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Abstract. Algorithm portfolios are known to offer robust performances, efficiently over-
coming the weakness of every single algorithm on some particular problem instances. Two
complementary approaches to get the best out of an algorithm portfolio is to achieve algo-
rithm selection (AS), and to define a scheduler, sequentially launching a few algorithms on
a limited computational budget each. The presented Algorithm Selector And Prescheduler
system relies on the joint optimization of a pre-scheduler and a per instance AS, selecting an
algorithm well-suited to the problem instance at hand. ASAP has been thoroughly evaluated
against the state-of-the-art during the ICON challenge for algorithm selection, receiving an
honourable mention. Its evaluation on several combinatorial optimization benchmarks ex-
poses surprisingly good results of the simple heuristics used; some extensions thereof are
presented and discussed in the paper.

1 Introduction

In quite a few domains related to combinatorial optimization, such as satisfiability, constraint
solving or operations research, it has been acknowledged for some decades that there exists no
universal algorithm, dominating all other algorithms on all problem instances. This result, referred
to as No Free Lunch theorem [20], has prompted the scientific community to design algorithm
portfolios addressing the various types of difficulties involved in the problem instances, i.e., such
that at least one algorithm in the portfolio can efficiently handle any problem instance [9, 6].
Algorithm portfolios thus raise a new issue, that of selecting a priori an algorithm well suited to
the application domain [12]. This issue, referred to as Algorithm Selection (AS) and first formalized
by Rice [18], is key to the successful transfer of algorithms outside of research labs. It has been
tackled by a number of authors in the last years (more in section 2).

Algorithm selection comes in different flavors, depending on whether the goal is to yield an
optimal performance in expectation with respect to a given distribution of problem instances
(global AS), or an optimal performance on a particular problem instance (per instance AS). Note
that the measure of performance depends on the domain (e.g., time-to-solution in satisfiability, or
time to reach the optimal solution up to a given precision in optimization4). This paper focuses on
the per-instance setting, aimed at achieving peak performance on every problem instance.

In some domains, it is often the case that some problems can be solved in no time by some
algorithms. It thus makes sense to allocate a part of the computational budget to a pre-scheduler,
sequentially launching a few algorithms with a small computational budget each. The pre-scheduler
is expected to solve ”easy” instances in a first stage; in a second stage, AS is only launched on
problem instances which have not been solved in the pre-scheduler phase. Note that the pre-
scheduler enables to extract some additional information characterizing the problem at hand,
which can be used together with the initial information about the problem instance, to support
the AS phase.

This paper presents the Algorithm Selector And Prescheduler system (ASAP), aimed at algo-
rithm selection in the domain of combinatorial optimization (section 3). The main contribution
lies in the joint optimization of both a pre-scheduler and a per-instance algorithm selector. The
extensive empirical validation of ASAP is conducted on the ICON challenge on algorithm selection
[11]. This challenge leverages the Algorithm Selection library [1], aimed at the fair, comprehensive

?? This research work has been funded by the French Program “Investissements d’Avenir”.
4 One often considers the joint problems of selecting an algorithm and the optimal hyper-parameters

thereof, referred to as Algorithm Configuration (AC), as the choice of the hyper-parameter values governs
the algorithm performance. AC is outside the scope of the paper and will not be further considered.



and reproducible benchmarking of AS approaches on 13 domains ranging from satisfiability to
operations research (section 4).

The comparative empirical validation of ASAP demonstrates its good performances compara-
tively to state-of-art pre-schedulers and AS approaches (section 5), and its complementarity with
respect to the prominent Zilla algorithms [22]. The paper concludes with a discussion of the limi-
tations of the ASAP approach, and some perspectives for further research.

2 Related work

2.1 Algorithm selectors

The algorithm selection issue, aimed at selecting the algorithm best suited to the problem at hand,
was first formalized by Rice [18] as follows. Given a problem space mapping each problem instance
onto a description x thereof (usually x in IRd) and the set A of algorithms in the portfolio, let us
denote G(x, a) a performance model, mapping each (x, a) pair onto the performance of algorithm
a onto problem instance x. AS most naturally follows from such a performance model by selecting
for each problem instance x the algorithm a with optimal G(x, a).

AS(x) = arg max
a∈A
{G(x, a)} (1)

The performance model is most usually built by applying machine learning approaches onto
a dataset reporting the algorithm performances on a comprehensive set of benchmark problem
instances (with the exception of [5], using a multi-armed bandit approach). Such machine learn-
ing approaches range from k-nearest neighbors [15] to ridge regression [22], random forests [23],
collaborative filtering [19, 14], or learning to rank approaches [16].

As expected, the efficiency of the machine learning approaches critically depends on the quality
of the training data: the representativity of the problem instances used to train the performance
model, and even more importantly, the description of the problem instances. Considerable care has
been devoted to the definition of descriptive features in the SAT and Constraint domains [21].

2.2 Schedulers

Besides AS, an algorithm portfolio can also take advantage of parallel computer architectures, by
launching several algorithms working independently or in cooperation on the considered problem
instance (see e.g. [24], [10]). Schedulers embed the parallel solving strategies in a sequential com-
puter architecture, by considering a sequence of κ (algorithm ai, time-out τi) pairs, where the
problem instance is successively tackled by algorithm ai with a computational budget τi, until be-
ing solved. Notably, the famed restart strategy, launching a same algorithm with different random
seeds or different initial conditions can be viewed as a particular case of scheduling strategy [6].
Likewise, AS can be viewed as a particular case of scheduler with κ = 1 and τ1 set to the overall
computational budget.

As shown by [23], schedulers and AS can be combined together along a multi-stage process,
where a scheduler solves easy instances in a first stage, and remaining instances are handled by
the AS and tackled by the selected algorithm in the next stage. [10] build per-instance schedules
where the AS is one of the component algorithms incorporated.

3 Overview of ASAP

This section first discusses the rationale for the ASAP approach, before detailing the pre-scheduler
and AS modules in ASAP.V1. Extensions thereof, forming ASAP.V2, are presented thereafter.

3.1 Analysis

A benchmark suite most generally involves easy and hard problem instances. The difficulty is that
the hardness of a problem instance depends on the considered algorithm. As shown on Fig. 1 in
the case of the SAT11-HAND dataset (section 4), while several algorithms might solve 20% of the



Fig. 1. Percentage of solved instances vs. runtime on the SAT11-HAND dataset, for 5 algorithms and the
oracle (selecting the best algorithm out of 5 for each problem instance).

problem instances within seconds, the oracle (selecting the best one out of these algorithms for
each problem instance) solves about 40% of the problem instances within seconds.

Accordingly, one might want to launch each one of these algorithms for a few seconds each on
each problem instance: after this stage, referred to as pre-scheduler stage, circa 40% of the overall
problem instances would be solved.

Definition 1 (Pre-scheduler). Let A be a set of algorithms. A κ-component pre-scheduler, de-
fined as a sequence of κ (algorithm ai, time-out τi) pairs,

((ai, τi)
κ
i=1) with (ai, τi) ∈ A× R+, ∀i ∈ 1, . . . , κ

sequentially launches algorithm aj on any problem instance x until either aj solves x, or time τj
is reached, or aj stops without solving x. If x has been solved, the execution stops. Otherwise, j is
incremented while j ≤ κ.

Note that a pre-scheduler contributes to reduce the impact of the AS failures. An AS failure is
manifested as a problem instance x for which the AS selects an inappropriate algorithm (requiring
much computational resources to solve x or even failing to solve it), although there exists another
algorithm which could have solved x in no time. Since a pre-scheduler increases the chance for each
problem instance to be solved in no time, everything else being equal, it therefore mitigates the
chances and impact of AS failures.

After this discussion, the ASAP system involves two modules, a pre-scheduler and an AS. The
pre-scheduler is meant to solve as many problem instances as possible in a first stage, and the
AS takes care of the remaining problem instances. A primary decision concerns the division of
labor between the two modules: how to split the available runtime between the two, and how many
algorithms are involved in the pre-scheduler (parameter κ). It is clear that the number of problem
instances solved by a module will increase with its computational budget, everything else being
equal; the pre-scheduler and the AS modules are interdependent. For simplicity and tractability
however, the maximal runtime allocated to the pre-scheduler is fixed to Tmaxps (10% of the overall
computational budget in the experiments, section 5), and the number κ of algorithms in the pre-
scheduler is set to 3. [10] and [13] use a most close setup for their fixed-split selection schedules,
except they do not constrain the AS component to take the last part of the schedule.

Given Tmaxps and κ, ASAP tackles the optimization of the pre-scheduler and the AS modules. It
is clear that both optimization problems remain inter-dependent: the AS should mostly focus on
the problem instances which are not solved by the pre-scheduler, while the pre-scheduler should
symmetrically focus on the problem instances which are most uncertain or badly identified by the
AS. Formally, this interdependence is handled as follows:

– A performance model G(x, a) is built for each algorithm over all training problem instances,
defining ASinit (Eq. 1);

– A pre-scheduler is built to optimize the joint performance (pre-scheduler, ASinit) over all
training problem instances;



– Another performance model G2(x, a) is built over all training problem instances, using an
additional boolean feature that indicates for each problem instance whether it was solved by
the above pre-scheduler; let ASpost denote the AS based on performance model G2(x, a).

ASAP finally is composed of the pre-scheduler followed by ASpost.

3.2 ASAP.V1 pre-scheduler

Let (ai, τi)
κ
i=1 denote a pre-scheduler, with overall computational budget Tps =

∑κ
i=1 τi, and

let F ((ai, τi)
κ
i=1) denote the associated domain-dependent performance. ASAP.V1 considers for

simplicity equal time-outs (ai =
Tps
κ , i = 1 . . . κ). The pre-scheduler is thus obtained by solving the

following optimization problem:

max
Tps≤T

max
ps ,a1,...aκ

{
F
(

(ai,
Tps
κ

)κi=1

)}
(2)

This mixed optimization problem is tackled in a hierarchical way, determining for each value
of Tps the optimal κ-uple of algorithms a1 . . . aκ. Thanks to both small κ values (κ = 3 in the
experiments) and small number of algorithms (≤ 31 in the ICON challenge, section 4), the optimal
κ-uple is determined by exhaustive search conditionally to the Tps value.

The ASAP.V1 pre-scheduler finally relies on the 1-dimensional optimization of the overall com-
putational budget Tps allocated to the pre-scheduler. In all generality, the optimization of Tps is
a multi-objective optimization problem, e.g. balancing the overall number of problems solved and
the overall computational budget. Multi-objective optimization commonly proceeds by determining
the so-called Pareto front, made of non-dominated solutions. In our case, the Pareto front depicts
how the performance varies with the overall computational budget, as illustrated on Fig. 2, where
the performance is set to the number of solved instances.

In multi-objective decision making [3, 2], the choice of a solution on the Pareto front is tackled
using post-optimal techniques [4], including: i) compromise programming, where one wants to find
the point the closest to an ideal target in the objective space; ii) aggregation of the objectives
into a single one, e.g., using linear combination; or iii) marginal rate of return. The last heuristics
consists of identifying the so-called ”knees”, that is, the points where any small improvement on
a given criterion is obtained at the expense of a large decrease on another criterion, defining the
so-called marginal rate of return. The vanilla marginal rate of return is however sensitive to strong
local discontinuities; for instance, it would select point A in Fig. 2. Therefore, a variant taking into
account the global shape of the curve, and measuring the marginal rate of improvement w.r.t. the
extreme solutions on the Pareto front is used (e.g., selecting point K instead of point A in Fig.2).

0 Tmax
ps

A

K

% unsolved instances

runtime

γ

Fig. 2. Among a set of Pareto-optimal solutions, solution A has the best marginal rate of return; solution
K, which maximizes the average rate of return w.r.t. the extreme solutions of the Pareto front (maximizing
angle γ), is the knee selected in ASAP.



3.3 ASAP.V1 algorithm selector

As detailed in section 3.1, the AS relies on the performance model learned from the training
problem instances. Two learning algorithms are considered in this paper: random forests and
k-nearest neighbors. One hyper-parameter was adapted for each ML approach (all other hyper-
parameters being set to their default value, using the Python scikit-learn library [17]), based on a
few preliminary experiments: 35 trees are used for the RandomForest algorithm and the number
of neighbors is set to k = 3 for the k-nearest neighbors. In the latter case, the predicted value
associated to problem instance x is set to the weighted sum of the performance of its nearest
neighbors, weighted by their relative distance to x:

F̂(x, a) =

∑
i ||x− xi||F(a,xi)∑

i ||x− xi||

where xi ranges over the 3 nearest neighbors of x. Features were normalized (zero mean, unit
variance) before selecting the neighbors.

A main difficulty comes from the descriptive features forming the representation of problem
instances. Typically, the feature values are missing for some groups of features, for quite a few
problem instances, due to diverse causes (computation exceeded time limit, exceeded memory,
presolved the instance, crashed, other, unknown). The lack of feature value is handled by i) replacing
the missing value by the feature average value; ii) adding to the set of descriptive features 7
additional boolean features per group of initial features, indicating whether the feature group
values are available or the reason why they are missing otherwise5 .

3.4 ASAP.V2

Several extensions of ASAP.V1 have been considered after the closing of the ICON challenge, aimed
at exploring a richer pre-scheduler-AS search space while preventing the risk of overfitting induced
by a larger search space.

We investigated the use of different time-outs for each algorithm in the pre-scheduler, while
keeping the set of algorithms (a1, . . . , aκ) and the overall computational budget Tps. The sequential
optimization strategy (section 3.2), deterministically selecting Tps as the solution with maximal
average return rate, exhaustively determining the κ-uple of algorithms conditionally to Tps, is thus

extended to optimize the (τ1, . . . τκ−1) vector conditionally to
∑κ−1
i=1 ≤ Tps, using a prominent

continuous black-box optimizer, specifically the Covariance-Matrix Adaptation-Evolution Strategy
(CMA-ES) [7].

This extended search space is first investigated by considering the raw optimization criterion
Fraw ((ai, τi)

κ
i=1) defined in section 3.2, that is, the cumulative performance of ASAP over all

training problem instances. However a richer search space entails some risk of overfitting, where
the higher performance on data used to optimize ASAP (training data) is obtained at the expense
of a lower performance on test data. Generally speaking, the datasets used to train an AS are small
ones.

A penalized optimization criterion is thus considered:

FL2 ((ai, τi)
κ
i=1) = F ((ai, τi)

κ
i=1) + w

κ∑
i=1

(
τi −

Tps
κ

)2

which penalizes the L2 distance between the (τi) vector and the uniform time outs (τi =
Tps
κ ).

The rationale for this penalization is to prevent brittle improvements on the training set due to
opportunistic adjustments of the τis, at the expense of stable performances on further instances.
The penalization weight w is adjusted using a nested CV process.

A randomized optimization criterion is also considered. By construction, the fitness func-
tion aggregates the performances of all training problem instances. As the training problem in-
stances sample the problem domain, this fitness defines a noisy optimization problem. Sophisticated

5 The increase in the overall number of features is handled by an embedded feature selection mechanism,
removing all features with negligible importance criterion (< 10−5 in the experiments) in a separately
learned 10-trees random forest regression model.



approaches have been proposed to address this noisy optimization issue in non-convex optimization-
based machine learning settings (see e.g. [8]). Another approach is proposed here, based on the
bootstrap principle: in each CMA-ES generation, the set of n problem instances used to compute
the performance is uniformly drawn with replacement from the n-size training set. In this man-
ner, each optimization generation considers a slightly different optimization objective noted Frand,
thereby discarding the insignificant improvements.

Finally, a probabilistic optimization criterion is considered, handling the ASAP perfor-
mance on a single problem instance as a random variable with a triangle-shape distribution (Fig.
3) centered on the actual performance p(x), with support in [p(x) − θ, p(x) + θ], and taking the
expectation thereof. The merit of this triangular probability distribution function is to allow for
an analytical computation of the overall fitness expectation, noted Fdfp.
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Fig. 3. Schedule execution difference between punctual and triangular pdf. On the left (punctual pdf),
schedule stops during step 1. On the right (triangular pdf, part of the instance is not solved during step 1
and the schedule executes until step 2 solves the rest.

4 Experimental setting: The ICON challenge

4.1 ASlib data format

Due to the difficulty of comparing the many algorithm selection systems and the high entry ticket
to the AS field, a joint effort was undertaken to build the Algorithm Selection Library (ASlib),
providing comprehensive resources to facilitate the design, sharing and comparison of AS systems
[1]. ASlib (version 1.0.1) involves 13 datasets, also called scenarios (Table 1), gathered from recent
challenges and surveys in the operations research, artificial intelligence and optimization fields.
The interested reader is referred to [1] for a more comprehensive presentation.

Table 1. ASlib datasets (V1.0.1)

dataset # instances # algorithms # features

ASP-POTASSCO 1294 11 138
CSP-2010 2024 2 86
MAXSAT12-PMS 876 6 37
PREMARSHALLING-ASTAR-2013 527 4 16
PROTEUS-2014 4021 22 198
QBF-2011 1368 5 46
SAT11-HAND 296 15 115
SAT11-INDU 300 18 115
SAT11-RAND 600 9 115
SAT12-ALL 1614 31 115
SAT12-HAND 767 31 115
SAT12-INDU 1167 31 115
SAT12-RAND 1362 31 115



Each dataset includes i) the performance and computation status of each algorithm on each
problem instance; ii) the description of each problem instance, as a vector of the expert-designed
feature values (as said, this description considerably facilitates the comparison of the AS systems);
iii) the computational status of each such feature (e.g. indicating whether the feature could be
computed, or if it failed due to insufficient computational or memory resources). Last but not
least, each dataset is equi-partitioned into 10 subsets, to enforce the reproducibility of the 10 fold
CV assessment of every AS algorithm.

4.2 The ICON Challenge on Algorithm Selection

The ICON Challenge on Algorithm Selection, within the ASlib framework, was carried on between
February and July 2015 to evaluate AS systems in a fair, comprehensive and reproducible manner6.
Each submitted system was assessed on the 13 ASlib datasets [1] with respect to three measures: i)
number of problem instances solved; ii) extra runtime compared with the virtual best solver (VBS,
also called oracle); and iii) Penalized Average Time-10 (PAR10) which is the cumulative runtime
needed to solve all problem instances (set to ten times the overall computational budget whenever
the problem instance is unsolved).

As the whole datasets were available to the community from the start, the evaluation was
based on hidden splits between training and test set. Each submitted system provides a dataset-
dependent, instance-dependent schedule of algorithms, optionally preceded by a dataset-dependent
presolver (single algorithm running on all instances during a given runtime before the per-instance
schedule runs). Each system can also, in a dataset-dependent manner, specify the groups of features
to be used (in order to save the time needed to compute useless features).

Two baselines are considered: the oracle, selecting the best algorithm for each problem instance;
and the single best (SB) algorithm, with best average performance over all problem instances in
the dataset. The baselines are used to normalize every system performance over all datasets,
associating performance 0 to the oracle (respectively performance 1 to the single best), supporting
the aggregation of the system results over all datasets.

5 Experimental validation

5.1 Comparative results

Table 2 reports the results of all submitted systems on all datasets (the statistical significance tests
are reported in Fig. 5). The general trend is that zilla algorithms dominate all other algorithms
on the SAT datasets, as expected since they have consistently dominated the SAT contests in the
last decade. On non-SAT problems however, zilla algorithms are dominated by ASAP RF.V1.

The robustness of the ASAP approach is demonstrated as they never rank last; they how-
ever perform slightly worse than the single best on some datasets. The rescaled performances
of ASAP RF.V1 is compared to zilla and autofolio (Fig. 4, on the left), demonstrating that
ASAP RF.V1 offers a balanced performance, significantly lower than for zilla and autofolio on
the SAT problems, but significantly higher on the other datasets; in this respect it can be viewed
as a low-risk system.

5.2 Sensitivity analysis

The sensitivity analysis conducted after the closing of the challenge compares ASAP.V2 (with
different time-outs in the pre-scheduler) and ASAP.V1, and examines the impact of the different
optimization criteria, aimed at avoiding overfitting: the raw fitness, the L2-penalized fitness, the
randomized fitness and the probabilistic fitness (section 3.4).

The impact of the hyper-parameters used in the AS (number of trees set to 35, 100, 200, 300
and 500 trees in the Random Forest) is also investigated.

Table 3 summarizes the experimental results that each ASAP.V2 configuration would have ob-
tained in the ICON challenge framework, together with the actual submissions results, including

6 The codes of all submitted systems and the results are publicly available, http://challenge.icon-
fet.eu/challengeas



Table 2. Normalized performances of submitted systems, aggregated across all folds and all measures (the
lower, the better). Ranks of zilla (challenge winner) and ASAP RF.V1 (honourable mention) are given in
parenthesis. Numbers were computed from the challenge outputs.
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Fig. 4. On the left: per-dataset performances of ASAP RF.V1 (balls, dotted line), zilla (no marker, dashed
line) and autofolio (triangles, solid line) scaled to the range of performance of all submitted systems. As
a comparison, the per-dataset best submitted system (small balls, solid line) and ASAP RF scores before
rescaling are depicted on the right.

systems that were not competing in the challenge: llama-regr and llama-regrPairs from the orga-
nizers, and autofolio-48 which is identical to autofolio but with 48h time for training (12h was the
time limit authorized in the challenge) [11].

The significance analysis, using a Wilcoxon signed-rank test, is reported in Fig. 5. A first result
is that all ASAP.V2 variants improve on ASAP.V1 with significance level 1%. A second result is
that ASAP.V2 with the probabilistic optimization criterion is not statistically significantly different
from zilla, autofolio and zillafolio.

A third and most surprising result is that the difference between the challenge-winner zilla and
most of ASAP.V2 variants is not statistically significant.

8 As the CSP-2010 dataset gives the choice between only two algorithms, the pre-scheduler consists of a
single algorithm running for the whole time devoted to the pre-scheduler. For that particular case, all
ASAP RF.V2 variants with the same selector hyperparameter are identical.



Table 3. Optimized pre-scheduler performances8aggregated across all datasets, all splits and all measures
(the lower, the better). The hyperparameters for fL2 and fdfp were chosen after preliminary experiments
using the cross validation provided with ASlib. For each configuration of the selector, the best-evaluated
fitness function appears in bold

fitness function (if relevant) fL2 fdfp frand fraw none

ASAP RF.V2 35 0.416 0.414 0.412 0.410 0.414
ASAP RF.V2 100 0.404 0.398 0.405 0.402 0.414
ASAP RF.V2 200 0.404 0.402 0.402 0.399 0.405
ASAP RF.V2 300 0.399 0.399 0.402 0.393 0.405
ASAP RF.V2 500 0.398 0.394 0.398 0.398 0.401

ASAP RF.V1 0.416


equivalent to the
means over the
columns of table 2

ASAP kNN.V1 0.423
autofolio 0.391
flexfolio 0.442
sunny 0.482
sunny-presolv 0.485
zilla 0.366
zillafolio 0.37

autofolio-48 0.375
llama-regrPairs 0.395
llama-regr 0.425
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Fig. 5. Wilcoxon signed-rank test p-value between ASAP.V2 variants with 500 trees and every other
systems including the single best algorithm (SB) and the virtual best solver (VBS). In particular, the
different fitness functions do not differ significantly from each other in most cases.

Fig. 6 details per dataset the performance improvement between ASAP.V2 (500 trees, fL2

version) and ASAP.V2 (500 trees, fdfp version) and on the other hand ASAP.V1 RF (35 trees).
Note that ASAP.V2 outperforms the per-dataset best submission to the challenge for 3 datasets.

Fig. 6. Per-dataset performances of ASAP RF.V2 with 500 trees, optimized using fL2 (on the left with
triangles) and using fdfp (on the right with squares) scaled to the range of performance of the challenge
submitted systems. As a comparison, ASAP RF.V1 appears with the balls and dashed line.



6 Discussion

A new hybrid algorithm selection approach, the ASAP system was presented in this paper, combin-
ing a pre-scheduler and a per-instance algorithm selector. ASAP.V1 introduced a selector learned
conditionally to a predetermined schedule so that it focuses on instances that were not solved by
the pre-scheduler . ASAP.V2 completes the loop as it re-adapts the schedule to the new AS. The
main message is that the scheduler and the AS must be optimized jointly to reflect the division of
labor achieved by these two components

ASAP.V1, thoroughly evaluated in the ICON challenge on algorithm selection (ranked 4th)
received an honourable mention, due to its novelty and good performance comparatively to the
famed and long-known Zilla algorithms.

The ASAP.V2 extension achieved significantly better results along the same challenge setting.
It must be emphasized that these results must be comforted by additional experiments on fresh
data. A main lesson learned is the importance of the regularization, as the amount of available data
does not permit to consider richer AS search spaces without incurring a high risk of overfitting. The
probabilistic performance criterion successfully contributed to a more stable optimization problem.
Further research work will be devoted to extending this criterion.
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