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Abstract: The solution of large sparse linear systems is a critical operation for many numerical
simulations. To cope with the hierarchical design of modern supercomputers, hybrid solvers based
on Domain Decomposition Methods (DDM) have been been proposed. Among them, approaches
consisting of solving the problem on the interior of the domains with a sparse direct method
and the problem on their interface with a preconditioned iterative method applied to the related
Schur Complement have shown an attractive potential as they can combine the robustness of
direct methods and the low memory footprint of iterative methods. In this report, we consider an
additive Schwarz preconditioner for the Schur Complement, which represents a scalable candidate
but whose numerical robustness may decrease when the number of domains becomes too large.
We thus propose a two-level MPI/thread parallel approach to control the number of domains and
hence the numerical behaviour. We illustrate our discussion with large-scale matrices arising from
real-life applications and processed on both a modern cluster and a supercomputer. We show
that the resulting method can process matrices such as tdr455k for which we previously either ran
out of memory on few nodes or failed to converge on a larger number of nodes. Matrices such as
Nachos_4M that could not be correctly processed in the past can now be efficiently processed up to
a very large number of CPU cores (24, 576 cores). The corresponding code has been incorporated
into the MaPHyS package.

Key-words: High Performance Computing (HPC); multicore architecture; sparse linear solver;
hybrid method; direct method; Krylov method; MPI; multi-threading; hardware locality.
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Solveur linéaire hybride hiérarchique pour calculateurs
multi-cœurs

Résumé : La résolution de grands systèmes linéaires creux est une opération centrale dans
de nombreuses simulations numériques. Pour s’adapter à la structure hiérarchique des super-
calculateurs modernes, des solveurs hybrides basés sur des méthodes de décomposition de domaine
(DDM) ont été proposées. Parmi ceux-ci, ceux qui consitent à résoudre les problèmes intérieurs
avec une méthode directe et le système réduit aux interfaces avec une méthode de Krylov précondi-
tionnée ont montré un potentiel attractif puisqu’ils combinent la robustesse des méthodes directes
et le faible encombrement mémoire des méthodes itératives. Dans ce rapport, nous considérons un
préconditionneur de type Schwarz additif pour le complément de Schur qui est un candidat pour
le passage à l’échelle, bien que sa robustesse puisse être altérée lorsqu’on utilise un grand nombre
de domaines. Dans ce contexte, nous proposons une approche à deux niveaux de parallélisme qui
combine de l’échange de messages et des threads afin de contrôler le nombre de domaines et donc le
comportement numérique de la partie itérative. Nous illustrons cette approche sur des exemples de
grande taille issus de problèmes réels via des expérimentations aussi bien sur des clusters de calcul
que sur des super-calculateurs. Nous montrons en particulier que notre implantation est capable
de traiter la matrice tdr455k pour laquelle l’implantation précédente soit dépassait les capacités
mémoire des nœuds de calcul lorsque peu de sous-domaines étaient utilisés, soit ne convergeait pas
lorsqu’on augmentait le nombre de domaines pour contourner le problème mémoire. Des matrices
telles que Nachos_4M, qui étaient auparavant hors de portée, peuvent maintenant être traitées
efficacement en utilisant jusqu’à un nombre important de cœurs (24, 576 cœurs). L’implantation
de cette méthode a été intégrée dans le logiciel MaPHyS.

Mots-clés : Calcul haute performance (HPC); mulicore architecture; algèbre linéaire creuse;
solveur hybride; méthode directe; méthode de Krylov; multi-threading; localité matérielle.



Hierarchical hybrid sparse linear solver for multicore platforms 3

1 Introduction
Parallel sparse linear algebra solvers are often the innermost numerical kernels in scientific and
engineering applications; consequently, they are one of the most time consuming parts. In order
to cope with the hierarchical hardware design of modern large-scale supercomputers, the HPC
solver community has proposed new sparse methods. One promising approach towards the high-
performance, scalable solution of large sparse linear systems in parallel scientific computing consists
of combining direct and iterative methods. To achieve a high scalability, algebraic domain decom-
position methods are commonly employed to split a large size linear system into smaller size linear
systems that can be efficiently and concurrently handled by a sparse direct solver while the solu-
tion along the interfaces is computed iteratively [27, 25, 13, 11]. Such an hybrid approach exploits
the advantages of both direct and iterative methods. The iterative component allows us to use a
small amount of memory and provides a natural way for parallelization. The direct part provides
its favorable numerical properties; furthermore, this combination provides opportunities to exploit
several levels of parallelism.

With the need of solving ever larger sparse linear systems while maintaining numerical robust-
ness, multiple variants for computing the preconditioner for the Schur complement of such hybrid
solvers have been proposed. PDSLin [21], ShyLU [25] and Hips [10] first perform an exact1
factorization of the interior of each subdomain concurrently. PDSLin and ShyLU then compute
the preconditioner with a two-fold approach. First, an approximation S̃ of the (global) Schur
complement S is computed. Second, this approximate Schur complement S̃ is factorized to form
the preconditioner for the Schur Complement system, which does not need to be formed explicitly.
While PDSLin has multiple options for discarding values lower than some user-defined thresholds
at different steps of the computation of S̃, ShyLU [25] also implements a structure-based ap-
proach for discarding values named probing and that was first proposed to approximate interfaces
in DDM [8]. Instead of following such a two-fold approach, Hips [10] forms the preconditioner
by computing a global ILU factorization based on the multi-level scheme formulation from [17].
Finally, object of this study, MaPHyS [13] computes an additive Schwarz preconditioner for the
Schur complement.

To ensure numerical robustness while exploiting all the processors of a platform, an important
effort has been devoted to propose two levels of parallelism for these solvers. Relying on the
SuperLU_DIST [22] distributed memory sparse direct solver, PDSLin implements a 2-level
MPI (MPI+MPI) approach with finely tuned intra- and inter-subdomain load balancing [27]. A
similar MPI+MPI approach has been assessed for additive Schwarz preconditioning in a prototype
version of MaPHyS [14], relying on the Mumps [3, 4] and ScaLAPACK [5] sparse direct and
dense distributed memory solvers, respectively. On the contrary, expecting a higher numerical
robustness thanks to multi-level preconditioning, Hips associates multiple subdomains to a single
process and distributes the subdomains to the processes in order to maintain load balancing [10].
Finally, especially tuned for modern multicore platforms, ShyLU implements a 2-level MPI+thread
approach [25].

Whereas PDSLin and ShyLU can be virtually turned into to a pure direct method if no
dropping is performed, and whereas Hips may expect robustness by relying on a multilevel scheme,
additive Schwarz preconditioners are extremely local. As a result, their computation is potentially
much more parallel (and scalable), but their application may lead to a dramatic increase of the
number of iterations (or even to non convergence) if the number of subdomains becomes too large.
The objective of the present study is to assess whether a 2-level parallel approach allows additive
Schwarz preconditioning for Schur Complement methods to achieve an efficient trade-off between
numerical robustness and performance on modern hierarchical multicore platforms. Following the
parallelization scheme adopted in [25], we have designed an MPI+thread approach (Section 3)
to cope with these hardware trends. Contrary to the MPI+MPI approach investigated in [14],

1There are also options for computing Incomplete LU (ILU) factorizations of the interiors but the related de-
scriptions are out the scope of this paper.
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4 Agullo & Giraud & Nakov & Roman

such a parallelization allows for a better usage of the memory (e.g., symbolic data structures
such as the elimination tree used within a direct solver are shared between threads of a same
process) and a better exploitation of the CPU cores local to a node at each step of the parallel
computation [1, 9, 20], as we show in Section 4.

The rest of the paper is organized as follows. In Section 2, we present the numerical schemes
used in sparse hybrid solvers; in particular, we introduce the additive Schwarz preconditioning for
the Schur Complement and its MPI parallelization in MaPHyS. The 2-level MPI+thread extension
(first contribution) of this baseline version is then introduced in Section 3. A detailed performance
analysis (second contribution) on large test cases is then presented in Section 4 before concluding
in Section 5.

2 Baseline flat MPI design of an hybrid solver

Let Ax = b be the linear problem and G = {V,E} the adjacency graph associated with A. In
this graph, each vertex is associated with a row or column of the matrix A and it exists an edge
between the vertices i and j if the entry ai,j is non zero. In the sequel, to facilitate the exposure
and limit the notation we voluntarily mix a vertex of G with its index depending on the context
of the description. The governing idea behind substructuring or Schur complement methods is to
split the unknowns in two categories: interior and interface vertices. We assume that the vertices
of the graph G are partitioned into N disconnected subgraphs I1, ..., IN separated by the global
vertex separator Γ. We also decompose the vertex separator Γ into non-disjoint subsets Γi, where
Γi is the set of vertices in Γ that are connected to at least one vertex of Ii. Notice that this
decomposition is not a partition as Γi ∩ Γj 6= ∅ when the set of vertices in this intersection defines
the separator of Ii and Ij . By analogy with classical domain decomposition in a finite element
framework, Ωi = Ii∪Γi will be referred to as a subdomain with internal unknowns Ii and interface
unknowns Γi. If we denote I = ∪Ii and order vertices in I first, we obtain the following block
reordered linear system (

AII AIΓ

AΓI AΓΓ

)(
xI
xΓ

)
=

(
bI
bΓ

)
(1)

where xΓ contains all unknowns associated with the separator and xI contains the unknowns
associated with the interiors. Because the interior vertices are only connected to either interior
vertices in the same subgraph or with vertices in the interface, the matrix AII has a block diagonal
structure, where each diagonal block corresponds to one subgraph Ii. Eliminating xI from the
second block row of Equation (1) leads to the reduced system

SxΓ = f (2)

where
S = AΓΓ −AΓIA−1

IIAIΓ and f = bΓ −AΓIA−1
IIbI . (3)

The matrix S is referred to as the Schur complement matrix. This reformulation leads to a general
strategy for solving (1). Specifically, an iterative method can be applied to solve (2). Once xΓ is
known, xI can be computed with one additional solve for the interior unknowns via

xI = A−1
II (bI −AIΓxΓ) .

We illustrate in Figure 1a all these notations for a decomposition into 4 subdomains. The local
interiors are disjoint and form a partition of the interior I = tIi (blue vertices in Figure 1b).
It is not necessarily the case for the boundaries. Indeed, two subdomains Ωi and Ωj may share
part of their interface (Γi

⋂
Γj 6= ∅), such as Ω1 and Ω2 in Figure 1b which share eleven vertices.

Altogether, the local boundaries form the overall interface Γ = ∪Γi (red vertices in Figure 1b),
which is not a disjoint union.

Inria



Hierarchical hybrid sparse linear solver for multicore platforms 5
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(a) Initial global graph.
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(b) Graph subdomains. (c) Block reordered matrix.

Figure 1: Domain decomposition into four subdomains Ω1, . . . , Ω4. The initial domain Ω may be
algebraically represented with the graph G associated to the sparsity pattern of matrix A (a).
The local interiors I1, . . . , IN form a partition of the interior I = tIi (blue vertices in (b)).

They interact with each others through the interface Γ (red vertices in (b)). The block reordered
matrix (c) has a block diagonal structure for the variables associated with the interior AII .

While the Schur complement system is significantly smaller and better conditioned than the
original matrix A, it is important to consider further preconditioning when employing a Krylov
method. We refer to [21], [25] and [10] for details on preconditioning strategies used in PDSLin,
ShyLU and Hips, respectively, and we now introduce the additive Schwarz preconditioner con-
sidered in MaPHyS. This preconditioner was originally proposed in [7] and successfully applied
to large problems in real life applications in [12, 15, 23]. To describe the main preconditioner in
MaPHyS, we define S̄i = RΓi

SRT
Γi
, that corresponds to the restriction of the Schur complement

to the interface Γi. If Ii is a fully connected subgraph of G, the matrix S̄i is dense.
With these notations the additive Schwarz preconditioner reads

MAS =

N∑
i=1

RT
Γi
S̄i
−1RΓi . (4)

With all these components, the classical parallel implementation of MaPHyS can be decom-
posed into four main phases (see [15] for more details):

• the partitioning step consists of partitioning the adjacency graph G of A into several subdo-
mains and distribute the Ai to different processes. For this, we are able to use two state-of-
the-art partitioners, Scotch [24] and METIS [19];

• the factorization of the interiors and the computation of the local Schur complement factorizes
Ai with the PaStiX [16] or the Mumps [3] sparse direct solver and furthermore provides the
associated local Schur Complement Si thanks to recent developments from the development
teams of those sparse direct solvers;

• the setup of the preconditioner assembles diagonal blocks of Si via a few neighbour to neigh-
bour communications to form S̄i and factorize this local dense matrix with Mkl;

• the solve step is twofold: a parallel preconditioned Krylov method is performed on the re-
duced system (Equation 2) to compute xΓi where all BLAS operations are provided by Mkl,
followed by a back solve on the interiors to compute xIi with the sparse direct solver.

3 Design of a 2-level MPI+thread extension of MaPHyS

The baseline MPI model presented above presents some strong limitations on modern multicore
supercomputers. Indeed, modern platforms tend to have more and more CPU cores. Yet, the
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6 Agullo & Giraud & Nakov & Roman

baseline model assigns exactly one subdomain per core being used. As a consequennce, if one
wants to exploit all available computational cores, he has to decompose the matrix in as many
subdomains. For instance, if two nodes of eight cores each are being used, 16 subdomains have
to be used in order to exploit all the 16 cores (see Figure 2(a)). As shown later on this study
(Section 4), this approach can (1) deteriorate or even prevent the convergence of the method at
scale and (2) lead to excessive memory consumption, possibly leading the method to run out-of-
memory. Solving those issues with the baseline MPI MaPHyS implementation would impose to
assign fewer subdomains per node, hence fewer cores. For instance, on the same example platform,
imposing four subdomains would limit us to use four cores only (see Figure 2(b)). To overcome

(a) Baseline MPI - 16 subdomains.

(b) Baseline MPI - 4 subdomains.

(c) 2-level MPI+thread - 4 subdomains.

(d) Caption.

Figure 2: Baseline MPI (a, b) versus MPI+thread (c) models on a 16 cores platform composed of
two nodes of eight cores each. Imposing four subdomains limits the baseline MPI model to

exploit four cores (b) but not the MPI+thread model (c).

these limitations while using all available cores, we have designed a 2-level MPI+thread method.
With such a method, each process associated to a subdomain can use multiple cores thanks to
multithreading. In our example, each subdomain would thus be processed by four cores using four
threads per process (see Figure 2(c)).

In this section, we present the design of our MPI+thread extension of MaPHyS. Because
MaPHyS is modular, we first need to select and possibly tune multithreaded versions of the
external software packages MaPHyS relies on (Section 3.1). We then need to make sure that
those libraries cooperate correctly in order to maximize the overall performance of our hybrid
solver (Section 3.2). Among other important issues, the physical mapping of the threads on the
processing units is critical. We present the three different binding strategies that have been studied
in Section 3.3.

3.1 Multithreaded building block operations

We focus in this section on the description of multithreaded version of the external software pack-
ages that are used by MaPHyS. The 2-level parallel implementation will be effective for our hybrid
solver if its three main computational phases can be efficiently performed in parallel: factorization
of the interiors, setup of the preconditioner and solve step. We do not consider the parallel im-
plementation of the partitioning step for two reasons. First, with the current state of MaPHyS,
the domain decomposition is performed sequentially in a pre-processing phase, which computes
the decomposition and sends the needed data on the corresponding processes. Furthermore, the
current software version of the partitioners Scotch and METIS are not multithreaded. Let us
quickly recall the main numerical kernels of the three computational steps of our solver and for
each of them describe the multithreaded strategy.

For the factorization of the interiors with the current state of our package, we are able to use
two sparse direct solvers, PaStiX and Mumps. These packages are able to perform Cholesky, LU
or LDLT factorizations of symmetric definite, symmetric and general sparse matrices respectively.
Both solvers are state of the art software, implemented with a large number of numerical and

Inria



Hierarchical hybrid sparse linear solver for multicore platforms 7

technical functionalities. The major difference between the two solvers is that Mumps is based on
the multifrontal approach while PaStiX is a supernodal solver. With the recent development of the
Mumps group, activities towards a multithreaded version have been accomplished [20], but when
this study was developed, only the PaStiX package offered the possibility of using multithreading.
In this study only PaStiX is considered and a more detailed description is given below.

Two different versions of the setup of the preconditioner are possible in our solver, sparse and
dense. For each one, a different library is used. For the sparse version, the PaStiX solver is
used, while for the dense version, the LAPACK routines of the Mkl library are used. For the
iterative solver, the BLAS operations are provided by the Mkl library and the application of the
preconditioner is performed by the Mkl library or by the back-solve operation of the sparse direct
solver that is used. Finally the black-solve on the interiors is performed by the sparse direct solver.
All in all, we use the PaStiX sparse direct solver and the Mkl library.

3.1.1 Multithreaded MKL

The Mkl library provides highly optimized BLAS and LAPACK routines for Intel processors.
The multithreaded version of the Mkl library is implemented on top of the Intel OpenMP runtime
system.

3.1.2 Multithreaded sparse direct solver

Sparse direct solvers usually consist of three distinct steps. First, the analysis step performs a
reordering of the variables (by calling a third-party library such as Scotch or METIS) and a
symbolic factorization in order to compute data structures that cope with expected fill-in. Second,
the matrix is decomposed in factors in the so-called numerical factorization or factorization step
for short. In MaPHyS, these first two steps occur in sequence during the factorization of the
interiors (and separately during the computation of a sparse preconditioner). Third, the solve step
computes the solution from the right-hand side and the factors. This third step occurs during the
back-solve on the interiors (and separately during the application of the preconditioner if a spare
preconditioner is used).

PaStiX is based on the supernodal technique. Once the block symbolic factorization has
been performed, the block elimination tree and the supernode partition are available. Basically
the supernodal method consists of regrouping several nodes (columns) of the elimination tree in
a larger set called “supernode”. From the matrix point of view, the supernodal approach can be
viewed as grouping several contiguous columns in a single column-block, each of them corresponding
to a supernode (see [16] for details). Instead of using inefficient kernels with low fetch/compute
ratio, well suited BLAS-3 operations can then be used and exploit much more efficiently modern
processing units. The supernodal factorization occuring in PaStiX consists of performing three
operations for each column-block of the matrix, as depicted in Figure 3 for the first column-block.
First the factorization of the diagonal block is computed (red block in Figure 3). Then a triangular
solve is performed on the off-diagonal part of the column-block (yellow blocks in Figure 3). For each
off-diagonal sub-block of the factorized column-block, an update to the facing column-block that
owns the same rows is applied (green blocks in Figure 3). This is repeated for each column-block
until the whole matrix is factorized. In PaStiX each operation is performed by one thread and
the parallelism is expressed by performing several independent matrix operations simultaneously.

In the baseline version of PaStiX, multithreading was implemented for the factorization of
the interiors AIiIi but the computation of the Schur (Si) was still performed sequentially. For
the purpose of this study, we relieved this bottleneck by enabling concurrent updates of Si as
long as the updates are performed on disjoint matrix blocks (the three green blocks in the red
bottom-right block in Figure 3). In that respect, we considered a 2D block decomposition of the
square dense Schur complement matrix. The concurrency is protected by a simple deadlock-free
algorithm consisting of performing active waiting until all the blocks accessed by an update are free
for being updated. This additional software development designed to remove the final bottleneck
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8 Agullo & Giraud & Nakov & Roman

Figure 3: Operations related to the factorization of the first supernode (red block): triangular
solve on the off-diagonal blocks (yellow blocks) and update to the facing column-blocks that owns

the same rows (green blocks).

in the Schur complement capability of PaStiX has been eventually integrated in the public domain
distribution of PaStiX.

3.2 Coexistence of different multithreaded libraries

The main issue of interoperability between PaStiX and Mkl is related to the different ways
these libraries manage the parallelism. As explained above, PaStiX expresses the parallelism
through individual tasks associated with different supernodes; those tasks are handled by single
threads. The supernode calculation is performed by sequential (mono-threaded) BLAS-3 routines
from the Mkl library. However, the multithreading exploited in the other steps of MaPHyS such
as the setup of the preconditioner and the Krylov iterations is based on calls to multithreaded
Mkl routines. Consequently, both mono and multithreaded Mkl subroutines need to be used in
different contexts by MaPHyS.

Because the Mkl library relies on OpenMP, there are two different ways to control multi-
threading: through the OpenMP functionalities or directly using functions defined in the Mkl
library such as mkl_set_num_threads(nb_threads) or omp_set_num_threads(nb_threads).
The Mkl functions override the OpenMP functions. We point out below the adaptation that needs
to be performed for the main three steps of MaPHyS.

First during the factorization of the interiors, PaStiX is used so the mono-threaded version
of Mkl needs to be used. For the setup of the preconditioner, depending on the dense or sparse
version of the preconditioner that is used, either Mkl or PaStiX is used respectively. In a similar
manner, during the iterative method, Mkl or PaStiX is used depending on the preconditioner
that is used. For the rest of the routines within the iterative part, the multithreaded version of
Mkl is used. For the back-solve on the interiors, PaStiX is used with the mono-threaded Mkl.

3.3 Binding strategies

Three binding variants have been initially explored. The first strategy simply consists of not
enabling any binding and let the operating system handle the mapping of processes and threads
(see Figure 4(a)). The second strategy consists of binding processes to a subset of cores and let
the operating system handle the mapping of threads (see Figure 4(b)). The third strategy consists
of binding both processes and threads within processes (see Figure 4(c)).

The mechanism for binding processes and threads may differ depending on the considered target
operating system and architecture. To perform a consistent and portable binding, we rely on the

Inria



Hierarchical hybrid sparse linear solver for multicore platforms 9

(a) No binding.

(b) Process binding.

(c) Process and thread binding.

(d) Caption.

Figure 4: Binding strategies.

Portable Hardware Locality (hwloc) software package[6]. The hwloc library indeed provides a
portable interface that is an abstraction of all the low level technical details (operating system and
architecture). It also offers a consistent numbering of the physical cores, ensuring that cores that
share cache memory will be numbered next to each other. This is not always the case with the
raw information provided by the operating system. The numbering of hwloc is thus better suited
for designing portable binding algorithms.

Modern multithreaded BLAS libraries commonly perform mapping of processes and threads.
It is for instance the case of the Mkl library on which we rely in this study. In order to control
the binding by our own, we therefore prevent Mkl from doing it. This is achieved by setting the
environment variable KMP_AFFINITY to “disable”.

We further discuss the impact of binding on performance in Section 4.2 where we show that the
second strategy consisting of binding processes to a subset of cores and let the operating system
handle the mapping of threads (see Figure 4(b)) is consistently optimum. For this reason, this
strategy will be consistently used in the rest of this paper.

4 Performance analysis

In this section, a large set of experiments is presented to analyze the parallel and numerical perfor-
mance of the proposed MPI+thread extension of MaPHyS. After selecting the most appropriate
binding strategy (Section 4.2), we study the impact of multithreading on performance (Section 4.3).
In that context, the number of subdomains is set to the number of nodes and we only vary the
number of threads per subdomain. We then study the flexibility of our 2-level parallel implemen-
tation to achieve the best trade-off between the numerical and parallel behaviors (Section 4.4). For
those experiments, we vary the number of subdomains and the number of threads per subdomain,
so that the total number of cores remains constant.

4.1 Experimental setup

Matrix Matrix211 Audi_kw Nachos Haltere Tdr455k Nachos4M Amande

n 0.8M 0.9M 1.1M 1.3M 2.7M 4.1M 7.0M

nnz 129M 392M 40M 10M 113M 256M 58M

Symmetry non-symmetric SPD non-symmetric symmetric non-symmetric non-symmetric symmetric

Arithmetic real real complex complex complex complex complex

Table 1: Matrices used in this study.

RR n° 8960



10 Agullo & Giraud & Nakov & Roman

The experiments presented in this paper were conducted on two platforms: PlaFRIM, located at
Inria Bordeaux-Sud-Ouest and the Hoppermachine from NERSC, located at the Lawrence Berkeley
National Laboratory. The PlaFRIM platform is composed of 68 nodes. Each node is equipped with
two Quad-core Nehalem Intel Xeon X5550 with a total of eight cores per node. Each node has
a total of 24Gb of RAM memory. The nodes are interconnected in a fat tree fashion using an
Infiniband QDR network delivering a 40Gb/s bandwidth. The Hopper platform is composed by
6384 nodes, each being two twelve-core AMD ’MagnyCours’ 2.1-GHz processors. Each node has
24Gb of RAM. Hopper compute nodes are connected via a custom high-bandwidth, low-latency
network provided by Cray.

We display in Table 1 the main characteristics of the test matrices considered in this sec-
tion. They arise from different application domains ranging from structural mechanic analysis to
electromagnetics calculation using both classical and discontinuous finite element modeling.

The normwise backward error is used for our study. As the iterative method is applied on
the reduced system introduced in Equation 2, one option consists in using scaled residual norm
associated to that system:

εf =
‖SxΓ − f‖
‖f‖

. (5)

However, this criterion is related to the reduced system but not necessarily to the global sys-
tem. Indeed, assuming the backsolve on the interior is performed in exact arithmetic, we have:
‖SxΓ−f‖
‖f‖ = ‖Ax−b‖

‖f‖ . Because ‖f‖ depends on the number of subdomains, this criterion may thus
not be appropriate for comparisons between executions whose number of subdomains differs. We
rely on the alternative stopping criterion:

εb =
‖SxΓ − f‖
‖b‖

. (6)

This latter stopping criterion indeed reflects the error on the global system because, assuming the
backsolve on the interior is performed in exact arithmetic, we have: ‖SxΓ−f‖

‖b‖ = ‖Ax−b‖
‖b‖ . We use

this latter convergence criterion which we set to εb = 10−10 when not stated otherwise. The right
preconditioned GMRES restart parameter is set to 500 and the maximum number of iterations is
set to 7000. We use the version 4.0.1 of METIS to perform the domain decomposition and rely on
the multithreaded version of Mkl and the modified version of PaStiX discussed in Section 3.

4.2 Impact of the thread binding strategies
As discussed in Section 3, three binding strategies have been designed consisting either of fully
delegating the mapping management to the operating system (see Figure 4(a)), binding processes
to a subset of cores and let the operating system handle the mapping of threads (see Figure 4(b))
or binding both processes and threads within processes (see Figure 4(c)), respectively. Intensive
experiments (not reported here) have been conducted on all matrices from Table 1 showing that the
second strategy consisting of binding processes to a subset of cores and letting the operating system
handle the mapping of threads (see Figure 4(b)) is consistently optimum. Indeed, this configuration
outperforms the case where threads are also binded by the application for two reasons. First,
binding threads at the application level prevents Mkl from doing internal optimizations related
to multithreading. Second, every time the number of threads used by the Mkl library is changed,
the binding needs to be performed again. This effects turns out to be especially significant in the
iterative method when the sparse preconditioner is used, because it has to be done twice at each
iteration for switching between calls to the dense operations performed by Mkl and the call to the
sparse direct solver for applying the preconditioner.

It also outperforms the case where the mapping is fully delegated to the operating system. We
report here a detailed analysis on a particular example, considering matrix Matrix211 processed
on 8 nodes of PlaFRIM with a dense preconditioner. We compare the behavior of MaPHyS when
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Hierarchical hybrid sparse linear solver for multicore platforms 11

(a) All computantional steps.

(b) Factorization of the interiors.

(c) Setup of the preconditioner.

(d) Solve step.

Figure 5: Performance of MaPHyS when binding management is fully delegated to the operating
system (configuration of Figure 4(a)) for matrix Matrix211 on eight nodes of PlaFRIM with dense
preconditioner. On each node, all eight cores are consistently used but the number of threads per
subdomain (1, 2, 4 or 8, x-axis) is inversely proportional to the number of subdomains (8, 4, 2, 1).
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12 Agullo & Giraud & Nakov & Roman

(a) All computantional steps.

(b) Factorization of the interiors.

(c) Setup of the preconditioner.

(d) Solve step.

Figure 6: Performance of MaPHyS when processes are binded to a subset of cores (configuration
of Figure 4(b)) for matrix Matrix211 on 8 nodes of PlaFRIM with dense preconditioner. On each
node, all eight cores are consistently used but the number of threads per subdomain (1, 2, 4 or 8,

x-axis) is inversely proportional to the number of subdomains (8, 4, 2, 1).
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Hierarchical hybrid sparse linear solver for multicore platforms 13

no binding is performed (see Figure 5) to the case where processes are binded (see Figure 6). When
only one process per node is used (eight threads per domain), both versions are equivalent and
therefore achieve the same performance (right-most part of the plots). However, when multiple
processes compete on the same node (i.e., when one, two or four threads per domain are used),
the performance gap may be significant, especially because of the solve step.

4.3 Multithreading performance
In this section, we investigate the performance of the multithreaded implementation on multicore
nodes. First we are interested in the performance behavior of MaPHyS for the test cases described
in Table 2. For those experiments, the number of subdomains is only four and we use the dense
variant of the preconditioner. Processes (hence subdomains) have dedicated nodes. When the
number of threads increases, more and more cores can thus be exploited (see Figure 7). The
parallel performance, measured as a speed-up with respect to the single threaded reference, is
plotted in Figure 8 using bar charts with the corresponding thread number on the top of the bars.
For each matrix, we vary the number of threads from one to eight and compute the speed-ups for
the three numerical steps of MaPHyS as well as the overall speed-up.

Matrix Matrix211 Audi_kw Nachos Haltere Tdr455k Amande

Interior size (avg) 197K 233K 275K 320K 684K 1742K

Local Schur size (avg) 7K 6K 10K 4K 2K 12K

Schur size 14K 39K 11K 7K 4K 24K

#iter 36 24 28 9 5 16

Table 2: Size of the interior (AIiIi), size of the local Schur complement (S̄i) and total size of the
Schur complement (S) are given for each matrix when four subdomains are used. The number of

iterations (#iter) needed with four subdomains and dense preconditioner is also given.

Figure 7: Using 1, 2, 4 or 8 threads and cores per process (set up in Section 4.3).

It can be seen that significant speed-ups are achieved for all test cases. An average speed-up
of 4.53 is achieved for the overall execution time (see Figure 8(a)) of our matrix collection. In
this configuration, the overall execution time is consistently dominated by the factorization of the
interiors. An explanation for this is the fact that only four subdomains are used. Most of the
unknowns are associated with the interior resulting to relatively small Schur complements. As a
consequence, the factorization of the interiors takes more time to be performed compare to the
setup of the preconditioner. Using only four subdomains and a dense preconditioner results with
a preconditioner with good numerical quality, thus only a small number of iterations is needed in
order to achieve the target accuracy.

Since the overall time is dominated by the factorization of the interiors, it has a behavior
similar to the overall speed-up. An average speed-up of 4.6 is obtained for the factorization of
the interiors (see Figure 8(b)) when 8 threads are used. The size of the interiors is large enough
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(a) All computational steps.

(b) Factorization of the interiors.

(c) Setup of the preconditioner.

(d) Solve step.

Figure 8: Overall speed-up with using 1, 2, 4 or 8 threads (and cores) with respect to the time
when 1 thread (and core) per process, for the matrices from Table 1. The dense preconditioner is
used. Four nodes are used and one process per node is assigned. The number of threads (1, 2, 4

or 8) for each histogram is given on the top of the bars.
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Hierarchical hybrid sparse linear solver for multicore platforms 15

(see Table 2) for the multithreaded direct sparse solver. During the setup of the preconditioner
with this configuration, the dense solver is used for the factorization of S̄i. The size of the local
Schur complements is large enough (at least a few thousands unknowns). As a result, the direct
dense solver is able to exploit efficiently the multicore machines (see Figure 8(c)). For the solve
step, an average speed up of only 1.94 (out of 8) is achieved (see Figure 8(d)). Two main reasons
explain this behavior. First, the iterative method is expensive in terms of communication, which
do not scale with the multithreaded version. Additionally, the operations that are done during
the iterative method have a low level of computational intensity. These operations do not exploit
efficiently the multicore machines. In addition to what has been presented, for the Haltere and
Tdr455k matrices the back-solve on the interior represents a large portion of the solve step. This
is a consequence of the fact that only 9 and 5 iterations are needed for the Haltere and Tdr455k
matrix respectively (see Table 2). When the number of iterations increases, the portion that
corresponds to the back-solve decreases. When more than a few dozen of iterations are used, the
back-solve becomes inconsiderable compared to the time needed for the solve step.

In the above study we have shown that MaPHyS is able to efficiently exploit the multicore
platforms with a dense preconditioner and four nodes. To further explore the capabilities of the
2-level parallel implementation, we consider experiments at a scale related to the problem size and
relying on a preconditioning strategy tuned for each matrix.The characteristics of this second set
of experiments are reported in Table 3 while the observed speed-ups are displayed in Figure 9.

Matrix Matrix211 Audi_kw Nachos Haltere Tdr455k Amande

#nodes 8 4 16 4 8 32

Preconditioner dense 10−3 10−2 10−3 dense 10−2

Interior size (avg) 97K 233K 67K 320K 341K 216K

Local Schur
size (avg) 6K 6K 6K 3K 2K 5K

kept entries (avg) — 2.75% 2.5% 2% — 1%

Schur size 23K 11K 49K 8K 10K 85K

#iter 64 49 53 11 9 94

Table 3: Configuration (#nodes and preconditioner) used in Section 4.3 and 4.4. The size of the
interiors (Ii), the size of the local Schur (S̄i), the total size of the Schur complement (S) and the

number of iterations are given for each matrix.

Similarly to the situation described in Figure 8, we observe significant (but lower) speed-ups
(see Figure 9(a)). Indeed, although the overall time is dominated by the factorization of the
interiors, the number of subdomains increases with the number of nodes yielding smaller interiors
(see Table 3) and resulting in a factorization of the interiors that is harder to parallelize efficiently
with the use of multiple threads (see Figure 9(b)).

Concerning the preconditioner step, in the case where the sparsified preconditioner is used,
the involved matrices almost do not benefit from the multithreading (see Figure 9(c)). The main
reason is that sparsifing considerably decreases the amount of computation (factorization of the
local assembled Schur S̄i), which thus becomes dominated by the assembly step. Because the
assembly step consists only of communications, it is not affected by multithreading. The second
reason is that the local Schur complement become too small for a multithreaded sparse direct
solver. For example, for the Audi_kw matrix, the average size of S̄i is 5,884. After applying the
dropping with a threshold of 10−3, approximately 2.75 percent of the entries are kept, resulting
in a sparsified S̄i that contains around 692K of non zero values. This is not a large enough
computational load for the sparse direct solver to exploit efficiently the multicore processors. As
a consequence, the overall setup of the preconditioner is hard to accelerate with multithreading
when a sparse preconditioner is used. On the other hand, thanks to the sparsification, the setup of
the preconditioner turns out to be only a very limited proportion of the total execution time (see
Figure 9(a)). For instance, when eight threads are used on four nodes with the Audi_kw matrix,
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(a) All computational steps.

(b) Factorization of the interiors.

(c) Setup of the preconditioner.

(d) Solve step.

Figure 9: Overall speed-up when using 1, 2, 4 or 8 threads (and cores) with respect to the time
when 1 thread (and core) per process for the matrices from Table 3. The configuration (#nodes
and preconditioner) is given in Table 3 for each matrix. The number of threads (1, 2, 4 or 8) for

each histogram is given on the top of each bar.
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the dense factorization is performed in 2.55 seconds, while the sparse factorization takes only 0.95
seconds. Regarding the solve step, it follows the same behvavior for all the matrices for the same
reasons as explained above.

4.4 Numerical and parallel flexibility of the 2-level implementation

In the previous section, we mainly focused on the parallel efficiency of the 2-level implementation
when the number of cores is increased while keeping constant the number of nodes. We are now
investigating the capability of the code to fully exploit the computing resources of a hierarchical
multicore platform. To highlight the flexibility we fix the number of cores used for the solution of a
given problem and we vary the number of subdomains and the number of threads per subdomain so
that nb_nodes×nb_cores = nb_threads_per_process×nb_domains (see Figure 10). Those iso-
computing resource experiments show that our 2-level approach enables us to find the best trade-off
between the numerical behavior of the solver (which depends on the number of subdomains) and
its parallel performance (which depends on the number of threads per subdomain). For those
experiments we consider the same test examples as in Table 3.

Figure 10: Setup in Section 4.4 illustrating the numerical and parallel flexibility of the 2-level
implementation for exploiting all cores of a node with 1, 2, 4 or 8 subdomains per node.

With this configuration, when the number of threads per process increases, the number of
subdomains decreases; this tends to reduce the number of iterations but enlarges the elapsed time
of the factorization of the interiors. For instance, for the Audi_kw matrix, the first histogram
presents a run with 32 subdomains with one thread per process, while the last one, when 8 threads
are used, corresponds to a run with 4 subdomains. Compared to the results presented in the
previous section, for each run not only the number of cores assigned per process changes, but
also the numerical problem solved. With an increased number of subdomains, the size of the
domain interior is decreasing (see Figure 11(a)), while the size of the total Schur complement
(S) is increasing (see Figure 11(b)). With a larger Schur complement and the larger number of
subdomains, the numerical difficulty of the iterative part tends be higher, increasing the number
of iterations and possibly the overall solution time (see Figure 11(d)). With our 2-level parallel
approach, we are able to explore the trade-off between larger subdomains and numerical efficiency
of the iterative method in order to exploit the multicore machines in a most optimal way. The
results are presented in Figure 12.

For the Haltere matrix, the best performance is obtained when one thread per process is
used. More specifically, each step yields the best performance when one thread per process is used.
Considering the solve step, increasing the number of subdomains does not strongly deteriorate
the quality of the preconditioner for this matrix. For instance, in this case, when the number of
subdomains varies from 4 to 32, the number of iterations increases from 11 to only 14 respectively
(see Figure 11(d)). On that example, the best performance is obtained when the number of
subdomains is the largest. Additionally, for this matrix with all configurations, the overall time
is dominated by the factorization of the interiors. The factorization of the interiors yields best
performance when the number of subdomains is the largest (see Figure 12(b)). The main reason for
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(a) Interior size.
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(b) Size of the total Schur.
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(c) Size of the local Schur.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Matrix211  Audi           Nachos             Haltere                        Tdr455k                            Amande 

N
o
rm

a
li
z
e
d
 #

it
e
r

1

2

4

8

  

1

2

4

8

  

1

2

4

8

  

1

2

4

8

  

1

2

4
8

  

1

2

4

8

  

(d) Number of iterations.

Figure 11: Average size of the interiors (11(a)), of the local Schur complement (11(c)), of the
total Schur complement (11(b)) and number of iterations (11(d)) for each matrix shown when all

available cores are used and the following statement is satisfied :
nb_nodes× nb_cores = nb_threads_per_process× nb_subdomains. The number of nodes and
the preconditioner are given in Table 3 and the number of threads used per process is given on
top of each histogram bar. All histograms are normalized with respect with the histogram when

one thread per process is used.
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this behavior is the fact that when the number of subdomains is doubled, the size of each interior
is approximately divided by two (see Figure 11(a)) and the number of threads are doubled. Since
the complexity in terms of calculation for 3D problems for the sparse direct solver is squared (see
Figure 12(d)), larger number of domain yields better performance.

For the Nachos matrix, the best configuration is also when one thread per process is used.
Contrary to the the Haltere matrix, the solve step is expensive for this matrix. Nevertheless,
with the increasing of the number of subdomains, the number of iterations does not decrease
drastically (see Figure 11(d)). Since the solve step does not exploit efficiently multithreading (see
Figure 9(d)), similar numbers of iterations will be executed in approximately the same amount of
time (see Figure 12(d)). Due to this, the overall execution time is driven by the factorization of
the interiors, and, as explained above, the factorization of the interior yields the best performance
when one thread per process is used.

#subdomains
8 16 32 64 128

P
re
co
nd

. dense 9 21 107 315 6323
10−4 31 108 502 – –
10−3 168 1002 – – –
10−2 6496 – – – –

Table 4: Number of iterations for different configurations (#subdomains and preconditioner) for
the Tdr455k matrix with the GMRES algorithm. "–" means that the algorithm fails to achieve

convergence in 7000 iterations with restart of 500.

The Amande and Matrix211 matrices both exhibit similar behaviors. The optimal performance
is obtained when two threads per process are used. Compared to the Nachos matrix, the number
of iterations decreases more quickly. As a consequence the solve step becomes less expensive in
terms of time consumption when the number of subdomains decreases (see Figure 12(d)). Moreover,
both matrices are issued from difficult numerical problems, resulting in a large number of iterations
during the solve step. For instance, when one thread per process is used, 223 and 468 iterations are
needed for the Matrix211 and Amandematrices, respectively. Therefore, the benefits of reducing the
cost of the solve step have larger consequences on the overall computational time (see Figure 12(d)).

For the two remaining matrices, Audi_kw and Tdr455k, this phenomena is even stronger. Ad-
ditionally, when the number of subdomains is increased, the size of the local Schur complement is
not increased, even slightly decreased (see Figure 11(c)). Since the dense preconditioner is used
for the Tdr455k matrix, the setup of the preconditioner yields better performance with the mul-
tithreaded version for this matrix. For these matrices increasing the number of subdomains has
the most significant influence on the number of iterations. Therefore the solve step yields the best
performance when eight threads per process are used.

Furthermore, the Tdr455k matrix is the most difficult matrix to solve in our collection for our
algorithm. The results presented in Figure 12 correspond to a dense preconditioner. Performing
dropping on the local Schur complement strongly decreases the quality of the preconditioner (see
Table 4). Additionally, decomposing the matrix in larger number of subdomains increases strongly
the number of iterations for each preconditioner, failing to converge in most cases. This matrix
has strong numerical barriers for our algorithm. With the multithreaded version, we are able to
break the numerical barrier by assigning larger number of cores per subdomain. On the Hopper
platform we are able to both efficiently exploit as much as 384 cores (see Figure 13(a)) and in the
same time lower the memory peak per node (see Figure 13(b)).

In order to push the limit of our algorithm, we have furthermore performed tests on the
Nachos4M matrix (see Table 1) on the Hopper platform. In these series of experiments we have
increased the number of nodes up to one thousand (see Figure 14). With the increased number of
nodes, the number of subdomains is also increased up to 213 when three threads per process are
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(a) All computational steps.

(b) Factorization of the interiors.

(c) Setup of the preconditioner.

(d) Solve step.

Figure 12: In these experiments all available cores are used and the following statement is
satisfied : nb_nodes× nb_cores = nb_threads_per_process× nb_subdomains. The number of
nodes and the preconditioner are given in Table 3 and the number of threads used per process is
given on top of each histogram bar. Each histogram is normalized in comparison to the time

obtained when one thread per subdomain is used.
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(a) Elapsed time for all computational steps. (b) Memory peak per node.

Figure 13: The maximum time 13(a) and memory peak per node 13(b) when the Tdr455k matrix
is used with dense preconditioner. All the available cores per node are used and the statement is
satisfied: nb_nodes× nb_cores = nb_threads_per_process× nb_subdomains. In the legend t

p

refers to number of threads (t) per process (p).

used. When the number of nodes is increased, the solve step dominates more and more the overall
execution time (the red portion in each histogram in Figure 14(b)).

Although not illustrated up-to now, depending on the targeted accuracy, the best choice of
the number of subdomains can vary for a given number of cores to be used. In Figure 15, we
display the convergence history as a function of the elapsed time and iteration number for the
Audi_kw matrix (see Figures 15(a) and 15(b) respectively). Lower the number of subdomains (i.e.,
larger number of threads per subdomain), larger the time needed for factorization of the interiors
and setup of the preconditioner is, and faster is the convergence. However, for a moderated target
accuracy, this setup cost is not worth to invest. It might be more effective to enlarge the number of
subdomains to shrink the setup time and having slower convergence rate but overall faster solution.
For instance, for a 10−4 accuracy, the best choice is 64 subdomains (one thread each) while for a
10−9 accuracy the best choice is 16 subdomains (i.e., 4 threads).

5 Conclusion

In this paper we have described a 2-level parallel implementation of the hybrid solver MaPHyS and
shown how multithreaded libraries, namely Mkl and PaStiX, have been composed to design an
efficient parallel implementation. The resulting MPI+thread parallel implementation does match
the hierarchical structure of modern multicore parallel platforms. Not only it enables us to better
exploit the computer architectures features but it also introduces an additional numerical flexibility
to balance the numerical and parallel performances of the MaPHyS solver. Thanks to the new
implementation we demonstrated that large computing platforms, up to a few tens of thousand
cores, can be exploited to solve 3D linear systems that were not tractable before.

We have considered classical programming paradigms based on MPI and threads to design our
2-level parallel hybrid solver. An alternative approach would be to consider a more disruptive
approach based on a task graph description of the algorithm that can be efficiently mapped and
scheduled on multicore and manycore platforms by a modern runtime systems as discussed in [2]
Because the preconditioner used in MaPHyS is local, we are also considering for symmetric positive
definite problems to combine the 2-level parallel design proposed in the present article with coarse-
grid correction techniques [26, 18].
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(a) Elapsed time for all computational steps.

(b) All computational steps.

(c) Memory peak per node.

(d) Sizes.

Figure 14: The maximum time 14(a) and memory peak per node 14(c) for the Nachos4M matrix
with sparse preconditioner when a dropping is applied to the preconditioner with threshold of
10−2. The detailed histogram for all computational steps is given in 14(b) and the sizes for the
interior, the local Schur complement and the total size of the Schur complement are given in
14(d). The tests were performed on the Hopper platform. All the available cores per node are

used and the statement is satisfied:
nb_nodes× nb_cores = nb_threads_per_process× nb_subdomains. In the legend t

p refers to
number of threads (t) per process (p).
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Figure 15: Convergence history with respect with the elapsed time for the Audi_kw matrix when
four nodes are used in respect with the iteration (see Figure 15(a)) and in respect with the time

(see Figure 15(b)). Dropping with a threshold of 10−2 is applied to the preconditioner.
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