Skip to Main content Skip to Navigation
New interface
Book sections

Fair Statistical Communication in HCI

Pierre Dragicevic 1 
1 AVIZ - Analysis and Visualization
LRI - Laboratoire de Recherche en Informatique, Inria Saclay - Ile de France
Abstract : Statistics are tools to help end users accomplish their task. In research, to be qualified as usable, statistical tools should help researchers advance scientific knowledge by supporting and promoting the effective communication of research findings. Yet areas such as human-computer interaction (HCI) have adopted tools — i.e., p-values and dichotomous testing procedures — that have proven to be poor at supporting these tasks. The abusive use of these procedures has been severely criticized in a range of disciplines for several decades, suggesting that tools should be blamed, not end users. This chapter explains in a non-technical manner why it would be beneficial for HCI to switch to an estimation approach, i.e., reporting informative charts with effect sizes and interval estimates, and offering nuanced interpretations of our results. Advice is offered on how to communicate our empirical results in a clear, accurate, and transparent way without using any tests or p-values.
Complete list of metadata

Cited literature [111 references]  Display  Hide  Download
Contributor : Pierre Dragicevic Connect in order to contact the contributor
Submitted on : Tuesday, November 29, 2016 - 1:00:59 PM
Last modification on : Saturday, June 25, 2022 - 10:22:36 PM
Long-term archiving on: : Monday, March 27, 2017 - 6:31:00 AM


Files produced by the author(s)


Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License



Pierre Dragicevic. Fair Statistical Communication in HCI. Modern Statistical Methods for HCI, Springer, pp.291 - 330, 2016, 978-3-319-26631-2. ⟨10.1007/978-3-319-26633-6_13⟩. ⟨hal-01377894⟩



Record views


Files downloads