A Stochastic Continuous Optimization Backend for MiniZinc with Applications to Geometrical Placement Problems

Abstract : MiniZinc is a solver-independent constraint modeling language which is increasingly used in the constraint programming community. It can be used to compare different solvers which are currently based on either Constraint Programming, Boolean satisfiability, Mixed Integer Linear Programming, and recently Local Search. In this paper we present a stochastic continuous optimization backend for MiniZinc models over real numbers. More specifically, we describe the translation of FlatZinc models into objective functions over the reals, and their use as fitness functions for the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) solver. We illustrate this approach with the declarative modeling and solving of hard geometrical placement problems, motivated by packing applications in logistics involving mixed square-curved shapes and complex shapes defined by Bézier curves.
Type de document :
Communication dans un congrès
Claude-Guy Quimper. Proceedings of the 13th International Conference on Integration of Artificial Intelligence and Operations Research Techniques in Constraint Programming, CPAIOR'16, May 2016, Banff, Canada. Springer, Lecture Notes in Computer Science, 9676, pp.262-278, 2016, 〈10.1007/978-3-319-33954-2_19〉
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01378468
Contributeur : Sylvain Soliman <>
Soumis le : mercredi 30 novembre 2016 - 11:43:16
Dernière modification le : samedi 18 février 2017 - 01:14:49
Document(s) archivé(s) le : lundi 27 mars 2017 - 09:00:03

Fichier

MFA16cpaior.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Thierry Martinez, François Fages, Abder Aggoun. A Stochastic Continuous Optimization Backend for MiniZinc with Applications to Geometrical Placement Problems. Claude-Guy Quimper. Proceedings of the 13th International Conference on Integration of Artificial Intelligence and Operations Research Techniques in Constraint Programming, CPAIOR'16, May 2016, Banff, Canada. Springer, Lecture Notes in Computer Science, 9676, pp.262-278, 2016, 〈10.1007/978-3-319-33954-2_19〉. 〈hal-01378468〉

Partager

Métriques

Consultations de la notice

254

Téléchargements de fichiers

194