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Abstract—Cables play an important role in many industrial
systems, from power transmission to data communication. Wired
connections are often operated under severe conditions and may
be subject to damages or undergo accelerated aging. In order to
ensure safe and cost-ef�cient operations, as well as a high level
of performance, ef�cient tools are needed to assess and monitor
the condition of cables. Hard-fault (open or short circuits) are
well handled by existing techniques. On the contrary, soft-fault
diagnosis still represents an important challenge for current
researches. Indeed, their presence in sensor signals is hardly
noticeable, while they may be early warning signs of serious
failures. This paper focuses on the detection, localization, and
estimation of resistive soft fault in electrical cables from re�ec-
tometry measurements. A method that enables the computation
of the distributed resistance pro�le R (z) along the cable under
test is presented. Both experimental and simulation results are
shown as proof of ef�ciency.

I. I NTRODUCTION

In engineering systems involving wired connections, in or-
der to ensure safety, high performance and cost-effectiveness,
it is necessary to monitor the wires for early detection and
diagnosis of potential failures. With such issues at stake, the
need for ef�cient condition monitoring and diagnosis tools is
strong [1].

In a complex installation, cables travel across several tens of
meters and through various environments. Sometimes, cables
are operated under severe condition such as extreme temper-
ature, nuclear radiation, humidity, mechanical strain... As a
result, they may be subject to accelerated aging and lose some
of their properties. Besides, intense localized constraints may
result in local faults on the cable. Therefore, the diagnosis
of wired connections consists in detection, localization and
characterization of both distributed and localized faults.

There exist mechanical and electrical techniques for
cable condition monitoring. Among electrical techniques,
re�ectometry-based methods [2] appear as the most promising
method insofar as they permit to account for the non-uniform
nature of the tested lines and provide, to some extent, informa-
tion on the nature of the faults. These techniques may be split
into two categories : Time-Domain Re�ectometry (TDR) and
Frequency-Domain Re�ectometry (FDR). Examples of TDR
implementation may be found in [3], [4] and those of FDR in
[5], [6].

Existing re�ectometry-based methods are ef�cient as to the
diagnosis of hard-fault (open or short circuit) but still limited

when it comes to soft faults. In the last decade, improvements
were brought to standard re�ectometry by the introduction
of signal processing techniques. Yet, despite these efforts,
re�ectometry still fails at detecting softest faults [7].

Resistive faults is a kind of soft fault of particular interest as
it reveals a damaged conductor and can result in overheating
that threatens the cable's isolation integrity. Estimation of the
resistance pro�leR(z) along a cable from re�ectometry mea-
surement data constitutes a mean of diagnosis of resistive soft-
faults. This is an inverse problem that can be solved through
non-convex optimization [8], but such a resolution requires a
priori information. Moreover, the numerical computations are
time-consuming.

In this paper we propose a numerically ef�cient method
for the estimation ofR(z) from re�ectometry measurements
taken at the two ends of a cable. This method is based on
ISTL (Inverse Scattering for Transmission Lines), an algorithm
capable of estimating the characteristic impedance pro�le of
a cable from re�ection coef�cient measured at one end. This
algorithm was initially designed for lossless cables. However,
the results can be in�uenced by the presence of losses in the
probed line. The main idea of the proposed method is to apply
ISTL to the two re�ection coef�cients measured at each end of
the cable, and to analyze the difference between the two results
in order to estimateR(z). Indeed, if the cable under test was
really lossless, then the two estimations of the characteristic
impedance pro�le would be identical. Therefore, the difference
between them convey information about the ohmic lossR(z).
Results on numerical simulations and experiments will be
shown to demonstrate the ef�ciency of the method.

This paper is organized as follows : In section II a brief
recall on transmission lines theory is made and the problem is
formulated. Then section III presents the proposed method.
Results from simulations and experiments are reported in
section IV. Finally a conclusion is drawn in section V.

II. T HE RLCG MODEL AND PROBLEM FORMULATION

For a comprehensive presentation of transmission line the-
ory, including underlying hypothesis and their justi�cation, the
reader is refered to [9], [10].

A cable being a transmission line, it is most often repre-
sented by the RLCG model as illustrated in Fig. 1. In this



representation, a cable is seen as a sequence of segments, each
of which is represented by a RLCG circuit where:

� R represents the resistance per unit length of conductors,
� L represents inductance per unit length,
� C represents capacitance per unit length,
� G represents conductance per unit length of insulation.

Fig. 1: RLCG Model of a Line

This representation leads to the well-known telegrapher's
equations or RLCG model, given in the frequency domain by:

@u
@z

(z; ! ) = � (R(z) + j!L (z)) i (z; ! ) (1a)

@i
@z

(z; ! ) = � (G(z) + j!C (z))u(x; ! ) (1b)

where ! denotes the pulsation of the propagating sine
waves andu(z; ! ) (respectivelyi (z; ! )) denotes the voltage
(respectively current) at positionz and pulsation! .

Under these notations, if we connect a network analyzer
with internal impedanceZS at the left end (z = 0 ) of the line,
then we are able to measure the re�ection coef�cient:

�( z = 0 ; ! ) =
Z (z = 0 ; ! ) � ZS

Z (z = 0 ; ! ) + ZS
(2)

whereZ (z; ! ) is the apparent impedance that is de�ned at any
point z along the line as:

Z (z; ! ) =
u(z; ! )
i (z; ! )

(3)

As the parametersR(z), L (z), C(z) andG(z) depends on
physical and geometrical properties of the cable at positionz,
their values and variations can be interpreted in order to iden-
tify the presence of distributed or localized faults. As a result,
the estimation of one or several of them from measurements
constitutes a diagnosis method. In what follows we focus on
the estimation of the parameterR(z), that is on the diagnosis
of resistive soft faults. This will be done using re�ectometry
measurements under the assumption thatG(z) = 0 (for typical
cables,G(z) is at the order of10� 9S=m).

III. PROPOSED METHOD

In this section, we detail the steps of the proposed method
that performs the estimation ofR(z) from Frequency Domain
Re�ectometry measurements. This method relies on three
elements.

1) The fact that under the assumption of low re�ection on
the line, the characteristic and apparent impedance can
be assimilated to each other.

2) The capability to estimate the characteristic impedance
of a lossless line from a re�ection coef�cient.

3) Adding ohmic losses (R(z)) to a lossless line modi�es
the apparent impedance in an easy-to-express manner.

Combining these three items enables to estimateR(z) in a
simple and ef�cient way.

A. ISTL for Lossless Cable Characteristic Impedance Estima-
tion

If the loss parametersR(z) and G(z) are negligible, then
the characteristic impedance is de�ned by the following ex-
pression

Z0(z) =

s
L(z)
C(z)

: (4)

It has been suggested in [11] and more recently in [12]
that this lossless characteristic impedance can be estimated,
by an inverse scattering algorithm, from the re�ection co-
ef�cient �( z = 0 ; ! ) measured at one end. This algorithm,
implemented in a software named ISTL (Inverse Scattering for
Transmission Lines), is numerically ef�cient [12]. Typically,
it takes one or a few seconds for computing the pro�leZ0(z)
at several thousands discretized positionsz along the cable.

First, the following variable substitution is introduced:

x(z) =
Z z

0

p
L(s)C(s)ds: (5)

x is homogeneous to time and known as the electrical distance
along the cable.

Then, the inverse Fourier Transform of the re�ection coef-
�cient is computed:

� (x) = iFFT(�( z = 0 ; ! )) : (6)

The initial set of equations then amounts to a Gel'fand-
Levitan-Marchenko set of equations that we solve to get the
unknown kernelsA1(x; y) andA2(x; y):

A1(x; y) +
Z x

� y
A2(x; s)� (y + s)ds = 0 (7a)

A2(x; y) + � (x + y) +
Z x

� y
A1(x; s)� (y + s)ds = 0 : (7b)

This gives access to a functionq(x) that describes the propa-
gation medium and is called scattering potential:

q(x) = 2 A2(x; x ): (8)

Finally Z0(x) is extracted fromq(x) as:

Z0(x) = Z0(x = 0) exp
�

� 2
Z x

0
q(s)ds

�
: (9)

B. Low re�ection under soft fault assumption

Equation (3) de�ned the apparent impedance on a cable. We
now introduce the characteristic impedance (for a lossy line),
which is written:

Zc(z; ! ) =

s
R(z) + j!L (z)
G(z) + j!C (z)

(10)



The re�ection coef�cient at any point of the line is expressed
as:

�( z; ! ) =
Z (z; ! ) � Zc(z; ! )
Z (z; ! ) + Zc(z; ! )

(11)

Generally speaking, apparent impedance values differ from
characteristic impedance values. However, from (11), it is
straightfoward to see that if there are only low re�ections on
the line (� � 0), then:

Z (z; ! ) � Zc(z; ! ) (12)

It is in particular the case if a cable is fault-free or is affected
by soft faults (excluding hard faults implying high re�ections).

The approximation in (12) holds for all frequencies. In
what follows, this relation is used at high frequencies only
(mathematically it means the limiting case! ! 1 ), and
the notation ”! ” will be dropped for shorter expressions. As
Zc(z; ! ) andZ0(z) are equal when! ! 1 , in this case the
approximation

Z (z) � Z0(z) (13)

also holds.

C. Effect ofR(z) on Z (z)

The apparent impedanceZ (z) depends on the boundary
conditions at the two ends of a cable. Let us consider two par-
ticular cases. In the �rst case a network analyzer is connected
to the left end and a matched load is connected to the right
end. The apparent impedance in this case is denotedZ ( l ) (z). In
the second case, the positions of the network analyzer and the
load are inverted, and the corresponding apparent impedance
is denoted byZ ( r ) (z).

For the time being, assume the cable under test is lossless.
ConsiderZ ( l ) (z) at two neighbor positionsz andz + �z and
let �Z (z) denote their difference, then:

Z ( l ) (z + �z ) = Z ( l ) (z) + �Z (z): (14)

Now insert a resistanceR(z) between positionsz andz + �z ,
then

Z ( l ) (z + �z ) = Z ( l ) (z) + �Z (z) � R(z)�z (15)

If R(z) is inserted at every segment of length�z , or equiv-
alently, if R(z) accounts for distributed resistive losses, then
the resulting cable represented in Fig. 2 is equivalent to that
of Fig. 1 in the caseG = 0 . Similarly,

Z ( r ) (z + �z ) = Z ( r ) (z) + �Z (z) + R(z)�z (16)

C

LR

C

LR

C

LR

C

LR

z= 0 zR zR + dz z= zmax

z

Zload = Zc(zmax )

Fig. 2: Effect of R(z) on apparent impedance

D. Retrieving R(z)

The following three-steps procedure is applied to estimate
R(z):

1) From each of the two re�ection coef�cients measured
at the two ends of a cable, we calculate two estimations
Z ( l )

0 (z) and Z ( r )
0 (z) of its characteristic impedance,

using ISTL as if the cable was lossless (if it actually
was, the two results would be identical).

2) Under the low-re�ection (soft-fault only) assumption,
Z ( l )

0 (z) andZ ( r )
0 (z) are approximately equal to the ap-

parent impedances in the corresponding con�gurations:

Z ( l )
0 (z) � Z ( l ) (z) and Z ( r )

0 (z) � Z ( r ) (z) (17)

3) We combine (15) and (16) to get the estimation ofR(z):

R(z) �

�
Z ( l ) (z) � Z ( r ) (z)

�
�

�
Z ( l ) (z+ �z ) � Z ( r ) (z+ �z )

�

2�z
IV. RESULTS

In order to provide evidence of the effectiveness of our
method, we applied it to two practical cases, both experimental
and numerical. The former is performed to prove that the
method works for the diagnosis of localized ohmic loss faults
and the latter is used for testing the method in the case of
distributed losses.

A. Laboratory Results forLocalizedFaults

We present here the results from two lab experiments that
involve localized faults on a cable.

In a �rst experiment, we performed measurement for fre-
quencies from DC tof max = 5GHz with a frequency step
of df = 1MHz on a 40m-long coaxial cable. In the middle
position, a 49:7 
 (measured with Fluke 8845A) resistor
(standard component for electronic circuits) has been inserted
in the cable core. This inserted resistor imitates a localized
resistive fault. An outline of the setup and pictures are shown
in Fig. 3.

Fig. 3: Case 1:40m-long cable with a49:7
 resistive fault

The obtained result is shown on Fig. 4. The resistance
per unit lengthR(z) is estimated and a peak appears at
the expected position of the fault. The ordinate of Fig. 4
is the resistance per unit length (
 =m), hence the height
of the spike ofR(z) does not directly indicate the lumped
resistance of49:7 
 inserted at the position of the peak. In
principle a lumped resistance corresponds to a Dirac function
spike in R(z). In practice due to limited bandwidth of the
spectral measurements, the spike ofR(z) has a �nite height
and spreads out slightly. In Fig. 4 a zoom around the spike



con�rms this fact. Nevertheless, the integral ofR(z) around
the spike provides an estimation of the lumped resistance. In
this example the integral value is47:15 
 . Compared to the
actual resistance value of49:7 
 , the estimation error is within
5% of the resistance.

Fig. 4: Results obtained for case 1

A second experiment run on a similar setup is shown in
Fig. 5. The frequencies of measurements are the same. This
time the inserted resistor has a resistance value of18:3 
 and
is placed at approximately20m from one end on a25m-long
cable.

Fig. 5: Case 2:25m-long cable with a18:3
 resistive fault

The result obtained is shown on Fig. 6. The parameter
pro�le R(z) is again estimated with good accuracy as the fault
is localized at the expected position and the lumped resistance
value is assessed as17:96
 (estimation error within2%).

Fig. 6: Results obtained for case 2

B. Simulation Results forDistributedFaults

It is more dif�cult to createdistributedfaults in a controlled
manner in laboratory experiments. We ran simulations to

demonstrate the performance of the method in estimating
a continuously varying smooth resistance pro�leR(z). The
result is displayed in Fig. 7. The blue line shows the simulated
resistance pro�le used to generate data whereas the resistance
estimated from this data is represented by the black dashed
line. The estimation �ts almost perfectly the simulated curve.

Fig. 7: Simuation results for distributed resistance

V. CONCLUSION

Diagnosis of soft-faults in cables is of crucial importance in
many sectors. We proposed a method that estimates the pro�le
of resistance per unit length all along a cable from measure-
ments at both ends, thus providing detection, localization and
estimation of resistive ohmic faults. These faults can be due to
a damaged conductor and/or produce hazardous overheating.
The proposed method needs noa priori information onR(z),
and can be executed with fast computations. Moreover, it
allows to distinguish faults affecting the resistance from faults
affecting the impedance. It can be used for diagnosis as well
as condition monitoring.
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