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Abstract—Cables play an important role in many industrial when it comes to soft faults. In the last decade, improvements
systems, from power transmission to data communication. Wired \yere brought to standard re ectometry by the introduction

connections are often operated under severe conditions and may ¢ signal processing techniques. Yet, despite these efforts
be subject to damages or.undergo agcelerated aging. In _order to re ectometrv still fails at detectin soft;ast faulfs [7] ’
ensure safe and cost-ef cient operations, as well as a high level y g ; :

of performance, ef cient tools are needed to assess and monitor ~ Resistive faults is a kind of soft fault of particular interest as
the condition of cables. Hard-fault (open or short circuits) are it reveals a damaged conductor and can result in overheating
‘é‘{e” haf?d|ed,”by existing techniques. On thhe ITontraryf/, soft-fault  that threatens the cable's isolation integrity. Estimation of the
lagnosis still represents an important challenge for current oqigiance pro leR(z) along a cable from re ectometry mea-

researches. Indeed, their presence in sensor signals is hardly . . . -
noticeable, while they may be early warming signs of serious surement data constitutes a mean of diagnosis of resistive soft-
failures. This paper focuses on the detection, localization, and faults. This is an inverse problem that can be solved through
estimation of resistive soft fault in electrical cables from re ec- non-convex optimization [8], but such a resolution requires a

tometry measurements. A method that enables the computation priori information. Moreover, the numerical computations are
of the distributed resistance pro le R(z) along the cable under time-consuming

test is presented. Both experimental and simulation results are . . .
shown as proof of ef ciency. In this paper we propose a numerically ef cient method

for the estimation oR(z) from re ectometry measurements
. INTRODUCTION taken at the two ends of a cable. This method is based on
In engineering systems involving wired connections, in ofSTL (Inverse Scattering for Transmission Lines), an algorithm
der to ensure safety, high performance and cost-effectivenasgpable of estimating the characteristic impedance pro le of
it is necessary to monitor the wires for early detection arwcable from re ection coef cient measured at one end. This
diagnosis of potential failures. With such issues at stake, thgjorithm was initially designed for lossless cables. However,
need for ef cient condition monitoring and diagnosis tools ishe results can be in uenced by the presence of losses in the
strong [1]. probed line. The main idea of the proposed method is to apply
In a complex installation, cables travel across several tens|8fTL to the two re ection coef cients measured at each end of
meters and through various environments. Sometimes, cakiles cable, and to analyze the difference between the two results
are operated under severe condition such as extreme tempebrder to estimat®R(z). Indeed, if the cable under test was
ature, nuclear radiation, humidity, mechanical strain... Asraally lossless, then the two estimations of the characteristic
result, they may be subject to accelerated aging and lose sampedance pro le would be identical. Therefore, the difference
of their properties. Besides, intense localized constraints miggtween them convey information about the ohmic R$3).
result in local faults on the cable. Therefore, the diagnosResults on numerical simulations and experiments will be
of wired connections consists in detection, localization arghown to demonstrate the ef ciency of the method.
characterization of both distributed and localized faults. This paper is organized as follows : In sectjoh Il a brief
There exist mechanical and electrical techniques f@scall on transmission lines theory is made and the problem is
cable condition monitoring. Among electrical techniquegormulated. Then sectiofi ]Il presents the proposed method.
re ectometry-based methods|[2] appear as the most promisiR@sults from simulations and experiments are reported in
method insofar as they permit to account for the non-uniforg@ctiom, Finally a conclusion is drawn in section V.
nature of the tested lines and provide, to some extent, informa-
tion on the nature of the faults. These techniques may be splif; T4 RLCG MODEL AND PROBLEM FORMULATION
into two categories : Time-Domain Re ectometry (TDR) and
Frequency-Domain Re ectometry (FDR). Examples of TDR For a comprehensive presentation of transmission line the-
implementation may be found inl[3],][4] and those of FDR imry, including underlying hypothesis and their justi cation, the
[5], [6]. reader is refered to_[9]._[10].
Existing re ectometry-based methods are ef cient as to the A cable being a transmission line, it is most often repre-
diagnosis of hard-fault (open or short circuit) but still limitedsented by the RLCG model as illustrated in Hig. 1. In this



representation, a cable is seen as a sequence of segments, eé&8)h Adding ohmic lossesR(z)) to a lossless line modi es

of which is represented by a RLCG circuit where: the apparent impedance in an easy-to-express manner.
R represents the resistance per unit length of conducto@gmbining these three items enables to estini(e) in a
L represents inductance per unit length, simple and ef cient way.

C represents capacitance per unit length, o )
G represents conductance per unit |ength of insulationA. ISTL for Lossless Cable Characteristic Impedance Estima-

tion
PN N e By If the loss parameterR(z) and G(z) are negligible, then
Lo % % Loz L % the characteristic impedance is de ned by the following ex-
T pression s
i : i L(z
Fig. 1: RLCG Model of a Line Zo(2) = CEZ)): @)

This representation leads to the well-known telegrapher'sit has been suggested inh [11] and more recentlylin [12]
equations or RLCG model, given in the frequency domain bthat this lossless characteristic impedance can be estimated,
by an inverse scattering algorithm, from the re ection co-

@ _ . efcient (z = 0;!) measured at one end. This algorithm,
@32;! )= (R(@)+ L (2))i(z;!) (1a) implemented in a software named ISTL (Inverse Scattering for
@i ) Transmission Lines), is numerically ef cient [12]. Typically,
@éz )= (G(2)+j!IC (2)u(x;!) (1b) it takes one or a few seconds for computing the prZig(z)

where | denotes the pulsation of the propagatin sinaet several thousands discretized positiaredong the cable.
: P propagating First, the following variable substitution is introduced:

waves andu(z;!) (respectivelyi(z;!)) denotes the voltage 7
(respectively current) at positian and pulsatior . I e s T

Under these notations, if we connect a network analyzer X(2) = 0 L(s)C(s)ds: ()
with internal impedanc&s at the left endZ = 0) of the line,
then we are able to measure the re ection coef cient:

Z(z=0;!) Zs

x is homogeneous to time and known as the electrical distance
along the cable.

(z=0;1)= ) Then, the inverse Fourier Transform of the re ection coef-
Z(z=0;!)+ Zs cient is computed:
whereZ(z;!) is the apparent impedance that is de ned at any (x) = iFFT(( z=0:1)): (6)
point z along the line as:
u(z;!) The initial set of equations then amounts to a Gel'fand-
Z(z;!)= i(z',l ) (3) Levitan-Marchenko set of equations that we solve to get the
i unknown kernelA;(x;y) andAx(x;y):

As the parameterR(z), L(z), C(z) andG(z) depends on Z,
physical and geometrical properties of the cable at positjon Ai(xy) + Az(x;8) (y+s)ds=0 (7a)
their values and variations can be interpreted in order to iden- z)
tify the presence of distributed or localized faults. As a result, As(Xy)+ (X +y)+ AL(x;S) (y+ s)ds=0: (7b)
the estimation of one or several of them from measurements y

constitutes a diagnosis method. In what follows we focus
the estimation of the parametBi(z), that is on the diagnosis
of resistive soft faults. This will be done using re ectometr
measurements under the assumption @(@) = 0 (for typical a(x) = 2 Ax(x; X): (8)
cables,G(z) is at the order ofl0 °S=m).

Yhis gives access to a functigfx) that describes the propa-
)gation medium and is called scattering potential:

Finally Zy(x) is extracted frong(x) as:
Ill. PROPOSED METHOD Z,

In this section, we detail the steps of the proposed method Zo(X) = Zo(x =0)exp 2 q(s)ds : 9)
0

that performs the estimation &(z) from Frequency Domain
Re ectometry measurements. This method relies on thr& Low re ection under soft fault assumption

elements. Equation[(B) de ned the apparent impedance on a cable. We
1) The fact that under the assumption of low re ection omow introduce the characteristic impedance (for a lossy line),
the line, the characteristic and apparent impedance GgRich is written:
be assimilated to each other. S ——
2) The capability to estimate the characteristic impedance Zo(z:1) = R(z) + J'L (2) (10)
of a lossless line from a re ection coef cient. ' G(2)+ j'C (2)



The re ection coef cient at any point of the line is expressedD. Retrieving R(z)

a.S: . _ . . .
()= Z(z:1) Zo(z:!) a R(‘I;?.e following three-steps procedure is applied to estimate
T Z(Z)) + Ze(z! ' : :

(z:4) o(z:t) 1) From each of the two re ection coef cients measured
Generally speaking, apparent impedance values differ from  at the two ends of a cable, we calculate two estimations
characteristic impedance values. However, frgm] (11), it is  z{’(z) and z{(z) of its characteristic impedance,
straightfoward to see that if there are only low re ections on using ISTL as if the cable was lossless (if it actually
the line ( 0), then: was, the two results would be identical).

2) Under the low-re ection (soft-fault only) assumption,
2(z1) Ze(z3t) (12) Z((,')(z) and Zér)(z) are approximately equal to the ap-
It is in particular the case if a cable is fault-free or is affected ~ Parent impedances in the corresponding con gurations:
by soft faults (excluding hard faults implying high re ections). Zz( 0 (r) (r)
z) ZY%(z) and Z,’(z) Z2'"(z 17

The approximation in[(12) holds for all frequencies. In 0'(2) @) 0'(2) @) (7
what follows, this relation is used at high frequencies only 3) We combine[(T5) andl (16) to get the estimationR¢f):
(mathematically it means the limiting cage ! 1 ), and 0 ) ) ")
the notation T ” will be dropped for shorter expressions. As  R(z) 202 20z 27+ z) Z7W(z+ 7)

Z:(z;') andZy(z) are equal wherh ' 1 | in this case the 2z
approximation IV. RESULTS
Z(z) Zo(2) (13) In order to provide evidence of the effectiveness of our
method, we applied it to two practical cases, both experimental
also holds. and numerical. The former is performed to prove that the

method works for the diagnosis of localized ohmic loss faults

C. Effect ofR(z) on 2(2) and the latter is used for testing the method in the case of
The apparent impedancg(z) depends on the boundarydistributed losses.

conditions at the two ends of a cable. Let us consider two par-

ticular cases. In the rst case a network analyzer is connect8d Laboratory Results fotocalizedFaults

to the left end and a matched load is connected to the rightwe present here the results from two lab experiments that

end. The apparent impedance in this case is deribfé(z). In  involve localized faults on a cable.

the second case, the positions of the network analyzer and thén a rst experiment, we performed measurement for fre-

load are inverted, and the corresponding apparent impedaggencies from DC td n.x = 5GHz with a frequency step

is denoted byZ () (2). of & = 1MHz on a40m-long coaxial cable. In the middle
For the time being, assume the cable under test is losslgsssition, a4%7  (measured with Fluke 8845A) resistor

ConsiderZz(") (z) at two neighbor positiong andz+ z and (standard component for electronic circuits) has been inserted

let Z (z) denote their difference, then: in the cable core. This inserted resistor imitates a localized
| | resistive fault. An outline of the setup and pictures are shown
zW(z+ z)=z20(@2)+ Z(2): (14 i Fig.3

Now insert a resistande(z) between positiong andz+ z,

VNA 20m — 20m VNA
then Port 1) R=4970 (Port2) I

zW@z+ 2)=z20@)+ Z(2) R(2)z (15)

If R(z) is inserted at every segment of length, or equiv-
alently, if R(z) accounts for distributed resistive losses, thel

the _result_ing cable represen_teql in Fiy. 2 is equivalent to thnaiﬁg. 3: Case 140m-long cable with a49:7 resistive fault
of Fig.[] in the cas& = 0. Similarly,

z2O(z+ z)=2(2)+ Z(2)+ R(2) z (16) The obtained result is shown on Figl 4. The resistance
per unit lengthR(z) is estimated and a peak appears at
the expected position of the fault. The ordinate of Hig. 4
L S o is the resistance per unit length £m), hence the height
z.=2e.)  Of the spike ofR(z) does not directly indicate the lumped
resistance o#19:7  inserted at the position of the peak. In
% iz 2= 2 principle a lumped resistance corresponds to a Dirac function
Fig. 2: Effect of R(z) on apparent impedance spike in R(z). In practice due to limited bandwidth of the
spectral measurements, the spikeR{fz) has a nite height
and spreads out slightly. In Fifg] 4 a zoom around the spike

H
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con rms this fact. Nevertheless, the integral B{z) around demonstrate the performance of the method in estimating

the spike provides an estimation of the lumped resistance.dncontinuously varying smooth resistance proR{z). The

this example the integral value #&:15 . Compared to the result is displayed in Fig.|7. The blue line shows the simulated

actual resistance value 49:7 , the estimation error is within resistance pro le used to generate data whereas the resistance

5% of the resistance. estimated from this data is represented by the black dashed
line. The estimation ts almost perfectly the simulated curve.

Fig. 4: Results obtained for case 1 Fig. 7: Simuation results for distributed resistance

A second experiment run on a similar setup is shown in V. CONCLUSION

Fig.[S. The frequencies of measurements are the same. Thigjagnosis of soft-faults in cables is of crucial importance in

time the inserted resistor has a resistance valulBB®& and any sectors. We proposed a method that estimates the pro le

is placed at approximate0Om from one end on @5m-long o resistance per unit length all along a cable from measure-

cable. ments at both ends, thus providing detection, localization and
estimation of resistive ohmic faults. These faults can be due to
a damaged conductor and/or produce hazardous overheating.
The proposed method needs a@riori information onR(z),
and can be executed with fast computations. Moreover, it
allows to distinguish faults affecting the resistance from faults
affecting the impedance. It can be used for diagnosis as well
as condition monitoring.
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