A Powell-Sabin finite element scheme for partial differential equations

Abstract : In this paper are analyzed finite element methods based on Powell-Sabin splines, for the solution of partial differential equations in two dimensions. PS splines are piecewise quadratic polynomials defined on a triangulation of the domain, and exhibit a global C 1 continuity. Critical issues when dealing with PS splines, and described in this work, are the construction of the shape functions and the imposition of the boundary conditions. The PS finite element method is used at first to solve an elliptic problem describing plasma equilibrium in a tokamak. Finally, a transient convective problem is also considered, and a stabilized formulation is presented.
Liste complète des métadonnées

https://hal.inria.fr/hal-01377903
Contributeur : Herve Guillard <>
Soumis le : vendredi 7 octobre 2016 - 19:42:23
Dernière modification le : jeudi 18 janvier 2018 - 01:51:10

Lien texte intégral

Identifiants

Citation

Giorgio Giorgiani, Hervé Guillard, Boniface Nkonga. A Powell-Sabin finite element scheme for partial differential equations . ESAIM: Proceedings, EDP Sciences, 2016, 53, pp.64-76. 〈10.1051/proc/201653005〉. 〈hal-01377903〉

Partager

Métriques

Consultations de la notice

365