Predicting binding poses and affinities for protein-ligand complexes in the 2015 D3R Grand Challenge using a physical model with a statistical parameter estimation

Abstract : The 2015 D3R Grand Challenge provided an opportunity to test our new model for the binding free energy of small molecules, as well as to assess our protocol to predict binding poses for protein-ligand complexes. Our pose predictions were ranked 3-9 for the HSP90 dataset, depending on the assessment metric. For the MAP4K dataset the ranks are very dispersed and equal to 2-35, depending on the assessment metric, which does not provide any insight into the accuracy of the method. The main success of our pose prediction protocol was the re-scoring stage using the recently developed Convex-PL potential. We make a thorough analysis of our docking predictions made with AutoDock Vina and discuss the effect of the choice of rigid receptor templates, the number of flexible residues in the binding pocket, the binding pocket size, and the benefits of re-scoring. However, the main challenge was to predict experimentally determined binding affinities for two blind test sets. Our affinity prediction model consisted of two terms, a pairwise-additive enthalpy, and a non pairwise-additive entropy. We trained the free parameters of the model with a regularized regression using affinity and structural data from the PDBBind database. Our model performed very well on the training set, however, failed on the two test sets. We explain the drawback and pitfalls of our model, in particular in terms of relative coverage of the test set by the training set and missed dynamical properties from crystal structures, and discuss different routes to improve it.
Type de document :
Article dans une revue
Journal of Computer-Aided Molecular Design, Springer Verlag, 2016, 30 (9), pp.791-804. 〈10.1007/s10822-016-9976-2〉
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01377738
Contributeur : Nano-D Equipe <>
Soumis le : vendredi 7 octobre 2016 - 15:04:56
Dernière modification le : mercredi 11 avril 2018 - 01:58:28
Document(s) archivé(s) le : vendredi 3 février 2017 - 19:03:24

Fichier

2016-Grudinin-Predicting bindi...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Sergei Grudinin, Maria Kadukova, Andreas Eisenbarth, Simon Marillet, Frédéric Cazals. Predicting binding poses and affinities for protein-ligand complexes in the 2015 D3R Grand Challenge using a physical model with a statistical parameter estimation. Journal of Computer-Aided Molecular Design, Springer Verlag, 2016, 30 (9), pp.791-804. 〈10.1007/s10822-016-9976-2〉. 〈hal-01377738〉

Partager

Métriques

Consultations de la notice

838

Téléchargements de fichiers

209