Magnostics: Image-based Search of Interesting Matrix Views for Guided Network Exploration

Abstract : In this work we address the problem of retrieving potentially interesting matrix views to support the exploration of networks. We introduce Matrix Diagnostics (or MAGNOSTICS), following in spirit related approaches for rating and ranking other visualization techniques, such as Scagnostics for scatter plots. Our approach ranks matrix views according to the appearance of specific visual patterns, such as blocks and lines, indicating the existence of topological motifs in the data, such as clusters, bi-graphs, or central nodes. MAGNOSTICS can be used to analyze, query, or search for visually similar matrices in large collections, or to assess the quality of matrix reordering algorithms. While many feature descriptors for image analyzes exist, there is no evidence how they perform for detecting patterns in matrices. In order to make an informed choice of feature descriptors for matrix diagnostics, we evaluate 30 feature descriptors—27 existing ones and three new descriptors that we designed specifically for MAGNOSTICS—with respect to four criteria: pattern response, pattern variability, pattern sensibility, and pattern discrimination. We conclude with an informed set of six descriptors as most appropriate for MAGNOSTICS and demonstrate their application in two scenarios; exploring a large collection of matrices and analyzing temporal networks.
Type de document :
Article dans une revue
IEEE Transactions on Visualization and Computer Graphics, Institute of Electrical and Electronics Engineers, 2017, pp.1. <10.1109/TVCG.2016.2598467>
Liste complète des métadonnées



https://hal.inria.fr/hal-01377861
Contributeur : Jean-Daniel Fekete <>
Soumis le : vendredi 7 octobre 2016 - 18:10:56
Dernière modification le : jeudi 15 juin 2017 - 09:09:37
Document(s) archivé(s) le : vendredi 3 février 2017 - 23:40:29

Fichiers

Magnostics.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Michael Behrisch, Benjamin Bach, Michael Hund, Michael Delz, Laura Von Rüden, et al.. Magnostics: Image-based Search of Interesting Matrix Views for Guided Network Exploration. IEEE Transactions on Visualization and Computer Graphics, Institute of Electrical and Electronics Engineers, 2017, pp.1. <10.1109/TVCG.2016.2598467>. <hal-01377861>

Partager

Métriques

Consultations de
la notice

208

Téléchargements du document

270