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In order to cope with small-scale unpredictable detailsof mesoscale structures

in cloud-resolving models, it is suggested in this paper to process the model

outputs following a fuzzy object-oriented approach to extract and track

precipitating features (associated with a higher predictability than the direct

model outputs). The present approach uses the particle Þlter method to

recognize patterns based on predeÞned texture or spatial variability of the

model output. This provides an ensemble of precipitating objects, which are

then propagated in time using astochasticadvection-diffusion process. This

method is applied to both deterministic and ensemble forecasts provided by

the AROME-France convective-scale model. SpeciÞc case studies support the

ability of the approach to handle precipitation of different types. Copyright c!

2015 Royal Meteorological Society
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1. Introduction

The lack of dense observing networks for dynamical

variables as well as microphysical ones leads to a relative

poor predictability in current Non-Hydrostatic models at

the km scale resolution. Although these models succeed

in simulating a wide variety of convective situations,

they eventually fail to represent mesoscale features at

the appropriate location or appropriate time,and with

the correct size and structure. Thus, advanced spatial

methods have been proposed in the recent past for verifying

mesoscale forecasts.

The Þrst straightforward but qualitative method that

allows to cope with such errors is to check the model

against observations Òby eyeÓ.On the other hand,

objective approaches include neighborhood methods, which

compare forecasts and observations within space-time

windows of varying sizes (Ebert, 2008). One example

is upscaling (Zepeda-Arce et al., 2000 ; Yates et al.,

2006), where forecasts and observations are averaged

to coarser grid resolutions, thus Þltering out the noisy

unskillful higher-resolution scales. The fractions skill

score method of Roberts and Lean (2008) compares the

fractional occurrence of rain exceeding a threshold within

a neighborhood. In Atger (2001), the notion of multiple

thresholds related to the distance of the forecast event to

the observations is introduced. Scale separation is another

Þltering method used to distinguish between predictability

at different scales, based on the application of single-

bandpass spatial Þlters such as wavelet transforms (Briggs

and Levine (1997).

Another interesting approach is to consider forecasts and

observations as objects, as in Ebert and McBride (2000).

This technique imitates the intuitive human approach by

identifying rain features, usually focusing on relatively large

scales so that the Þne-scale errors have lesser importance.

Most of the methods detect features by applying a threshold

to the Þelds (Davis et al, 2006). Cluster analysis, as

proposed by, e.g, Marzban and Sandgathe (2006, 2008),

Michaes et al. (2007), can also be used to identify relevant

patterns. In that framework, it then becomes possible to

decompose forecast errors into position, size, shape and

amplitude errors (e.g., SAL method in Wernli et al., 2008),

and decision models can be introduced to decide what is

a satisfactory forecast (Damrath, 2004 ; Nachamkin, 2004 ;

Baldwin and Kain, 2006). Finally, some authors are also

able to exhibit position error Þelds using the optical ßow

technique (Marzban and Sandgathe, 2010, Keil and Craig,

2007 ; 2009).

The purpose of the present paper is to introduce a

novel methodfor detection and tracking of precipitating

objects in mesoscale forecasts, based on the following

main features : (i) the method runs at a coarser resolution

than the model itself, (ii) the object is deÞned by the

probability density function of the precipitation Þeld inside

the object, summarizing the rich forecast signal at full

horizontal resolution, (iii) the object is a closed smooth

curve which is tracked using a displacement Þeld provided

by an optical ßow technique, (iv) uncertainties regarding the

shape and location of the object are introduced by the use of

a stochastic Þlter (Avenel et al., 2009). It is then expected

that weak (respectively large) uncertainty of the object edge

location in case of simple shape (respectively complicated)

precipitation patterns will be obtained.

The paper is organized as follows. The deÞnition of an

object andthe detection-tracking algorithmare presented in

section 2. The detectionalgorithmis Þrst applied in section

3 to deterministic forecasts from the convective-scale

AROME-France modelin order to demontrate its ability

to successfullyrecognize precipitation patterns of different

types. The tracking algorithm is then illustrated on a case

of severe thunderstorms. Finally, the application ofthe

object-oriented approachto ensemble forecasts provided by

the convective-scale AROME ensemble prediction system

(EPS) is examined. Section 5 provides conclusions and

future work.
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FIGURE 1. (a) : Two slightly different objects with comparable frequency histograms. (b) : object whose shape is comparable with (a) but with signiÞcant
space shift. The corresponding histogram is now different from the original one with an excess of weak precipitation. (c) here two objects with close
histograms but with different level of smoothness.

2. DeÞnition, detectionand dynamics of a fuzzy

precipitating object

2.1. DeÞnition of a fuzzy precipitating object

A precipitating coherent structure referred to as an object

is a pattern in which the precipitations are of the same

Copyright c! 2015 Royal Meteorological Society Q. J.R. Meteorol. Soc.00: ??Ð?? (2015)
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4 P. ARBOGAST ET AL.

nature, namely with either the same precipitation amount or,

more generally, with more or less the samevariability over

the whole area (see Figure 1). It will be assumed hereafter

that the precipitation histogram provides an estimation of

thespatial variability. We also assume to be able to follow

the object along time. The method is meant for objects with

moderate time evolution of their shape,including splitting

and merging.

In the remainder of the paper, a precipitating object

at time t is deÞned as a simple closed curveCt that

encompasses mesoscale precipitation patterns. The main

criterion used to discriminate the nature of the precipitating

object is the precipitation histogramh : cold-air convective

areas, mesoscale convective systems(MCSs) or even

frontal structures are associated with different histograms.

An object that encompasses a single MCS would be

associated with an histogram with a peak at moderate to

heavy precipitation rates whereas a large-scale object with

eventually several MCSs would be associated with a ßatter

histogram. Figure (a) shows an example of a precipitation

pattern whose shape presents a larger scale with respect to

the individual precipitating features. It is possible to draw

subjectively, as suggested by the Figure, some contours with

close precipitation distributions and therefore with the same

likelihood, whereas a space shift as shown in panel (b) leads

to a different precipitation distribution inside an unlikely

contour. In the sense of the precipitation distribution the

contour presented in panel (c) is again likely. However, it is

noisy and thereforeit should not be allowed by the detection

algorithm.

To handle a 1D contourCt , it turns out to be more

convenient to consider it as an isoline of a 2D surface
!
! (x, y, t )

"
, called a level set function (Osher and Sethian,

1988 ; Sethian, 1996). The contour is then deÞned as the

zero level set :

Ct =
#

x t (s) : !
!
x t (s), t

"
= 0

$
,

wheres stands for a parameter of the curve andxt = ( x, y).

The zero level set is sufÞcient as a deÞnition of the contour

of interest. As in Avenel et al. (2009), one now consider

the level set function as the signed distance function to the

contour of interest, deÞned as

! (x , t) =

%
&

'

" d(x, Ct ) if x is insideCt

d(x, Ct ) if x is outsideCt ,
(1)

whered(x, Ct ) is the distance between the location denoted

by x and the closest point belonging to the contour. Then

d(x, Ct ) = min x t (s) "C t ||x " x t (s)|| where||.|| stands for

the L 2-norm. Figure shows a case of structure splitting,

a conÞguration where the level-set approach is really

powerful. Splitting thunderstorms are examples of such

situations.

While it is easy to perceive coherent structures by

eye, a full precise mathematical description is still a

challenge. The basic idea of our method is to overcome

this mathematical difÞculty by introducing the concept of

fuzzy object : the object is considered as resulting from

a stochastic process with a certain degree of randomness,

and it is described by an ensemble of simple curvesCk
t ,

k # [1, N ] where N is the size of the ensemble.This

probabilistic approach then allows us to account for some

uncertainties related to assumptions in the detection and

tracking steps. More details regarding the generation of the

ensemble will be given in subsequent sections.

2.2. Nonlinear Þltering of the contour set

The aim of the method is to perform detection and

tracking of objects characterized by some features, here

the precipitation histogram within the objects. For that

purpose, predeÞned reference histograms corresponding to

some particular types of precipitation are initially speciÞed

and Bayesian estimation is used to search for the most likely

objects given the reference histograms.

Bayesian Þltersconstitute well-known procedures to

estimate the posterior probability density function (pdf

Copyright c! 2015 Royal Meteorological Society Q. J.R. Meteorol. Soc.00: ??Ð?? (2015)
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FIGURE 2. Evolution of the! function during a splitting event. The heavy grey line stands for the object contour. (a) : One object is present. (b) two
objects appear.

hereafter)p(Ct |y1:t ) (called the Þltering distribution) of

a state variableCt at any measurement instantt, given

the discrete measurements seriesy1:t = ( y1, ..., y t ) until

instant t, and an initial distributionp(C0). Here, Ct is

a closed curve featured by the zero level of a level

set function and the measurements are provided by the

reference histograms.

The inference of the posterior pdf may be obtained in two

successive stages : a prediction step and a correction step.

The prediction uses the transition distributionp(Ct |Cr<t ) to

achieve a Þrst approximation of the next state. Then, the

correction step updates the posterior pdf using the Bayes

theorem :

p(Ct |y1:t ) $ p(y t |Ct )p(Ct |y1:t # 1).

It appears that the likelihoodp(y t |Ct ) of a new

measurementy t obtained at instantt is central to this

problem.

Particle Þlters (PF) are Monte Carlo techniques

speciÞcally designed for sequential Bayesian estimation

when systems are nonlinear and non-Gaussian(Gordon

et al. 1993, Doucet et al. 2000, Del Moral, 2004,

Van Leeuwen, 2009, Baehr and Pannekoucke, 2011).In

that framework, the posterior distributionp(Ct |y1:t ) is

approximated by a Þnite weighted sum ofN Diracs centred

on hypothesized locations in the state space, which are

called particles (here a particle is a simple curve) :

p(Ct |y1:t ) =
N(

k=1

wk
t " (Ct " C k

t ), (2)

whereCk
t is thekth particle," the Dirac function and

wk
t =

p(y t |Ck
t )

) N
l =1 p(y t |Cl

t )
(3)

is a weight applied to thekth particle, that depends on the

observations likelihood.A large (resp. small) weight will be

assigned to a good (resp. bad) particle.Although particles

of the ensemble are in interaction, the large size of the

ensemble (O(100)) leads to convergence of the empirical

pdf toward a limit pdf (Del Moral, 2004).

2.3. Metrics used in the likelihood in the case of image

processing

A key aspect in particle Þltering is the deÞnition of the

observation likelihoodp(y t |Ct
q), which directly determines

the weights of each particle. In this work, the likelihood

is computed based on similarity between a precipitation

distribution of reference and the precipitation distributions

in the regions delineated by the current curve sample.

Copyright c! 2015 Royal Meteorological Society Q. J.R. Meteorol. Soc.00: ??Ð?? (2015)
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6 P. ARBOGAST ET AL.

Since we consider here precipitation model outputs as

images we use the Bhattacharyya (1943) coefÞcient to

measure the overlap beween an object histogramhk to

the prescribed reference histogramhref instantiated at

time 0. Assumehref is deÞned withp classes :href =

(h1
ref , ..., hp

ref ) normalized so that
)

i hi
ref = 1 , andhk =

(h1
k , ..., hp

k ) denotes the histogram associated withCk
t , the

Bhattacharyya coefÞcientis given by:

bk =
(

i

*
hi

ref hi
k .

A distance can be deÞned as :

dk = (1 " bk )1/ 2 .

The weights are then computedfollowing equation (3), with

the observation likelihood deÞned as :

p(y t |Ck
t ) $ exp(" #dk ),

where# is a positive parameter. In the application presented

below # =1. The results are weakly sensitive to the choice

of # in pratice.

2.4. Detection algorithm

The object detection algorithmis implemented through

a histogram-based particle Þlter and a level-set represen-

tation, as described in the previous sections. The Þlter is

initialized with an ensemble of random level set functions

! k (x , t), which are obtained by convolving a realization of

a 2D normal distributionN (0, 1) with an auto-correlation

function $(x, y) = exp { # (x 2 + y2 )
2L 2 } , whereL is a charac-

teristic length-scale that depends on the size of the object

to be detected. Since precipitation patterns are deÞned to

be the regions where! k > 0, histograms of precipitation

are calculated on each positive connected component of

the Þeld. Each histogram is then weighted according to its

distance to the prescribed reference histogram, as explained

in section .

The object of interest is, at the end, the expected

contour of the random objectCt . It is exhibited by the

zero level set of the weighted ensemble mean, deÞned as

! (x , t) =
)

k , wk
t ! k (x , t). The uncertainty associated with

this structure is given by the weighted local variance of

the level set functions around the mean level set :v(xs) =
)

k wk
t ! k (xs, t)2 wherexs is a given point of the mean

curve. The term related to the square of the mean vanishes

since the mean is zero by deÞnition along the mean contour.

This variance deÞnes the width of the uncertainty band : the

lower the variance the narrower the uncertainty band. This

band helps visualize the regions where the curveÕs sample

exhibits some variability. This variability arises from some

approximations in the detection process, including for ins-

tance the number of particles used to run the Þlter, the

deÞnition of the likelihood function and the coarser working

grid resolution. It also depends on the data : it is higher

in regions where the likelihood is poorly deÞned, such as

regions far away from the reference histograms.

Precipitating areas delineated by the mean contour are

found to be in relatively good agreement with the prescribed

histograms, but theygenerally lack accuracy regarding the

shape of the precipitating objects. In order to determine a

contour that segments the precipitation Þeld in a meaningful

way, the Chan-Vese (hereafter CV) segmentation algorithm

(Chan and Vese, 2001) is then applied to the mean level-

set function.The purpose of the CV segmentation is to

partition a given image into two regions, one representing

the objects to be detected and the other representing the

background. It is based on an energy minimization problem,

which can be formulated using the level set formalism. The

basic idea is to evolve the level set function representing

the contours according to some evolution equation until it

reaches a steady state that provides a useful segmentation

of the image. The algorithm usually converges in a few

iterations.We refer the reader to Chan and Vese (2001)

Copyright c! 2015 Royal Meteorological Society Q. J.R. Meteorol. Soc.00: ??Ð?? (2015)
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OBJECT-ORIENTED PROCESSING OF CONVECTIVE PRECIPITATION 7

for a detailed presentation of the CV algorithm. Figure

presents the contour of a detected object before and after the

CV segmentation. As expected, the segmentation process

reconstructs an object whose shape is in better agreement

with the precipitation Þeld.

In a Þnal step, the uncertainty associated with the detec-

tion process, featured by the variancev, is accounted for by

generating an ensemble of contours around the segmented

mean contour. This is achieved by adding random perturba-

tions of variancev to the segmented mean contour.

Compared to the thresholding methods commonly used

for the detection of precipitating objects (e.g. Davis et al.,

2006 ; Ebert 2008), no Þxed precipitation threshold is used

to deÞne the objects. It is replaced by a set of reference

histograms that allows for the identiÞcation of objects of

different types.The speciÞed histograms are then expected

to be an important issue in this detection algorithm.It

may also be noted that the present approach provides two

additional outcomes : Þrst, the fuzzy nature of the algorithm

helps to Þgure out the spatial uncertainty associated with the

detection process ; secondly, a user can directly get from

the object identiÞcation a classiÞcation of the precipitation

patterns at play.

2.5. Tracking algorithm

The second part of our PF-based method is the tracking

of the detected objects. For that purpose,the time evolution

of a contourCt is chosen so that it resembles the phase

propagation of a wave front.In addition, the uncertainty

in the modelling of this dynamics is represented with two

independent Brownian motions directed along the contourÕs

tangent and normal respectively. Appendix A shows that the

level set function! is then the solution of an advection-

diffusion equationwith a stochastic forcing:

%t ! + ( c án)|%! | =
&2

2
! !, (4)

where c is a displacement vector Þeld (see Figure for

an example) between two time steps, which is retrieved

from an optical ßow computation, and n is the normal

to the contour. The right-hand side term accounts for the

uncertainty on the curve dynamicsand& is the amplitude

of the applied perturbations. Equation (4) is then used in the

prediction step of the particle Þlter to propagate forward in

time each particle (i.e. each contourCk
t of the ensemble).

FIGURE 4. Displacement Þeld associated with the evolution of the light
shaded patterns towards the heavy shaded ones.

2.6. Summary of an iteration of the Þlter

The initialization of the procedure corresponds to the

speciÞcation of the reference histograms associated with the

predeÞned precipitation categories. The detection/tracking

algorithm is then applied in parallel for each reference

histogram, as summarized by Figure ; the list below refers

to the Þgure :

Step 0 : speciÞcation of reference precipitation histo-

grams

Step 1 : detection of objects based on particle Þltering

and Chan-Vese segmentation algorithm.Outcomes are one

sample of contours for each reference histogram ;

Copyright c! 2015 Royal Meteorological Society Q. J.R. Meteorol. Soc.00: ??Ð?? (2015)
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8 P. ARBOGAST ET AL.

(a) initial contour (b) contour after segmentation

FIGURE 3. 3-hourly accumulated precipitation (mm) forecasted by the AROME-France model from 15 to 18 UTC on 26 April 2015. Contour of the
object detected (a) before and (b) after the Chan-Vese segmentation algorithm.
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FIGURE 5. Schematic of the detection/tracking algorithm for one
timestep.

Step 2 : evolution of each sample of contours using the

stochastic advection-diffusion model ;

Step 3 : weights computation and ensemble resampling ;

Step 4 : determination of the objects, i.e. expectation,

best contourand uncertainty band using the resampled

ensemble ;

Steps 1 to 4 are repeated until the end of the tracking

period.

It may be mentioned that, since the detection/tracking

algorithm is applied in parallel for each prescribed

histogram, then 1) we donÕt need to choose a category in

advance and 2) similar objects can be detected in more

than one category. This second aspect could be avoided

by improving the reference histograms or by using a

more discriminative likelihood function. It can also be

interpreted as an indication of uncertainty regarding the type

of precipitation at play.

2.7. Some tuning issues

The level of randomness introduced by& in contourÕs

dynamics (equation (4)) is supposed to represent the

non-conservativity of the precipitation time-sequence and

should also be related to the spatial scales allowed by
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OBJECT-ORIENTED PROCESSING OF CONVECTIVE PRECIPITATION 9

the smoothness constraint which is introduced within the

variational optical ßow method. Two different approaches

will be considered hereafter to address the tuning of&.

In the Þrst one,& corresponds to the spread of the

ensemble of particles along the contourÕs tangent and

normal. If its distribution after resampling is signiÞcantly

modiÞed with respect to the prescribed values it is

considered that the distribution of& must be adjusted. This

approach has been adopted to tune the method for the case

study presented in the following section.

Appendix B presents a second approach based on the

following assumption : the noise associated with the level

set displacement and the curve noises are collinear and have

the same variances.

3. Results

3.1. Experimental set-up

The detection and tracking algorithms are applied in this

section to precipitation forecasts from the AROME-France

model. The AROME model (Seity at al., 2011) is a spectral,

non-hydrostatic convective-scale model which has been

running operationally at M«et«eo-France since December

2008 over French territory. In this paper, experiments are

performed with a model conÞguration that uses either a

2.5km or a 1.3-km horizontal resolution. The analysis step

is performed with a 3D-Var scheme.

The approach is also applied to an ensemble prediction

system based on the AROME-France model with a 2.5-km

horizontal resolution, which is currently being developed

at M«et«eo-France for operational forecasting. This ensemble

is made of 12 members designed to take into account

uncertainties in the initial and boundary conditions, the

model and surface Þelds (Bouttier et al., 2012 ; Bouttier et

al., 2014 ; Raynaud and Bouttier 2014).

FIGURE 6. 20 Þrst classes of the referencehistograms of precipitation
prescribed for the detection/tracking algorithm. They correspond to very
heavy precipitation (black), heavy precipitation (medium gray), moderate
precipitation (dark gray) and intermittent precipitation (light gray). A class
corresponds to 0.23mm/h.

3.2. Object detection

Three case studies have been selected to test the

object detection method and examine its ability to

discriminate precipitation of various types. The detection

is performed using a number of particles Þxed as

100, and four histograms have been prescribed (Figure

), corresponding to very heavy precipitation, heavy

precipitation, moderate precipitation and intermittent

precipitation.These histograms have been computed on a

set of past events and use 100 classes. An ensemble of 50

contours is then generated from the mean level-set function

in order to take into account the fuzzy nature of the detected

objects.

3.2.1. Severe thunderstorms

Severe thunderstorms developed on 26 April 2015 in a

relatively large area along a South West/North East axis

over France, leading locally to heavy precipitation and hail.

The initialization of the object using a 3-hour precipitation

accumulation from a 18h forecast of the AROME-

France model has been successful with the histogram

corresponding to heavy precipitation. Figure displays the

initial state of the object, which is actually an ensemble of
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10 P. ARBOGAST ET AL.

FIGURE 7. 3-hourly accumulated precipitation (mm) from 15 to 18 UTC
on 26 April 2015, from a 18h forecast of the AROME-France model, along
with the best initial detected object (black solid) and the area where the
ensemble members are lying (the shaded strip).

N = 50 contours. The ensemble is summarized by the best

contour (regarding the reference histogram) and the area

(the shaded strip) where the ensemble members are lying.

The horizontal extension of that shaded strip measures the

uncertainty behind the object determination. The detected

object well reßects the identiÞcation that could have been

done Òby eyeÓ. Moreover, the area of the object with smaller

precipitation is characterized by a larger uncertainty, thus

reßecting that the data does perfectly match the reference

histogram in this region.

3.2.2. Heavy precipitating event

The ability of the approach to detect a small area of very

high amount of rainfall, resulting locally in severe ßooding,

is examined on the case of the heavy precipitating event

that occured over Southeastern France on 17 September

2014. Figure shows that the object of interest is well

detected in the 6-hour precipitation accumulation from a

18h forecast using the histogram corresponding to very

heavy precipitation.

3.2.3. Intermittent precipitation

FIGURE 8. 6-hourly accumulated precipitation (mm) from 12 to 18 UTC
on 17 September 2014, from a 18h forecast of the AROME-France model,
along with the best initial detected object (black solid) and the area where
the ensemble members are lying (the shaded strip).

The performance of the detection algorithm regarding

intermittent precipitation is investigated here, considering

a 1-hour precipitation accumulation from a 14h forecast

valid on 21 February 2015, where an active stormy sky

occured after the passage of a cold front. It is characterized

by an ensemble of small convective structures with varying

size and intensity. Such spatially discontinuous features

are particularly interesting since traditional thresholding

methods could have difÞculties to treat them as one feature.

Figure indicates that the proposed detection method is able

to accurately extract the whole precipitating areas. It can

also be noted that the uncertainty associated with this object

is larger than in the other two examples.

3.3. Tracking : a case study

In a second step, the tracking algorithm is tested on

a case of severe thunderstorms that hit North-Eastern

France on 10 June 2014. The initialization of the tracking

corresponds to the detection of precipitating objects in a 1-

hour precipitation accumulation forecast from the AROME

model valid at 20 UTC. Three distinct convective areas are
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FIGURE 9. 1-hourly accumulated precipitation (mm) from 13 to 14 UTC
on 21 February 2015, from a 14h forecast of the AROME-France model,
along with the best initial detected object (black solid) and the area where
the ensemble members are lying (the shaded strip).

identiÞed (Figure (a)).

Optical ßows along the sequence of forecasts are also

required. They are computed following the algorithm

for large displacement optical ßow estimation from

Steinbr¬ucker et al. (2009).

As explained in section 2(g),a critical parameter of

the tracking is the level of noise associated with the

two Brownian motions introduced within the stochastic

advection-diffusion model. Weak noise could prevent the

Þlter from representing large local uncertainties but the pdf

of the error could be documented with a relatively small

ensemble. Strong noise could enable the stochastic Þlter

to represent strong uncertainty. In that latter case the main

drawback is the size of the ensemble which must be large

enough.In the present experiment, the level of noise is

adjusted after each iteration of the particle Þlter, according

to the variance of the resampled ensemble.

Figures (b)-(f) present the temporal evolution of the

initial convective cells over a 5h-period. The tracking

algorithm accurately follows the objects throughout the

forecast period. It is interesting to note that the method

is able to deal with splitting and merging, for instance,

at timestep 1 the algorithm correctly merges the two

northern cells, with a large uncertainty in the area without

precipitation. The decay of the southern cell is also well

captured by the algorithm : at timestep 2 this object is

only present in a small number of members, while no more

members forecast it from timestep 3. The method thus

appears robust to track moderate-moving features with non-

negligeable distortion.

The results from the tracking can be summarized by

calculating strike probability for tracked objects (e.g. Dance

(2010)), that is, the probability that a given gridpoint will

be affected by a precipitating object within a forecast time

period. DenotingT the length of the forecast period, the

strike probability is deÞned by

PT (x) =
1
T

1
N

T(

l =1

N(

k=1

Pk
l (x),

wherePk
l (x) =

%
&

'

1 if x is insideCk
l

0 if x is outsideCk
l .

(5)

Figure presents the strike probability corresponding to the

5h-tracking with an ensemble of 50 objects at each timestep.

This map shows a strong chance that thunderstorms affect

the eastern part of Belgium.

FIGURE 11. Probability that a given gridpoint will be affected by a
precipitating object between 20 UTC on 10 June 2014 and 01 UTC on
11 June 2014, calculated from the stochastic tracking of convective cells
identiÞed in the AROME-France forecast valid at 20 UTC on 10 June 2014.
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(a) initialization (b) T+1h

(c) T+2h (d) T+3h

(e) T+4h (f) T+5h

FIGURE 10. (a) 1-hourly accumulated precipitation (mm) forecasted by the AROME-France model valid at 20 UTC on 10 June 2014, along with the
best initial detected object (black solid) and the area where the ensemble members are lying (the shaded strip). (b)-(f) Result of the tracking over a 5h
period, summarized by the mean contour (black solid) and the area covered by the resampled ensemble (the shaded strip).

3.4. Application to ensemble forecasts

An ensemble prediction system provides a variety of

scenarios which characterize the uncertainty of the forecast.

However, the relatively small sizes of current operational

ensemble forecasts at convective scale somewhat limit

their utility. In this context, post-processing techniques

such as the neighborhood method and the time-lagging

approach (Ben Bouallègue et al., 2013 ; Raynaud et al.,

2014), which are based on the introduction of a spatial

and/or temporal tolerance in model outputs, have been

proposed to increase the value of ensemble forecasts.

Object-oriented techniques are another way to focus on

precipitating features rather than gridpoint-based values.

The proposed detection-tracking algorithm which has
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(a) mb 1 (b) mb 2 (c) mb 3 (d) mb 4

(e) mb 5 (f) mb 6 (g) mb 7 (h) mb 8

(i) mb 9 (j) mb 10 (k) mb 11 (l) mb 12

FIGURE 13. 24h forecasts of 6-hourly accumulated precipitation (mm) between 15 and 21 UTC on 12 October 2014. Each panel presents the forecast
of individual members of the AROME ensemble prediction system.

initially been developed for deterministic forecasts can

also be applied to each member of an ensemble system.

This provides a Ôsuper-ensembleÕ of precipitating objects,

which combines the sampling provided by the EPS and the

sampling associated with the fuzzy implementation of the

object processing.

The detection part of the method has been applied to an

ensemble of 12 perturbed AROME forecasts for a case of

heavy precipitation that occured on 12 october 2014 over

Southeastern France. Of particular interest is the line of

heavy rainfall locally exceeding 100mm in 6 hours (see

observations in Figure ). Figure shows the twelve 24-

hour forecasts of 6-hour precipitation accumulation, along

with the results from the objects identiÞcation. The objects

extracted by the algorithm fall in the categories heavy or

very heavy precipitation depending on the member, and

look broadly similar to the features a user could detect

Òby eyeÓ. In that sense, the object identiÞcation scheme

could provide a useful help to forecasters when analyzing

precipitating features forecasted by an EPS. Looking either

at the precipitation Þelds or at the detected objects,

one can observe relatively large differences regarding
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FIGURE 12. 6-hourly accumulated precipitation (mm) between 15 and 21
UTC on 12 October 2014, observed by radar data and rain gauges.

the localization, size, shape and intensity of precipitating

patterns forecasted by each member of the ensemble. A

consequence of this variability is the necessity to apply

speciÞc thresholds for each member when using traditional

thresholding methods to detect objects. Hence, developing

threshold-free approaches may be particularly relevant for a

convective-scale EPS.

The information provided by the detection step can

be summarized by calculating object probabilities over

the N available contours. At each gridpoint, the object

probability is calculated as the probability of being inside

a precipitating object :

P(x) =
1
N

N(

k=1

Pk (x),

wherePk (x) =

%
&

'

1 if x is insideCk
t

0 if x is outsideCk
t .

(6)

On the one hand, these probabilities can be calculated

considering all detected objects. On the other hand,

since the detection step provides a classiÞcation of the

precipitating patterns, the probabilities can be calculated

(a) Gridpoint probabilities rr6h> 5mm

(b) Dynamical object probabilities

(c) Dynamical/stochastic object probabilities

FIGURE 14. Probabilities calculated from the 24h AROME ensemble
forecasts of 6-hourly accumulated precipitation, valid on 12 October 2014
at 21 UTC. (a) Gridpoint probabilities for 6-hour precipitation exceeding
5mm, (b)-(c) object probabilities calculated using the best object and the
ensemble of objects for each member respectively.

Copyright c! 2015 Royal Meteorological Society Q. J.R. Meteorol. Soc.00: ??Ð?? (2015)

Preparedusingqjrms4.cls



OBJECT-ORIENTED PROCESSING OF CONVECTIVE PRECIPITATION 15

for a particular type of object. Compared to traditional

gridpoint probabilities, object probabilities at a particular

gridpoint do not rely on the forecast at that gridpoint but

on the nature of the forecast within a spatial neighborhood

deÞned by the identiÞed precipitating patterns. Hence,

the object probability can be seen as a particular case

of neighborhood probability where the neighborhood is

objectively and adaptively deÞned.

Object probabilities have been Þrst calculated using

deterministic objects, chosen as the best contours detected

in each member of the ensemble (N = 12 in that case).

As indicated by Figure (b), these probabilities provide an

accurate signal for the localization of heavy precipitation,

with higher values in the regions of observed intense rainfall

(Figure ). The comparison with gridpoint probabilities

of precipitation exceeding 5mm in 6 hours (Figure (a))

supports the idea that the object-oriented processing of

precipitation has a similar smoothing effect as spatial

neighborhood methods and allows one to more clearly

visualize the localization of heavy rainfall.

Object probabilities have then been calculated based on

fuzzy objects, using the ensemble of 50 extracted contours

for each member (N = 12 & 50 = 600 in that case, Figure

(c)). These probabilities correspond to a smoothed version

of the raw object probabilities and less high probabilities are

forecasted. In addition, accounting for uncertainties in the

object detection is shown to improve the forecast to some

extent. For instance, regarding the eastern object Figure (b)

indicates two distinct areas with probabilities higher than

70%, while observations show that only one is actually

concerned by heavy rainfall. In contrast, only the correct

region is highlighted in the probabilities calculated from the

fuzzy objects.

Object probabilities have been calculated based on the

fuzzy objects detected in the 6h accumulated precipitation

Þeld of each member. In order to represent the uncertainty

in the time evolution of the precipitation over this 6h-period,

these probabilities could also be derived from the ensembles

of tracked objects, by applying the tracking algorithm to

each member over the 6h-period, similarly to what has been

done on a deterministic forecast in the previous section.

4. Conclusions

An object-based methodfor the detection and tracking

of precipitationfeatureshas been developed and applied to

deterministic and ensembleforecasts provided by a cloud-

resolving model. It is based on the particle Þlter approach

with a level-set representation of closed curves, including

precipitation histograms to characterize the patterns and

stochastic laws for their temporal evolution.

Compared to common object-oriented detection ap-

proaches (e.g. Davis et al., 2006 ; Ebert 2008), an advantage

of the proposed detection algorithm is that no Þxed pre-

cipitation threshold is required to deÞne the objects. This

is particularly interesting when applying the algorithm to

a convective-scale ensemble prediction system that often

provides very different forecasts. Instead, the detection step

relies on a set of prescribed reference histograms that allows

for the identiÞcation of objects of different types, in terms

of both intensity and spatial variability.

The primary motivation for applying a particle Þlter

approach in this work is its ability to estimate precipitation

patterns in conjunction with associated uncertainties. In

addition, it is a Þrst step towards adaptive tracking, since the

amplitude of the noise applied in the stochastic advection

model can be tuned according to the variance of the particle

set.In the end, the location of the edge of each object, along

with the associated uncertainty band, are possible useful

outcomes of the method.

The detection algorithm is shown to work well on a

variety of precipitation Þelds. In particular, its performance

regarding the detection of highly intermittent precipitation,

such as those encountered in stormy skies, is encouraging.

Illustration of the tracking model on a case of severe

thunderstorms also provides promising results, with a

correct handling of merging/splitting and growth/decay of
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convective cells. Future research will further investigate

the potential of the method for probabilistic precipitation

nowcasting. The possibility to avoid the computation of

the optical ßow and to learn the dynamics from the past

trajectories (Avenel et al., 2014) will also be examined.

Although the object-oriented detection/tracking method

has been initially developed for deterministic forecasts, the

present study gives Þrst insight into the way the approach

could be applied to ensemble forecasts. In particular, a

relevant result may be provided by object probabilities

which, in contrast to traditional gridpoint probabilities,

focus on scales where the model can be expected to

be accurate (Bowler et al., 2006). From that point of

view, object probabilities can be seen as a particular case

of spatialized probabilities computed over neighborhoods

whose size and shape directly depend on the local

precipitating features.

It is likely that the present approach could be applied in

various other applications such as the tracking of volcanic

ash, fog, mid-latitude windstorms, tropical cyclones in

numerical models as well as in satellite or radar

observations.

It is worth emphasizing that the success of the method

relies on the quality of the prescribed reference histograms

to a large extent. Future work will examine the impact

of deÞning additional categories in order to improve

the discrimination of precipitation patterns.Moreover, the

possibility to use ßow-dependent instead of climatological

histograms, through an iterative search of precipitation

patterns, will be explored.

Finally, the probabilistic evaluation of this object-based

processing of mesoscale precipitation Þelds will be the

subject of a future study.
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applicationà lÕ«etude dÕ«ecoulements g«eophysiquesÓ.

5. Appendix A : deterministic and stochastic model

for contour time evolution

The time evolution of a contourCt can be understood as

the phase propagation of a wave front along characteristic

curves x t (s), of parametert and Þxeds. By this way,

!
!
x t (s), t

"
appears as a Riemann invariant and thus

the conservation of! along the characteristic leads to

the equationd! = %t !dt + %! ádx = 0 . Hence, the time

propagation of the phase is governed by the equationd!
dt =

%t ! + %! ádx
dt = 0 . Writing c = dx

dt the velocity along

the characteristics, and%! = |%! |n the gradient, where

n = %!/ |%! | is the normal to the levelcontour, the time

propagation reduces to the Hamilton-Jacobi equation

%t ! + ( c án) |%! | = 0 , (7)

wherec is a velocity vector estimated using the data through

an optical ßow method. Since any tangential displacement

has no effect on the position of the contour, only the velocity

component along the local normal to the level contour

plays a role in Eq.(7). Depending on the convexity, the

characteristic curves can intersect leading to an overlapping

of the contour, associated to an occurence of singularities.

Since the resulting curve is not differential, weak solutions

are considered. A weak solution is then chosen as the

envelope of the curve. This corresponds to a weak entropy

solution ! e, obtained as the vanishing viscosity solution

lim" $ 0 ! " of the modiÞed dynamics (Osher and Sethian,

1988 ; Sethian, 1996)

%t ! + ( c án " '( )|%! | = 0 , (8)

in the limit, as the viscosity' decreases to zero, and where

( = % án = 1
|% ! |

+
! ! " %! T ! !! %!

|% ! |2

,
is the curvature of

the level set isolines, where! &&is the Hessian matrix of!
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(! &&
ij = %2

ij ! ). In numerical application,' is set to a small

enough value in order to lead to a good approximation of

the entropy solution while providing a smooth solution.

Within this approach, the complex dynamics of a simple

contour is replaced by the dynamics of a surface, governed

by the modiÞed Hamilton-Jacobi equation (MHJE) Eq.(8).

This kind of deterministic dynamics has been employed

for tracking of curves and motion under a Þltering through

variational formulation (Papadakis and M«emin, 2008). A

stochastic version has been proposed by Avenel et al.

(2009). In this framework, the idea is to construct a

stochastic dynamics for! corresponding to the dynamics

described by the MHJE.

To this end, the characteristic curvesx t (s) are replaced

by a stochastic Itöo diffusion (Oksendal, 2003 ; Pannekoucke

and Vezard, 2010)

dX t = c dt + &1 n dB1
t + &2 n' dB2

t , (9)

wheren' stands for the tangent unit vector obtained after

a )/ 2 rotation of n ; B 1
t and B 2

t are two independent

Brownian motions ; and&i stand for two standard deviations

that are arbitrary Þxed. Thereafter, we denote byX x
t the

stochastic processX t starting from the pointx at t = 0 , i.e.

X x
0 = x.

The aim is to feature the stochastic scalar Þeld"( x, t)

resulting from the action of the stochastic transportX t

onto a prescribe scalar Þeld! (x , 0). Similarly to the

deterministic transport where the time evolution of the Þeld

is deÞned through its Lagrangian description, the stochastic

transport is deÞned for a particular sample* by

"[ X x
t (* ), t] = ! (x , 0). (10)

To provide a valid Þeld at timet, this requires that the

map X á
t (* ) : x '"( X x

t (* ) is one-to-one, which is not

necessarily the case : it may happen that two distinct initial

positionsx1 and x2 leads to the same position att i.e.

y = X x 1
t (* ) = X x 2

t (* ) and then"( y , t) should take two

distinct values! (x1, 0) and! (x2, 0). To prevent from this

failure, we have to assume that the mapX á
t (* ) realises

a diffeomorphism, deÞning by this way a stochastic ßow

(Kunita, 1990). Sincen(x, t) and n' (x , t), Eq.(9), are

Lipshitzian Þelds near the zero level, then the process Eq.(9)

deÞnes a stochastic ßow in a sufÞciently large open set

including the zero level. We have to rephrase the problem

to obtain a more tractable formulation. This is done by

introducing the pseudo-inverse ßow÷X t as follows. For an

inÞnitesimal time, the antecedent point ofx is x " dX x
t so

"( x, "t ) = ! (x " dX x
t , 0),

= ! (x , 0) " % ! ádX x
t +

1
2

! &&: (dX x
t )T ¥ dX x

t ,

= ! (x , 0) + %! ád ÷X x
t +

1
2

! &&:
+

d ÷X x
t

, T
¥ d ÷X x

t ,

= ! ( ÷X x
#t , 0),

where ÷X x
t is the process deÞned by

d ÷X t = " cdt + &1ndB1
t + &2n' dB2

t . (11)

¥ denotes the matrix product operator with the additionnal

algebraic rules dt ¥ dt = dt ¥ dBi
t = dBi

t ¥ dt = 0 and

dBi
t ¥ dBj

t = " ij dt using the Kroenecker symbol" ij

(Oksendal, 2003), and the operator Ò:Ó denotes the matrix

double contraction operator. Hence, it follows that

"( x , t) = ! ( ÷X x
t , 0), (12)

which is dual of Eq.(10). DeÞning! (x , t) = E["( x , t)] =

E[! ( ÷X x
t , 0)] the average Þeld, we are now able to use the

backward Kolmogorov equation (Oksendal, 2003) so

%t ! = L !, (13)
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whereL is the differential operator deÞned by

(L f )(x) = " (c án)|%f | +
&2

2

2
( |%f | +

&2
1

2
%f T f &&%f

|%f |2
.

(14)

Thus, when&1 is null, the dynamic of! is given by the

MHJE

%t ! + ( c án "
&2

2

2
( )|%! | = 0 , (15)

that corresponds to the deterministic dynamic Eq.(8) of ! ,

where' = 1
2 &2

2. When&1 = &2 = &, the dynamic is then

given by

%t ! + ( c án)|%! | =
&2

2
! !. (16)

Thanks to this stochastic dynamics, an ensemble of

N contours Ck
t , k # [1, N ], can be constructed as the

zero levels of an ensemble of level functions! k (x , t)

evolved by the dynamics Eq.(9). This is equivalent to the

deterministic time evolution of the expectation. Moreover,

it results from Eq.(15) and Eq.(16) that the average Þeld

! (x , t) is solution of regularizing PDEs. This prevents from

singularity developments and secures the robustness of the

ensemble method based on the stochastic transport Eq.(9).

Note that in practice, after a time step, the resulting

potential functions do not remain signed distance functions.

Thus, each potential function is regularly reinitialized to a

signed distance function.

6. Appendix B : tuning of the diffusion coefÞcients

We propose to estimate the value of the noise diffusion

coefÞcients. The dynamics deÞned through equation (8)

involves two diffusion coefÞcients related to the uncertainty

associated to the curve motion. These parameters&1 and

&2 can be derived from the displacement Þeld between

two consecutive images, as follows. LetdX (x, k ) be the

displacement of pointx at time k to its corresponding

position at timek + 1 , according to the evolution of the

implicit function! conditioned on the past observations. We

assume that this displacement Þeld is a noisy version ofc,

dX (x, k ) = c(x, k )dt + &1ndB1
k + &2n' dB2

k , (17)

with noises along the normal and the tangent of! level-

lines having same characteristics as those of the object.

We are therefore making here the assumption that the

noises associated with the level set displacement and the

curve noises are collinear and have the same variances.

Furthermore, we assume that the transport velocity Þeld

is such that c(x, t ) = E(dX (x, k )) /dt . The empirical

covariances with respect to the Þltering law of this observed

displacement along the curve normal and tangent provide

an estimation of the noise variances&2
1 and&2

2 :

! 2
1 =

1
N ! 1

!

i =1: N

"

# 1
n ! 1

!

x !C ( i )

w( i ) (( dX (x, k ) ! c(x, k )dt) án)2

$

% ,

(18)

! 2
2 =

1
N ! 1

!

i =1: N

"

# 1
n ! 1

!

x !C ( i )

w( i )
&

(dX (x, k ) ! c(x, k )dt) án"
' 2

$

% .

(19)

In practice, dX (x, t ) is supplied by the optical ßow

measurements and the expectation are approached through

empirical mean. For the time interval between the two Þrst

images, the values of these parameters are computed from

the initial motion Þeld used to initialize our Þlter.

References

Atger, F., 2001 : VeriÞcation of intense precipitation forecasts

from single models and ensemble prediction systems. Nonlin.

Proc. Geophys., 8, 401Ð417.

Avenel, C., M«emin E., Perez P., 2009 : Tracking closed curves

with non-linear stochastic Þlters. Conf. on Scale Space and

Variational Methods (SSVMÕ09), pp. 576Ð587, Voss, Norway.

Avenel, C., M«emin E., Perez P., 2014 : Stochastic Level Set

Dynamics to Track Closed Curves Through Image Data. Journal

of Mathematical Imaging and Vision, 49, Issue 2, 296Ð316.

Baehr, C. and Pannekoucke, O., 2011 : Some Issues and results

on the EnKF and particule Þlters for meteorological models.

Copyright c! 2015 Royal Meteorological Society Q. J.R. Meteorol. Soc.00: ??Ð?? (2015)

Preparedusingqjrms4.cls



OBJECT-ORIENTED PROCESSING OF CONVECTIVE PRECIPITATION 19

chapter in Chaotic Systems : Theory and Applications- C. H.

Skiadas and I. Dimotikalis (Editors) World ScientiÞc (Publisher).

Baldwin, M.E. and J.S. Kain, 2006 : Sensitivity of several

performance measures to displacement error, bias, and event

frequency. Wea. Forecasting, 21, 636Ð648.

Ben Bouall̀egue, Z., S. E. Theis and C. Gebhardt, 2013 :

Enhancing COSMO-DE ensemble forecasts by inexpensive

techniques. Meteorol. Z., 22, 49Ð59.

Bhattacharyya, A. 1943 : On a measure of divergence

between two statistical populations deÞned by their probability

distributions. Bulletin of the Calcutta Mathematical Society, 35,

99Ð109.

Bouttier, F., Nuissier O., Vi«e B. and Raynaud L., 2012 : Impact

of stochastic physics in a convection-permitting ensemble. Mon.

Wea. Rev., 140, 3706Ð3721.

Bouttier, F., Raynaud L., Nuissier O. and M«en«etrier B., 2015 :

Sensitivities of the AROME ensemble to initial and surface

perturbations during HyMeX. Quart. J. Roy. Meteor. Soc., DOI :

10.1002/qj.2622.

Bowler, N. E. H., C. E. Pierce, and A. Seed, 2006 : STEPS :

A probabilistic precipitation forecasting scheme which merges

an extrapolation nowcast with downscaled NWP. Quart. J. Roy.

Meteor. Soc., 132, 2127-2155.

Briggs, W.M. and R.A. Levine, 1997 : Wavelets and Þeld

forecast veriÞcation. Mon. Wea. Rev., 125, 1329Ð1341.

Chan, T. and Vese, L., 2001 : Active contours without edges.

IEEE Transactions on Image Processing, 10, 266Ð277.

Damrath, U., 2004 : VeriÞcation against precipitation obser-

vations of a high density network what did we learn ? Intl. Ve-

riÞcation Methods Workshop, 15Ð17 September 2004, Montreal,

Canada.

Dance, S., E. Ebert and D. Scurrah, 2010 : Thunderstorm strike

probability nowcasting, J. Atmos. Oceanic Technol., 27, 79Ð93.

Davis, C., B. Brown, and R. Bullock, 2006 : Object-based

veriÞcation of precipitation forecasts. Part I : Methods and

application to mesoscale rain areas. Mon. Wea. Rev., 134, 1772Ð

1784.

Del Moral P., 2004 : Feynman-Kac Formulae. Genealogical and

Interacting Particle Systems with Applications, Probability and its

Applications, Springer-Verlag, New York, 2004.

Doucet, A., S.J. Godsill and C. Andrieu, 2000 : On sequential

Monte-Carlo sampling methods for Baysian Þltering.Statist.

Comput., 10, 197Ð208.

Ebert, E.E. 2008 : Fuzzy veriÞcation of high resolution gridded

forecasts : A review and proposed framework. Meteorol. Appl., 15,

51Ð64.

Ebert, E.E. and J.L. McBride, 2000 : VeriÞcation of

precipitation in weather systems : Determination of systematic

errors. J. Hydrology, 239, 179Ð202.

Gordon, N.D., D.J. Salmond, and A.F.M. Smith, 1993 : Novel

approach to nonlinear/non-Gaussian Bayesian state estimation.

IEEE Proc F, 140, 107Ð113.

Keil, C. and G.C. Craig, 2007 : A displacement-based error

measure applied in a regional ensemble forecasting system. Mon.

Wea. Rev., 135, 3248Ð3259.

Keil, C. and G.C. Craig, 2009 : A displacement and amplitude

score employing an optical ßow technique. Wea. Forecasting, 24,

1297Ð1308.

Marzban, C. and S. Sandgathe, 2006 : Cluster analysis for

veriÞcation of precipitation Þelds, Wea. Forecasting, 21, 824Ð838.

Marzban, C. and S. Sandgathe, 2008 : Cluster analysis for

object-oriented veriÞcation of Þelds : A variation. Mon. Wea. Rev.,

136, 1013Ð1025.

Marzban C., S. Sandgathe., 2010 : Optical Flow for VeriÞcation.

Weather and Forecasting, 25 (5), 1479Ð1494.

Michaes, A.C., N.I. Fox, S.A. Lack and C.K. Wikle, 2007 :

Cell identiÞcation and veriÞcation of QPF ensembles using shape

analysis techniques. J. Hydrol., 343, 105Ð116.

Nachamkin, J.E., 2004 : Mesoscale veriÞcation using meteoro-

logical composites. Mon. Wea. Rev., 132, 941Ð955.

Oksendal, B., 2003 : Stochastic differential equations, An

Introduction with Applications. Springer.

Osher, S., and Sethian, J., 1988 : Fronts Propagating with

Curvature-Dependent Speed : Algorithms Based on Hamilton-

Jacobi Formulations. Journal of Computationnal Physics, 79, 12Ð

49.

Pannekoucke, O. and Vezard, L., 2010 : Stochastic integration

for the heterogeneous correlation modeling using a diffusion

equation. Mon. Wea. Rev., 138, 3356Ð3365.

Papadakis, N., M«emin, E., 2008 : A variational technique

for time consistent tracking of curves and motion. Journal of

Mathematical Imaging and Vision, 31 (1), 81Ð103.

Raynaud L., and Bouttier F., 2015 : Comparison of initial

perturbation methods for ensemble prediction at convective scale.

Quart. J. Roy. Meteor. Soc., DOI : 10.1002/qj.2686.

Copyright c! 2015 Royal Meteorological Society Q. J.R. Meteorol. Soc.00: ??Ð?? (2015)

Preparedusingqjrms4.cls



20 P. ARBOGAST ET AL.

Raynaud L., O. Pannekoucke, P. Arbogast and Bouttier F.,

2015 : Application of a Bayesian weighting for short-range

lagged ensemble forecasting at the convective scale. Quart. J. Roy.

Meteor. Soc., 141, 459Ð468.

Roberts, N.M. and H.W. Lean, 2008 : Scales-selective

veriÞcation of rainfall accumulations from high-resolution

forecasts of convective events. Mon. Wea. Rev., 136, 78Ð97.

Sethian, J., 1996 : Level set methods : an act of violence -

evolving interfaces in geometry, ßuid mechanics, computer vision

and materials sciences.

Seity Y., P. Brousseau, S. Malardel, G. Hello, P. B«enard,

F. Bouttier, C. Lac, V. Masson, 2011 ; The AROME-France

Convective-Scale Operational Model, Monthly Weather Review,

139, 976Ð991.

Steinbr¬ucker F., T. Pock and D. Cremers, 2009 : Large

displacement optical ßow computation without warping. In Proc.

International Conference on Computer Vision.

Van Leeuwen, P.J. , 2009 : Particle Filtering in Geophysical

Systems, Mon. Wea. Rev., 137, 4089Ð4114.

Wernli H., M. Paulat, M. Hagen and C. Frei, 2008 : SAL a novel

quality measure for the veriÞcation of quantitative precipitation

forecasts. Mon. Wea. Rev., 136, 4470Ð4487.

Yates, E., S. Anquetin, V. Ducrocq, J.-D. Creutin, D. Ricard

and K. Chancibault, 2006 : Point and areal validation of forecast

precipitation Þelds. Meteorol. Appl., 13, 11Ð20.

Zepeda-Arce, J., E. Foufoula-Georgiou, and K.K. Droegemeier,

2000 : Space-time rainfall organization and its role in validating

quantitative precipitation forecasts. J. Geophys. Res., 105 (D8),

10129Ð10146.

Copyright c! 2015 Royal Meteorological Society Q. J.R. Meteorol. Soc.00: ??Ð?? (2015)

Preparedusingqjrms4.cls


