
T
a Σ−1Ja)

and, since Faa = JT
a Σ−1Ja, the assertion follows.

Since the sensitivity approach requires the assumption δb =

0, which may be not guaranteed in reality, the potential error
can be analyzed in the following corollary.

Corollary 5. For δb arbitrary, it holds

δ̂sens
a ∼ N

(
δa + F−1

aa Fab δb, F−1
aa

)
. (29)

Proof. Since ζ ∼ N (Ja δa +Jb δb,Σ), the assertion follows
from the definition of δ̂sens

a in (28).

Following the numerically efficient computation of the sensi-
tivity test in Section 4.3.1, an efficient computation of δ̂sens

a can
be achieved as follows.

Corollary 6. With the QR decomposition (17), namely
Σ−1/2Ja = QaRa, it holds

δ̂sens
a = R−1

a QT
a Σ−1/2ζ,

coinciding with R−1
a αa in the test computation in (18).

Proof. With decomposition (13), δ̂sens
a in (28) can be written as

δ̂sens
a =

(
(Σ−1/2Ja)T Σ−1/2Ja

)−1
(Σ−1/2Ja)T Σ−1/2ζ.

Plugging in the QR decomposition Σ−1/2Ja = QaRa, where
QT

a Qa = I and Ra is invertible, yields

δ̂sens
a =

(
RT

a QT
a QaRa

)−1
RT

a QT
a Σ−1/2ζ,

leading to the assertion.

5.2. Minmax approach

Similarly to the sensitivity approach, an estimate of δa based
on the minmax approach (see Section 3.2.2) can be obtained as
follows.

Theorem 7. Let the variables for the minmax test be given in
(8a)–(10). Define

δ̂mm
a

def
= (F∗a)−1ζ∗a . (30)

Then,
δ̂mm

a ∼ N(δa, (F∗a)−1).

Proof. The assertion follows immediately from property (11).

Similar to the minmax test (12), the computation of δ̂mm
a in

(30) is a numerical challenge since the computation of ζ∗a and
F∗a involves potentially ill-conditioned matrices that already led
to numerical errors in the direct computation of the minmax
test statistics. Following the numerically efficient computation
of the minmax test in Section 4.3.2, an efficient computation of
δ̂mm

a can be achieved as follows.

Corollary 8. With the QR decomposition (19), namely

Σ−1/2
[
Jb Ja

]
=

[
Qb Qa

] [Rbb Rba

0 Raa

]
it holds

δ̂mm
a = R−1

aa QT
a Σ−1/2ζ, (31)

coinciding with R−1
aaβa in the test computation in (20).

Proof. In the proof of Theorem 3 it was shown that QR decom-
position (19) yields

ζ∗a = RT
aaQT

a Σ−1/2ζ, F∗a = RT
aaRaa.

Substituting these results in (30) leads immediately to the as-
sertion.

5.3. Back to the local approach

With the estimators developed in this section, estimates of δ
are obtained corresponding to the faulty parameter components
in a system parameter θ introduced in Section 2. However, the
original problem was the quantification of the actual parameter
change θ − θ0. Due to the local hypothesis in (2), the parameter
change can be obtained from

θ̂ − θ0 = δ̂/
√

N.

Thus, the local approach hypothesis modeling for a parameter
change in θ as δ/

√
N is not only a convenient mathematical tool

for establishing the CLT for the Gaussian residual, but also has
a sensible and meaningful interpretation leading to an effective
quantification of the actual parameter change.
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6. Structural damage diagnosis based on the local approach

To solve the problem of damage diagnosis in the context of
vibration-based structural health monitoring (SHM) using the
techniques developed in this paper, the relevant models, param-
eters and residuals are introduced in this section after a short
overview of the SHM literature.

6.1. Background literature

The purpose of SHM is to determine the system health of
a structure from regular (passive) observations implementing a
damage identification strategy (Farrar and Worden, 2007). The
particular case of vibration-based SHM has been studied from
many different angles in the last decade (Carden and Fanning,
2004; Fan and Qiao, 2011). Damage detection is usually based
on a reference model that is obtained from measurement data of
the healthy structure, without the need of an FE model. A com-
mon strategy is to repeatedly estimate current modal parameters
by means of system identification, and to compare the result to
some reference modal parameters (Ramos et al., 2010; Mag-
alhães et al., 2012). Other methods are based on model-data
matching, where measurement data are directly confronted to
a reference model, without resorting to repeated system iden-
tification. For instance, such methods include non-parametric
change detection based on novelty detection (Worden et al.,
2000; Yan et al., 2004), whiteness tests on Kalman filter innova-
tions (Bernal, 2013) or other damage-sensitive features (Carden
and Fanning, 2004).

Most methods for vibration-based damage localization infer
on the parameters of a FE model of the structure, where a nom-
inal FE model (containing stiffness, damping and mass matri-
ces) of the structure is given in a healthy reference state. Using
measured data from the damaged structure, these methods try
to determine an updated model that reproduces the dynamic re-
sponse from the data. Comparing the updated matrices with
the original ones provides damage location and extent (Brown-
john et al., 2001). For example, FE model updating is based
on changes in natural frequencies (Cawley and Adams, 1979),
other modal parameters (Jaishi and Ren, 2005) and residual
functions (Jaishi and Ren, 2006), or uses damage pattern func-
tions (Teughels et al., 2002). While model updating-based ap-
proaches are in principle applicable to arbitrary structures, they
are often too poorly conditioned to be successful in practice.
The parameter size of FE models of real structures is usually
much larger than the number of identified parameters from mea-
surements, leading to an ill-posed problem (Friswell, 2007).
Alternative methods confront measurement data to a FE model
to analyse changes in the structure in a more indirect way, with-
out updating. Empirical approaches (Fan and Qiao, 2011) and
approaches with a more profound theoretical background have
been developed, e.g. (Bernal, 2010) where damage is located
based on structural flexibility changes, including a statistical
framework for decision making on damaged and undamaged
elements in (Döhler et al., 2013; Marin et al., 2015).

Compared to detection and localization, methods for damage
quantification are the least developed in the literature (Fan and
Qiao, 2011). Quantification may be carried out together with

damage localization in the context of updating FE model pa-
rameters (Brownjohn et al., 2001; Friswell, 2007), but inherits
the problem of possible ill-posedness in this case. Further meth-
ods include e.g. pattern recognition techniques based on classi-
fication principles (Abdeljaber and Avci, 2016). Alternatively,
solving the localization problem first to identify the subset of
changed parameters, and estimating their change in a separate
second step for damage quantification, yields in general better
conditioned methods, for example as is in (Bernal, 2014).

In the context of damage diagnosis based on the local ap-
proach, a subspace-based residual has been proposed in (Bas-
seville et al., 2000; Döhler and Mevel, 2013; Döhler et al.,
2014b), where it was used for damage detection. For dam-
age localization, sensitivity tests have been introduced in (Bas-
seville et al., 2004; Balmès et al., 2008). Within this framework,
the underlying models and residuals are recalled in the follow-
ing section, where they will be extended to damage localization
with the appropriate minmax tests and damage quantification.

6.2. Models, parameters and residuals

The behavior of linear time-invariant structures subject to un-
known ambient excitation can be described by the differential
equation

MẌ(t) + CẊ(t) +KX(t) = υ(t) (32)

where t denotes continuous time; M,C,K ∈ Rm×m are mass,
damping, and stiffness matrices, respectively; the state vec-
tor X(t) ∈ Rm is the displacement vector of the m degrees of
freedom of the structure; and υ(t) is the external unmeasured
force (noise).

Observed at r sensor positions (e.g. displacement, velocity or
acceleration sensors) at discrete time instants t = kτ (with sam-
pling rate 1/τ), system (32) can also be described by a discrete-
time state space system model (Juang, 1994){

xk+1 = Axk + vk

yk = Cxk + wk
(33)

with the state vector xk =
[
X(kτ)T Ẋ(kτ)T

]T
∈ Rn, the mea-

sured outputs yk ∈ Rr, the state transition matrix

A = exp
([

0 I
−M−1K −M−1C

]
τ

)
∈ Rn×n

and the observation matrix

C =
[
Ld − LaM

−1K Lv − LaM
−1C

]
∈ Rr×n,

where n = 2m is the model order and Ld, Lv, Lc ∈ {0, 1}r×m

are selection matrices indicating the positions of displacement,
velocity or acceleration sensors, respectively. The state noise vk

and output noise wk are unmeasured and assumed to be centered
and square integrable.

Damage leads to changes in the structural properties of sys-
tem (32), e.g., in mass parameters of elements in M, or in
parameters corresponding to element stiffness such as Young’s
modulus in K . Hence they provoke changes in the eigenstruc-
ture of system (32), and consequently of system (33). Changes
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in the eigenstructure are directly linked to changes in the modal
parameters (natural frequencies, damping ratios, mode shapes)
of the structure.

Thus, two parametrizations are of interest. First, the eigen-
structure parametrization θeig is the collection of eigenvalues
and observed eigenvectors (mode shapes) (λi, ϕi) of system (33)
with

Aφi = λiφi, ϕi = Cφi, i = 1, 2, . . . , n. (34)

It constitutes a canonical parametrization invariant to linear
state transformations. An estimate of θeig can be obtained from
system identification, e.g. using subspace methods that are par-
ticularly suitable for the treatment of vibration data (Van Over-
schee and De Moor, 1996; Peeters and De Roeck, 1999; Bas-
seville et al., 2001; Döhler and Mevel, 2012a). Based on this
parametrization, the detection of damages is possible. How-
ever, it does not contain the physical structural information that
is necessary for damage localization or quantification. Second,
a physical (finite element) parametrization θFE is composed
of damage-sensitive parameters of the elements of a structure,
such as mass or stiffness parameters. Parameters in θFE cannot
be obtained from system identification, but are based on an FE
model of the structure. Based on this parametrization, the lo-
calization and quantification of damage is possible, since each
parameter in θFE corresponds to properties of a limited region
in the structure. It is assumed that structural damage is local
and thus affects only a small part of the parameters in θFE.

The problems for damage detection, localization and quan-
tification can then be formulated as follows:

• Damage detection corresponds to change detection in θeig;

• Damage localization corresponds to deciding which pa-
rameters in θFE are faulty (fault isolation);

• Damage quantification corresponds to estimating the
changes in the faulty parameters in θFE.

An appropriate subspace-based residual vector has been de-
fined in (Basseville et al., 2000) based on outputs YN =

{yk}k=1,...,N of system (33) as

ζ(θ0,YN) def
=
√

N vec(S (θ0)T Ĥp+1,q), (35)

where Ĥp+1,q is an estimate computed onYN of the block Han-
kel matrix

Hp+1,q
def
=


R1 R2 . . . Rq

R2 R3 . . . Rq+1
...

...
. . .

...
Rp+1 Rp+2 . . . Rp+q


containing the output correlations Ri = E(ykyT

k−i), and S (θ0) is
the left null space ofHp+1,q from the reference system. Assume
that state and output noise of system (33) are white for sim-
plicity, otherwise the block Hankel matrix needs to be slightly
modified (Döhler and Mevel, 2012b, Remark 1). Note that the

residual definition of ζ(θ0,YN) in (35) originates from the pri-
mary residual defined by h(θ0,Yk) def

= S (θ0)Y+
k (Y−k )T , where

Y+
k

def
= [yT

k yT
k+1 . . . yT

k+p]T and Y−k
def
= [yT

k−1 yT
k−2 . . . yT

k−q]T ,

and the fact that an estimate of Hp+1,q writes as Ĥp+1,q =
1
N

∑N
k=1 Y+

k (Y−k )T . Then, the residual vector satisfies the Cen-
tral Limit Theorem (2) (Basseville et al., 2000), see Section 2.
Thus, the problems of damage detection, localization and quan-
tification are transformed to change detection and estimation on
a parametrized asymptotically Gaussian residual vector, which
can be solved with the methods developed in this paper. It is as-
sumed that the data length N is sufficiently large for a meaning-
ful Gaussian approximation. Note that in either case of θ = θeig

and θ = θFE, the considered changes in the parameter θ affect
both the A and C matrices in (33), with non-additive effects on
the output of the system and on the residual.

The estimation of the asymptotic residual sensitivityJ is de-
scribed in detail in (Basseville et al., 2004; Balmès et al., 2008;
Döhler et al., 2014b) for both parametrizations θ = θeig and
θ = θFE. In both cases, the residual is derived with respect to
θeig, and in the second case the derivative of θeig with respect
to θFE is computed in addition using FE model (32). The esti-
mation of Σ is described in detail in (Döhler and Mevel, 2011;
Döhler et al., 2014b).

7. Application: structural damage diagnosis

Since damage detection in this framework has already been
applied in several case studies (e.g., Siegert et al. (2010); Döhler
and Hille (2014); Döhler et al. (2014a)), we focus on damage
localization and quantification for application in this section.
Using an FE parametrization θ = θFE =

[
θ1 . . . θl

]
of the

investigated structure, damage localization is carried out using
the sensitivity and the minmax tests for each of the parame-
ters θi, i = 1, . . . , l with the numerically efficient computations
from Sections 4.3.1 and 4.3.2. If the respective test value for a
parameter exceeds a threshold, it is regarded as faulty and dam-
age is located in the corresponding structural element. Finally,
the quantification of the damage extent can be performed on
the damaged elements with the respective estimators derived in
Section 5.

The damage localization and quantification techniques have
been applied to two simulated structures. The first example
is a simple mass-spring chain, the second a truss structure.
In both cases, output-only datasets with displacement samples
were generated at the sensor coordinates in reference and dam-
aged states from white noise excitation. Measurement noise
was added with a magnitude of 5% of the standard deviation of
each generated output signal. The damping was defined such
that all modes have a damping ratio of 2%. All parameters
of the tests (S , J , Σ) were estimated based on the dataset in
the reference state and the information from the respective FE
model. In each damage quantification example, 100 realiza-
tions of the simulated time series were used. The quantification
results are shown for several damage cases and extents, each as
the mean from the 100 estimates together with their standard
deviation.
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7.1. Mass-spring chain

A mass-spring chain with eight elements is considered
(Fig. 1) with masses m1 = m3 = m5 = m7 = 1,m2 = m4 =

m6 = m8 = 2 and stiffnesses k1 = k3 = k5 = k7 = 200, k2 = k4 =

k6 = k8 = 100. Output time series of length N = 100,000 are
simulated at time step τ = 0.05 s at four elements. The model
order is n = 16, and p + 1 = q = 6 in (35). J is computed on
all eight modes of the system. We consider three damage cases,
where damage is simulated by a stiffness reduction in one or
two springs.

m1 
k1 

m2 
k2 

m3 
k3 

m8 
k8 

m7 
k7 k4 

… 

Figure 1: Mass-spring chain with four sensors.

7.1.1. Damage localization
Damage in element 4, Fig. 2. While the minmax tests behave
perfectly, the sensitivity test for element 3 also reacts due to
the violation of δb = 0. The strong reaction only for element 3
among the undamaged elements becomes clear when evaluating
the non-centrality parameter of the test in (7), in particular the
value of FbaF−1

aa Fab where ‘a’ corresponds to any undamaged
element and ‘b’ corresponds to the damaged element 4: this
value is at 22.3 for element 3 while being lower than 0.4 for all
other undamaged elements.

Damage in elements 2 and 4, Fig. 3. The minmax tests behave
perfectly again, while the test value for the damage in spring 2
is of similar magnitude as the false-positives for springs 1 and 3.
This is analogous to the previous case, where it was explained
why the test for element 3 reacts when element 4 is damaged
(see Fig. 2). The minmax test is robust to changes in the non-
tested parameter changes δb by design.

Damage in elements 3 and 4, Fig. 4. The sensitivity and min-
max tests behave very well in this case. Note that the test values
for element 3 are in both tests larger than for element 4, while
element 4 is more damaged. Indeed, the test values serve only
for the decision if the respective element is damaged or not by
comparing them to a threshold. They are not directly linked to
the damage extent, which is estimated separately in the follow-
ing as shown in Section 5.

7.1.2. Damage quantification
Damage in element 4, Fig. 5 (top). The damage extents are
well estimated for both the sensitivity and the minmax ap-
proaches, only large extents are slightly overestimated.

Damage in elements 2 and 4, Fig. 5 (left). The stiffness reduc-
tion in element 2 is half as large as in element 4 for each dam-
age. Results from the minmax approach are satisfying, where
again only large damage extents are slightly overestimated. The
damage quantification from the sensitivity approach is biased
(here underestimated), since the assumption δb = 0 is violated.
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Figure 2: Sensitivity tests (left) and minmax tests (right) for 10% damage in
element 4.
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Figure 3: Sensitivity (left) and minmax tests (right) for 5% damage in element
2 and 10% damage in element 4.
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Figure 4: Sensitivity (left) and minmax tests (right) for 5% damage in element 3
and 10% damage in element 4.

As shown in Corollary 5, the theoretic bias for δa is F−1
aa Fab δb

in (29), and Faa > 0 by definition. Indeed, F̂ab = −0.4 < 0
between the parameters corresponding to damaged elements 2
and 4 in this case, which explains the underestimation.

Damage in elements 3 and 4, Fig. 5 (right). The results for the
minmax approach are similar as in the previous two-damage
case, whereas the damage extent is strongly overestimated now
when using the sensitivity approach. This is in line with F̂ab =

2.09 > 0 for the parameters corresponding to elements 3 and 4
in this case.

7.1.3. Numerical robustness
The effectiveness of the proposed numerical computation of

the test variables and fault estimation from Sections 4.2, 4.3.1,
4.3.2 and 5 is illustrated in this section.

The configuration of the mass-spring chain in the previous
sections led to a well-conditioned example due to a small num-
ber of elements, known model order, equal noise properties on
the outputs etc. In this case, there is no significant difference
between the direct and the proposed numerical computations.
However, the situation is different for ill-conditioned examples
as shown in the following.

Such an example is defined based on the previous mass-
spring chain with few modifications. We assume different mea-
surement noise properties for the four outputs, namely 100%
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Figure 5: Quantification of different damage extents in elements 4 only (top), 2 and 4 (left), 3 and 4 (right).

measurement noise for the first sensor and 1% measurement
noise for each of the three other sensors with respect to the
standard deviation of the signals. Such a situation could cor-
respond e.g. to a malfunctioning noisy sensor. Furthermore, we
assume p + 1 = q = 9 and the model order n = 16 in the resid-
ual definition. The sensitivity and covariance matrices J and Σ

are estimated from a large data sample of length N =1,000,000.
Their condition numbers are 336 and 2.4 · 1011, respectively.

In all following test cases, 10,000 realizations of time se-
ries with length N =100,000 are obtained from random white
noise excitation and the corresponding test statistic or estimate
is computed for each realization. In each case, the direct com-
putation and the proposed numerical computation are carried
out. From these values, the empirical probability density is ob-
tained in a histogram and in a kernel pdf estimate, which is
compared to the theoretical pdf of the underlying distribution.

Global test and sensitivity test. Since both the global and the
sensitivity tests have a similar derivation, only the global test
is considered for an illustration in this section. Consider two
cases, first the system in the reference condition, and second a
1% stiffness loss in element 3. In both cases, the test statistic
tglobal is χ2 distributed with 8 degrees of freedom, and in the
second case the non-centrality parameter is 60.9.

In both cases, there is a significant difference between the
theoretical density functions and the results of the direct com-
putation of the test statistic (Fig. 6 and 7, left), where even nega-
tive values appear. In contrast, there is a much better agreement
between the results of the proposed numerical computation and

the theoretic density function (Fig. 6 and 7, right), indicating
the good numeric behavior of the algorithm. The small discrep-
ancies between the numerical results and the theoretic densities
may be due to the fact that the residual distribution is not per-
fectly Gaussian, but only approximated by a Gaussian through
the CLT.

To decide between reference and faulty states, a threshold
can be set up based on the theoretical χ2(8) distribution in the
reference system for a given probability of false alarms. For
example, this threshold is set at 20.09 when allowing a 1%
false alarm rate. Then, the empirical false alarm rate corre-
sponding to the results in Fig. 6 is 18.4% for the direct com-
putation, which would impair strongly the applicability of the
test in practice, and 1.9% for the proposed numerical computa-
tion. The probability of detection corresponding to the results in
Fig. 6 is then only 84.7% for the direct computation, but 100%
for the proposed numerical computation. Note that in practice
the threshold can also be set from the pdf estimate instead of
the theoretical distribution of the reference state. In this case,
it would be set at 91.3 for a 1% false alarm rate with the di-
rect computation, leading to a probability of detection of only
21.9%. In the proposed numerical computation, the empirical
threshold would be set at 22.1, still leading to 100% probabil-
ity of detection. Hence, the proposed numerical computation
clearly outperforms the direct computation.

Minmax test. Consider again 1% stiffness loss in element 3,
and consider two elements being tested for damage. In the first
case, element 1 is tested (δa = 0, δb , 0) and in the second case
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Figure 6: Global tests from reference system with central distribution χ2(8). Direct (left) and proposed numerical (right) computation.
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Figure 7: Global tests from damaged system with non-central distribution χ2(8, 60.9). Direct (left) and proposed numerical (right) computation.
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Figure 8: Minmax tests for element 1 in reference state (central distribution χ2(1)), while element 3 is damaged. Direct (left) and proposed numerical (right)
computation.
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Figure 9: Minmax tests for damaged element 3 (non-central distribution χ2(1, 43.6)). Direct (left) and proposed numerical (right) computation.

element 3 is tested (δa = −0.02
√

N, δb = 0). In both cases, the
test statistic tmm is χ2 distributed with 1 degree of freedom, and
in the second case the non-centrality parameter is 43.6.

As in the previous example, there is a significant difference
between the theoretical density function and the results from
the direct computation (Fig. 8 and 9, left). In particular, all test
values in Fig. 8, left, are negative. The agreement between the
results of the proposed numerical computation and the theoret-
ical density function for this minmax test is much better (Fig. 8
and 9, right), indicating the good numeric behavior of the algo-

rithm. The necessity of an efficient numerical computation of
the minmax test statistic is evident.

Furthermore, the probability of detection is higher with the
proposed numerical computation, as in the previous example.
For a threshold based on the χ2(1) distribution at a 1% false
alarm rate, set at 6.63, the probability of detection of the dam-
age in element 3 is 94.6% with the direct computation, while
being at 100% with the proposed numerical computation. The
test results with the direct computation for element 1 cannot be
evaluated since they are negative.
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Figure 10: Direct (left) and proposed numerical (right) computation of the fault extent δmm
a /
√

N with normal distribution N(−0.02, 0.23/N) for element 3.

Fault quantification. Based on the previous minmax test case,
the fault extent in element 3 is estimated, using either the direct
computation in (30) or the numerically efficient computation in
(31). The estimate is normal distributed as shown in Theorem 7.
After normalizing by

√
N, both the direct and numerically ef-

ficient computations led to the approximately same mean value
−0.0101 of δ̂mm

a /
√

N from the 10,000 realizations. However,
the empirical distribution resulting from the direct computation
deviates significantly from the theoretical one, having a larger
variance, while the the results from the numerically efficient
computation are much closer to the theoretical one, as shown in
Fig. 10.

7.2. Truss
A truss structure with 25 elements of equal stiffness proper-

ties, having six sensors, has been considered as a more complex
example (Fig. 11). Output time series of length N = 50,000 are
simulated at time step τ = 0.05 s. At this sampling frequency,
we are in the more realistic case of modal truncation, since only
ten modes are present in the data that can be taken into account
for the computation of J , compared to altogether 25 modes of
the analytical model. In general, only a small number of modes
can be obtained from measurements of system (33) compared
to the number of modes present in the FE model (32). Further-
more, S is estimated on the simulated data in this example and
not on the analytical modes of the model. Damage is simulated
by decreasing the element stiffness.

Two scenarios are considered, one with damage in element
16, and another one with damage in both elements 16 and 23,
where the stiffness reduction in element 16 is half as large as in
element 23 for each considered damage extent. We show only
quantification results for these cases and skip localization re-
sults for brevity. Still, damage was localized correctly in both
cases with the sensitivity and the minmax tests, where the test
values for the undamaged elements are much lower in the min-
max tests, as expected.

8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25

1 2 3 4 5 6 7

Figure 11: Truss structure with six sensors.

Damage in element 16, Fig. 12 (left). The estimates from both
the sensitivity and the minmax approach are close to the true
values. The estimation errors are however larger for large dam-
age extents, maybe due to the nature of the local approach: the
relation between ζ and δ is non-linear and the first-order ap-
proximation involving J (computed at δ = 0) may thus be less
accurate for large changes δ.

Damage in elements 16 and 23, Fig. 12 (right). The minmax
approach yields quite accurate estimates, while the sensitivity
approach overestimates the damage extent significantly, similar
to the example in Fig. 5 (right). This overestimation can be
explained analogously by F̂ab = 0.2 > 0 between damaged
elements 16 and 23.

While this example does not satisfy the theoretical assump-
tions perfectly anymore (modal truncation), it still gives rea-
sonable results. This shows that the developed damage quan-
tification approach is promising, and further investigation is re-
quired for application on real structures. Furthermore, the prob-
lem of robustness to environmental changes is important in real
SHM applications, which can be accommodated by using mod-
ified residual functions or parameter sets in the presented meth-
ods, e.g. for temperature changes as in (Balmès et al., 2009) or
for changes in the ambient excitation as in (Döhler and Mevel,
2013).

8. Discussion and conclusions

In this paper, FDI and fault quantification have been inves-
tigated in a common framework based the local approach to
change detection and on statistical tests. It has been shown that
isolation of faulty parameters is effectively possible using min-
max tests. Since the direct computation of the respective test
statistics may lead to large numerical errors when the residual
sensitivity or covariance are ill-conditioned, we have developed
robust numerical schemes for their computation based on the
pertinent use of QR decompositions. Furthermore, it has been
shown that the local approach is not only a convenient math-
ematical tool for residual evaluation in a Gaussian framework,
but also provides an effective solution for the quantification of
the parameter change. Based on sensitivity and minmax tests,
estimators for the parameter change have been derived together
with QR based robust numerical schemes for their computation.

While the sensitivity test has a simpler computation than the
minmax test, it uses stronger assumptions on the parameter
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Figure 12: Quantification of different damage extents in element 16 (left) and both elements 16 and 23 (right).

change and should only be used for the special case of testing
the faulty parameter for the case of single faults, or when the
normalized parameter sensitivities are orthogonal. Considering
that these conditions are usually unknown beforehand or can
hardly be guaranteed, the minmax approach should be chosen
by default.

Two simulation examples of vibration-based structural dam-
age localization and quantification have been presented. It has
been confirmed that the local approach assumption is relevant
if parameter changes are small. With simultaneous parameter
changes, i.e. more than one damaged elements, the minmax
test proved to be more effective than the sensitivity test for both
damage localization and quantification. Further work should
address the problem that FE model dimensions largely exceed
the modal parameter dimension, which is related to the number
of sensors and identified modes. Compressed sensing seems
a promising tool in this perspective, whereas its application to
structural damage diagnosis problems, or more generally to FDI
in complex dynamic systems, remains a challenging research
topic.
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Besançon, G., 2003. High gain observation with disturbance attenuation and
application to robust fault detection. Automatica 39 (6), 1095–1102.

Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, J., 2015. Diagnosis and
Fault-Tolerant Control, 3rd Edition. Springer.

Brownjohn, J., 2007. Structural health monitoring of civil infrastructure. Philo-
sophical Transactions of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences 365 (1851), 589–622.

Brownjohn, J. M. W., Xia, P.-Q., Hao, H., Xia, Y., 2001. Civil structure con-
dition assessment by FE model updating: methodology and case studies.
Finite Elements in Analysis and Design 37 (10), 761–775.

Carden, E., Fanning, P., 2004. Vibration based condition monitoring: a review.
Structural Health Monitoring 3 (4), 355–377.

Cawley, P., Adams, R., 1979. The location of defects in structures from mea-
surements of natural frequencies. Journal of Strain Analysis for Engineering
Design 14 (2), 49–57.

Chen, J., Patton, R. J., 1999. Robust Model-Based Fault Diagnosis for Dynamic
Systems. Kluwer, Boston, USA.

Chen, R., Speyer, J., 2000. A generalized least-squares fault detection filter. Int.
Jal Adaptive Control Signal Processing 14 (7), 747–757.

Ding, S. X., 2008. Model-Based Fault Diagnosis Techniques - Design Schemes
Algorithms and tools. Springer-Verlag.
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