Fair Statistical Communication in HCI

Pierre Dragicevic 1
1 AVIZ - Analysis and Visualization
Inria Saclay - Ile de France
Abstract : Statistics are tools to help end users accomplish their task. In research, to be qualified as usable, statistical tools should help researchers advance scientific knowledge by supporting and promoting the effective communication of research findings. Yet areas such as human-computer interaction (HCI) have adopted tools — i.e., p-values and dichotomous testing procedures — that have proven to be poor at supporting these tasks. The abusive use of these procedures has been severely criticized in a range of disciplines for several decades, suggesting that tools should be blamed, not end users. This chapter explains in a non-technical manner why it would be beneficial for HCI to switch to an estimation approach, i.e., reporting informative charts with effect sizes and interval estimates, and offering nuanced interpretations of our results. Advice is offered on how to communicate our empirical results in a clear, accurate, and transparent way without using any tests or p-values.
Complete list of metadatas

Cited literature [111 references]  Display  Hide  Download


https://hal.inria.fr/hal-01377894
Contributor : Pierre Dragicevic <>
Submitted on : Tuesday, November 29, 2016 - 1:00:59 PM
Last modification on : Friday, February 17, 2017 - 4:14:29 PM
Long-term archiving on : Monday, March 27, 2017 - 6:31:00 AM

Files

fairstats-last.pdf
Files produced by the author(s)

Licence


Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License

Identifiers

Collections

Citation

Pierre Dragicevic. Fair Statistical Communication in HCI. Modern Statistical Methods for HCI, Springer, pp.291 - 330, 2016, 978-3-319-26631-2. ⟨10.1007/978-3-319-26633-6_13⟩. ⟨hal-01377894⟩

Share

Metrics

Record views

517

Files downloads

1616