F. Bouyer and M. Streng, Examples of CM curves of genus two defined over the reflex field, LMS Journal of Computation and Mathematics, vol.2012, issue.01, pp.507-538, 2015.
DOI : 10.1007/978-1-4612-0441-1_21

R. Bröker, D. Gruenewald, and K. Lauter, Explicit CM theory for level 2-structures on abelian surfaces, Algebra & Number Theory, vol.5, issue.4, pp.495-528, 2011.
DOI : 10.2140/ant.2011.5.495

G. Cardona and J. Quer, Field of moduli and field of definition for curves of genus 2. In Computational aspects of algebraic curves, Lecture Notes Ser. Comput. World Scientific, vol.13, pp.71-83, 2005.

H. Cohen, Advanced Topics in Computational Number Theory, volume 193 of Graduate Texts in Mathematics, 2000.

A. David and . Cox, Primes of the Form x 2 + ny 2 ? Fermat, Class Field Theory, and Complex Multiplication, 1989.

E. De-shalit and E. Z. Goren, On special values of theta functions of genus two, Annales de l???institut Fourier, vol.47, issue.3
DOI : 10.5802/aif.1580

R. Dupont, Moyenne arithmético-géométrique, suites de Borchardt et applications, Thèse de doctorat, Ecole polytechnique, 2006.

A. Enge and F. Morain, Generalised Weber functions, Acta Arithmetica, vol.164, issue.4, pp.309-341, 2014.
DOI : 10.4064/aa164-4-1

URL : https://hal.archives-ouvertes.fr/inria-00385608

A. Enge and R. Schertz, Constructing elliptic curves over finite fields using double eta-quotients, Journal de Th??orie des Nombres de Bordeaux, vol.16, issue.3, pp.555-568, 2004.
DOI : 10.5802/jtnb.460

A. Enge and R. Schertz, Abstract, LMS Journal of Computation and Mathematics, vol.16, pp.407-418, 2013.
DOI : 10.1112/S146115701300020X

A. Enge and E. Thomé, cmh ? Complex multiplication of abelian surfaces. INRIA, 1.0 edition, 2014.

A. Enge and E. Thomé, Computing Class Polynomials for Abelian Surfaces, Experimental Mathematics, vol.23, issue.2, pp.129-145, 2014.
DOI : 10.1090/S0025-5718-2013-02712-3

URL : https://hal.archives-ouvertes.fr/hal-00823745

P. B. Garrett, Holomorphic Hilbert modular forms. The Wadsworth & Brooks/Cole Mathematics Series, 1990.

T. Ibukiyama, ON SIEGEL MODULAR VARIETIES OF LEVEL 3, International Journal of Mathematics, vol.02, issue.01, pp.17-35, 1991.
DOI : 10.1142/S0129167X9100003X

J. Igusa, Arithmetic Variety of Moduli for Genus Two, The Annals of Mathematics, vol.72, issue.3, pp.612-649, 1960.
DOI : 10.2307/1970233

J. Igusa, On Siegel Modular Forms of Genus Two, American Journal of Mathematics, vol.84, issue.1, pp.175-200, 1962.
DOI : 10.2307/2372812

S. Lang, Complex Multiplication, volume 255 of Grundlehren der mathematischen Wissenschaften, 1983.

K. Lauter and B. Viray, An arithmetic intersection formula for denominators of Igusa class polynomials, American Journal of Mathematics, vol.137, issue.2, pp.497-533, 2015.
DOI : 10.1353/ajm.2015.0010

J. Neukirch, Algebraic Number Theory, volume 322 of Grundlehren der mathematischen Wissenschaften, 1999.

R. Schertz, Weber's class invariants revisited, Journal de Th??orie des Nombres de Bordeaux, vol.14, issue.1, pp.325-343, 2002.
DOI : 10.5802/jtnb.361

G. Shimura and Y. Taniyama, Complex multiplication of abelian varieties and its applications to number theory, 1961.

P. Stevenhagen, The arithmetic of number rings In Algorithmic number theory: lattices, number fields, curves and cryptography

M. Streng, Complex multiplication of abelian surfaces, 2010.

M. Streng, An explicit version of Shimura's reciprocity law for Siegel modular functions

M. Streng, RECIP ? REpository of Complex multIPlication sage code, 2015.