Fair Statistical Communication in HCI

Pierre Dragicevic 1
1 AVIZ - Analysis and Visualization
Inria Saclay - Ile de France
Abstract : Statistics are tools to help end users accomplish their task. In research, to be qualified as usable, statistical tools should help researchers advance scientific knowledge by supporting and promoting the effective communication of research findings. Yet areas such as human-computer interaction (HCI) have adopted tools — i.e., p-values and dichotomous testing procedures — that have proven to be poor at supporting these tasks. The abusive use of these procedures has been severely criticized in a range of disciplines for several decades, suggesting that tools should be blamed, not end users. This chapter explains in a non-technical manner why it would be beneficial for HCI to switch to an estimation approach, i.e., reporting informative charts with effect sizes and interval estimates, and offering nuanced interpretations of our results. Advice is offered on how to communicate our empirical results in a clear, accurate, and transparent way without using any tests or p-values.
Type de document :
Chapitre d'ouvrage
Modern Statistical Methods for HCI, Springer, pp.291 - 330, 2016, 978-3-319-26631-2. 〈10.1007/978-3-319-26633-6_13〉
Liste complète des métadonnées

Littérature citée [111 références]  Voir  Masquer  Télécharger

Contributeur : Pierre Dragicevic <>
Soumis le : mardi 29 novembre 2016 - 13:00:59
Dernière modification le : vendredi 17 février 2017 - 16:14:29
Document(s) archivé(s) le : lundi 27 mars 2017 - 06:31:00


Fichiers produits par l'(les) auteur(s)


Distributed under a Creative Commons Paternité - Partage selon les Conditions Initiales 4.0 International License




Pierre Dragicevic. Fair Statistical Communication in HCI. Modern Statistical Methods for HCI, Springer, pp.291 - 330, 2016, 978-3-319-26631-2. 〈10.1007/978-3-319-26633-6_13〉. 〈hal-01377894〉



Consultations de la notice


Téléchargements de fichiers