A. , A. And-puppo, and G. , A hybrid method for hydrodynamic-kinetic flow -Part II - Coupling of hydrodynamic and kinetic models, Journal of Computational Physics, vol.231, issue.16, pp.5217-5242, 2012.

A. , P. Bourgat, J. Le-tallec, P. And-perthame, and B. , Numerical comparison between the Boltzmann and ES-BGK models for rarefied gases, Computer Methods in Applied Mechanics and Engineering, vol.191, pp.31-3369, 2002.
URL : https://hal.archives-ouvertes.fr/inria-00072782

A. , P. Le-tallec, P. Perlat, J. And-perthame, and B. , The Gaussian-BGK model of Boltzmann equation with small Prandtl number, European Journal of Mechanics. B. Fluids, vol.19, issue.6, pp.813-830, 2000.
URL : https://hal.archives-ouvertes.fr/inria-00072951

B. , F. Iollo, A. And-puppo, and G. , Accurate Asymptotic Preserving Boundary Conditions for Kinetic Equations on Cartesian Grids, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01148397

B. , P. L. Gross, E. P. And-krook, and M. , A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev, pp.94-511, 1954.

C. , S. And-cowling, and T. , The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. Cambridge Mathematical Library, 1970.

C. , S. Xu, K. Lee, C. And-cai, and Q. , A unified gas kinetic scheme with moving mesh and velocity space adaptation, Journal of Computational Physics, vol.231, issue.20, pp.6643-6664, 2012.

C. , F. And-perthame, and B. , Numerical passage from kinetic to fluid equations, SIAM J. Num. Anal, vol.28, pp.26-42, 1991.

D. , P. Pareschi, L. And-russo, and G. , Modeling and Computational Methods for Kinetic Equations. Modeling and Simulation in Science, Engineering and Technology, 2004.

D. , G. And-pareschi, and L. , Numerical methods for kinetic equations, Acta Numerica, pp.1-137, 2014.

F. , F. And, J. , and S. , A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources, Journal of Computational Physics, vol.229, issue.20, pp.7625-7648, 2010.

F. , F. And, J. , and S. , An Asymptotic Preserving Scheme for the ES-BGK Model of the Boltzmann Equation, Journal of Scientific Computing, vol.46, issue.2, pp.204-224, 2010.

K. , C. A. And-carpenter, and M. H. , Additive Runge-Kutta schemes for convectiondiffusion-reaction equations, Applied Numerical Mathematics, vol.44, pp.1-2, 2003.

P. , L. And-russo, and G. , An introduction to the numerical analysis of the Boltzmann equation, pp.145-250, 2005.

P. , L. And-russo, and G. , Implicit?Explicit Runge?Kutta Schemes and Applications to Hyperbolic Systems with Relaxation, Journal of Scientific Computing, vol.25, issue.1, pp.129-155, 2005.

P. , S. And-puppo, and G. , Implicit?Explicit schemes for BGK kinetic equations, Journal of Scientific Computing, vol.32, issue.1, pp.1-28, 2007.

P. , S. And-puppo, and G. , Microscopically Implicit-Macroscopically Explicit schemes for the BGK equation, Journal of Computational Physics, vol.231, pp.299-327, 2012.

W. , P. And-colella, and P. , The numerical simulation of two-dimensional fluid flow with strong shocks, Journal of Computational Physics, pp.115-173, 1984.

X. , K. And-huang, and J. , A unified gas-kinetic scheme for continuum and rarefied flows, Journal of Computational Physics, vol.229, issue.20, pp.7747-7764, 2010.