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Abstract. Elliptic curve cryptography is today the prevailing approach
to get efficient public-key cryptosystems and digital signatures. Most of
elliptic curve signature schemes use a nonce in the computation of each
signature and the knowledge of this nonce is sufficient to fully recover
the secret key of the scheme. Even a few bits of the nonce over sev-
eral signatures allow a complete break of the scheme by lattice-based
attacks. Several works have investigated how to efficiently apply such
attacks when partial information on the nonce can be recovered through
side-channel attacks. However, these attacks usually target unprotected
implementation and/or make ideal assumptions on the recovered infor-
mation, and it is not clear how they would perform in a scenario where
common countermeasures are included and where only noisy informa-
tion leaks via side channels. In this paper, we close this gap by applying
such attack techniques against elliptic-curve signature implementations
based on a blinded scalar multiplication. Specifically, we extend the fa-
mous Howgrave-Graham and Smart lattice attack when the nonces are
blinded by the addition of a random multiple of the elliptic-curve group
order or by a random Euclidean splitting. We then assume that noisy
information on the blinded nonce can be obtained through a template
attack targeting the underlying scalar multiplication and we show how
to characterize the obtained likelihood scores under a realistic leakage
assumption. To deal with this scenario, we introduce a filtering method
which given a set of signatures and associated likelihood scores maximizes
the success probability of the lattice attack. Our approach is backed up
with attack simulation results for several signal-to-noise ratio of the ex-
ploited leakage.

1 Introduction

In 1985, Koblitz [Kob87] and Miller [Mil86] independently proposed to use the
algebraic structure of elliptic curves in public-key cryptography. Elliptic curve
cryptography requires smaller keys and it achieves faster computation and mem-
ory, energy and bandwidth savings. It is therefore well suited for embedded



devices. There exists several digital signature schemes based on the discrete loga-
rithm problem in the group of points of an elliptic curve (e.g. [ElG84,Sch91,Nat00]).
These schemes use a nonce k for each signed message and compute [k]P for some
public point P on the elliptic curve. It is well known that the knowledge of par-
tial information on the nonces used for the generation of several signatures may
lead to a total break of the scheme [HS01,Ble00].

Side-channel attacks are a major threat against implementations of cryp-
tographic algorithms [Koc96,KJJ99]. These attacks consists in analyzing the
physical leakage of a cryptographic hardware device, such as its power consump-
tion or its electromagnetic emanations. Elliptic curves implementations have
been subject to various side-channel attacks. In order to prevent the leakage
of partial information on the nonce k from the run of the algorithm that com-
putes scalar multiplication [k]P , many countermeasures have been proposed. To
thwart simple side-channel analysis, it is customary to ensure a constant (or
secret-independent) operation flow (see for instance [Cor99,JY03,IMT02]). To
prevent more complex attacks it is necessary to use a probabilistic algorithm to
encode the sensitive values such that the cryptographic operations only occur on
randomized data. In [Cor99], Coron proposed notably to randomize the scalar k
and the projective coordinates of the point P . These countermeasures are nowa-
days widely used and it is not very realistic to assume that a specific set of bits
from the nonces could be recovered in clear by a side-channel attacker.

Related works. Two famous attacks have been designed against elliptic-curve
signature schemes that exploit partial information on the nonces of several sig-
natures: the Bleichenbacher’s attack [Ble00] and the Howgrave-Graham and
Smart’s attack [HS01]. Nguyen and Shparlinski [NS02,NS03] proposed a proven
variant of Howgrave-Graham and Smart’s attack when a single block of con-
secutive bits is unknown to the adversary. Very few results on the security of
elliptic-curve signatures with noisy partial information on the nonces are known.
In [LPS04], Leadbitter, Page and Smart considered adversaries that can deter-
mine some relation amongst the bits of the secret nonces rather than their spe-
cific values (but this relation is known with certainty). This work was recently
extended by Faugère, Goyet and Renault in [FGR13]. In [BV15], Bauer and
Vergnaud designed an attack where the adversary learns partial information on
the nonces but not with perfect certainty (but their attack does not apply to
ECDSA or Schnorr signatures).

In [CRR03], Chari, Rao and Rohatgi introduced the so-called template at-
tacks which aim at exploiting all the available side-channel information when the
adversary can only obtain a limited number of leakage traces (which is the case
in our discrete logarithm setting since a nonce is used only once). Template at-
tacks require that the adversary is able to perform a profiling of the side-channel
leakage (e.g. based on a copy of the target device under her control). Template at-
tacks against ECDSA were proposed in [MO09,HMHW09,HM09,MHMP13] but
none of them considered a blinded implementation of the scalar multiplication.
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Our contributions. We consider practical attack scenario, where the target im-
plementation is protected with usual countermeasures and where the adversary
recovers some noisy information from a signature computation. We consider an
elliptic curve signature based on a regular scalar multiplication algorithm which
is protected using classic randomization techniques, such as the masking of pro-
jective coordinates and the scalar blinding [Cor99,CJ03]. Our contributions are
three-fold.

Firstly, we adapt the lattice-based attack proposed by Howgrave-Graham
and Smart [HS01] to the setting where the adversary gets partial information on
blinded nonces of the form k+ r · q where r is a small random integer (typically
of 32 bits) and q is the elliptic curve group order [Cor99]. We show that the
attack works essentially in the same way than the original one but the number
of known bits per nonce must be increased by the bit-length of the random r
and the number of unknown blocks of consecutive bits.

Afterwards, we consider a scenario where some noisy information is leaked on
the bits of the blinded nonces. Under a realistic leakage assumption, the widely
admitted multivariate Gaussian assumption, we show how to model the infor-
mation recovered by a template attacker. Specifically, we characterize the distri-
bution of the obtained likelihood scores with respect to a multivariate signal-to-
noise ratio parameter. We then introduce a filtering method which, given a set
of signatures and associated likelihood scores, select the blinded nonce bits to
construct the lattice a way to maximize the success probability of the attack. The
method relies on a criteria derived from the analysis of the Howgrave-Graham
and Smart’s attack and techniques from dynamic programming.

Finally, we consider a second implementation setting in which the scalar
multiplication is protected by the random Euclidean splitting method [CJ03].
In this setting, the nonces k are split as k = dk/re · r + (k mod r) for a (small)
random r and the adversary gets partial information on r, dk/re and (k mod
r). We show how this partial information can be use to directly get likelihood
scores on the nonce bits and we adapt our filtering method to this scenario.
For both blinding schemes, we provide some experimental results for our attack
based on several values for the multivariate SNR parameter. Our experiments
are simulation-based but one could equally use practically-obtained score vectors
from a template attack against an actual implementation. The obtained results
would be the same for similar multivariate signal-to-noise ratios.

2 Implementation and Leakage Model

2.1 ECDSA Signature Scheme

The ECDSA signature scheme [Nat00] relies on an elliptic curve E defined over
some finite field K where E(K), the group of K-rational points of E, has (al-
most) prime order q. The public parameters of the scheme include a descrip-
tion of E(K), a base point P ∈ E(K) that is a generator of the group (or
of the large prime-order subgroup), and a cryptographic hash function H :
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{0, 1}∗ 7→ [[0, 2`−1]], where ` := dlog2 qe. The secret key x is randomly sam-
pled over [[0, q − 1]] = [0, q) ∩ Z and the corresponding public key is set as the
point Q = [x]P , that is the scalar multiplication of P by x.

A signature σ = (t, s) of a message m ∈ {0, 1}∗ is then computed from the
secret key x as t = xcoord([k]P ) and s = k−1(h+t·x) mod q, where k is a random
nonce sampled over [[1, q − 1]] and h = H(m). One can then verify the signature
from the public key Q by computing u = s−1 h mod q and v = s−1 t mod q,
and checking whether xcoord([u]P + [v]Q) = t. A legitimate signature indeed
satisfies [u]P + [v]Q = [s−1(h+ t · x) · h mod q]P = [k]P .

2.2 Target Implementation

The attacks presented in this paper target an ECC-signature implementation
that relies on a regular scalar multiplication algorithm, which is assumed to be
binary in the sense that each loop iteration handles a single bit of the scalar.
A prominent example of such a binary regular algorithm is the Montgomery
ladder [Mon87] which is widely used for its security and efficiency features
[JY03,IMT02,GJM+11].

The target implementation is also assumed to include common countermea-
sures against side-channel attacks such as as the classic scalar blinding [Cor99]
and the Euclidean blinding [CJ03]:

Classic blinding scheme:

1. r
$←− [[0, 2λ − 1]]

2. a← k + r · q
3. return [a]P

Euclidean blinding scheme:

1. r
$←− [[1, 2λ − 1]]

2. a← bk/rc; b← k mod r
3. return [r]([a]P ) + [b]P

2.3 Leakage Model

The computation performed during one iteration of any regular binary scalar
multiplication is deterministic with respect to the current scalar-bit b and the two
points P 0 and P 1 in input of the iteration. The side-channel leakage produced
in such an iteration can hence be modeled as a noisy function ψ(b,P 0,P 1). In
the following we shall assume that for randomized points (P 0,P 1), the leakage
ψ(b,P 0,P 1) can be modeled by a multivariate Gaussian distribution:

ψ(b,P 0,P 1) ∼ N (mb, Σ) , (1)

where m0 and m1 are T -dimensional mean leakage vectors and where Σ is a
T × T covariance matrix. In what follows, we shall simply denote this leakage
ψ(b). The overall leakage of the scalar multiplication [a]P is hence modeled as(
ψ(a`a−1), . . . , ψ(a1), ψ(a0)

)
where we further assume the mutual independence

between the ψ(ai) (where the length `a of a depends on the randomization
scheme).
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2.4 Profiling Attack

We consider a profiling attacker that owns templates for the leakage of a scalar
multiplication iteration w.r.t. the input bit. Based on these templates, the at-
tacker can mount a maximum likelihood attack to recover each bit of the scalar
with a given probability. More precisely, the considered attacker can

– measure the side-channel leakage of a scalar multiplication [a]P ,
– divide the measured traces into sub-traces ψ(ai),
– compare the measured leakage with templates for ψ(0) and ψ(1), and deter-

mine the probability that ai = 0 or ai = 1 given an observation ψ(ai).

In particular, we consider the ideal case where the attacker knows the exact
distribution of ψ(0) and ψ(1), namely he knows the leakage parameters m0,
m1 and Σ. Although this might be viewed as a strong assumption, efficient
techniques exist to derive precise leakage templates in practice, especially in our
context where the key-space is of size 2 (b ∈ {0, 1}). Even if model-error might
lower the probability of correctly recovering a target bit in practice, it would not
invalidate the principle of our attacks.

Considering the above leakage model, the probability that the bit ai equals
b ∈ {0, 1} given a leakage sample ψ(ai) = xi satisfies

pb(xi) := Pr(ai = b | ψ(ai) = xi) ∝ exp
(
− 1

2
(xi −mb)

t ·Σ−1 · (xi −mb)
)
, (2)

where ∝ means is equal up to a constant factor, such that p0(xi) + p1(xi) = 1.
Let us define the multivariate signal-to-noise ratio (SNR) θ as

θ = Λ · (m0 −m1) , (3)

where Λ is the Cholesky decomposition matrix of Σ−1, that is the upper trian-
gular matrix satisfying Λt ·Λ = Σ−1. This decomposition always exists provided
that Σ is full-rank (i.e. no coordinate variable of the multivariate Gaussian is
the exact linear combination of the others) which can be assumed without loss
of generality. We have the following result:

Proposition 1. For every xi ∈ Rt

p0(xi) ∝
{

exp
(
− 1

2y
t
iyi
)

if ai = 0

exp
(
− 1

2 (ytiyi + 2θtyi + θtθ)
)

if ai = 1
(4)

where yi = Λ · (xi−mai). Moreover if xi follows a distribution N (mai , Σ), then
yi follows a distribution N (0, IT ), where IT is the identity matrix of dimension
T .

The above proposition shows that, for any T -dimensional leakage distribu-
tion, the outcome of the considered template attack only depends on the mul-
tivariate SNR θ. That is why, in Section 6 we provide attack experiments for
several values of θ. In practice, one could evaluate the vulnerability of an imple-
mentation to our attack by constructing leakage templates for ψ(0) and ψ(1),
deriving the corresponding multivariate SNR θ, and simulating probability scores
based on Proposition 1.

5



3 Lattice Attack with Partially-Known Blinded Nonces

In this section, we recall the lattice attack by Howgrave-Graham and Smart
[HS01] against ECDSA with partially known nonces, and we extend it to the case
where the attacker has partial information on the blinded nonces. The attacker
is assumed to collect n+ 1 signatures σ0, σ1, . . . , σn, for which he knows some
bits of the blinded nonces a0, a1, . . . , an. These blinded nonces are defined as
ai = ki + ri · q, where ki is the original (non-blinded) nonce, and ri is the λ-bit
random used in the blinding of ki. Additionally, we denote by ti and si the two
parts of the ECDSA signature σi = (ti, si) and by hi the underlying hash value.

3.1 Attack Description

By definition, we have si − a−1i (hi + tix) ≡ 0 mod q for every signature σi. We
can then eliminate the secret key x from the equations since we have

x ≡ aisi − hi
ti

mod q =⇒ a0s0 − h0
t0

≡ aisi − hi
ti

mod q (5)

for every i ∈ {1, . . . , n} . The above can then be rewritten as

ai +Aia0 +Bi ≡ 0 mod q (6)

where Ai = − s0tisit0
mod q and Bi = h0ti−hit0

t0si
mod q.

The goal of the attack is to use the information we have on each ai to derive
a system of equations which can be reduced to a lattice closest vector problem
(CVP). Let us assume we can obtain several blocks of consecutive bits so that
ai can be expressed as:

ai =

N∑
j=1

xi,j2
κi,j + x′i (7)

where x′i is known, and xi,1, xi,2, . . . , xi,N are the N unknown blocks. We will
denote by µi,j the bit-length of each xi,j so that we have 0 ≤ xi,j < 2µi,j .

We can now rewrite (6) to obtain a system of linear equations in the xi,j as
follows:

xi,1 +

N∑
j=2

αi,jxi,j +

N∑
j=1

βi,jx0,j + γi = ηiq (8)

for some known coefficients αi,j , βi,j , γi ∈ [[0, q − 1]], and unknown integers xi,j
and ηi. Let C ∈Mn,N(n+1)−n(Z) be the matrix defined as

C =


α1,2 · · · α1,N β1,1 β1,2 · · · β1,N

α2,2 · · · α2,N β2,1 β2,2 · · · β2,N
. . .

...
...

. . .
...

αn,2 · · · αn,N βn,1 βn,2 · · · βn,N

 (9)
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and let x ∈ ZN(n+1)−n and η ∈ Zn be the (column) vectors defined as

x = (x1,2, . . . , x1,N | x2,2, . . . , x2,N | . . . | xn,2, . . . , xn,N | x0,1, . . . , x0,N )t ,

η = (η1, η2, . . . , ηn)t .

According to (7), we have

C · x− q · η = −(γ1 + x1,1, γ2 + x2,1, . . . , γn + xn,1)t (10)

We consider the lattice L spanned by the columns of the following matrix:

M =

(
C −q · In

−IN(n+1)−n 0

)
(11)

where In and IN(n+1)−n denote the identity matrices of dimension n and N(n+

1)− n respectively. In particular, the vector yt = −(xt|ηt) ∈ ZN(n+1) yields the
following lattice vector:

M · y = (γ1 + x1,1, γ2 + x2,1, . . . , γn + xn,1 | xt )t (12)

which might be close to the non-lattice vector

v = (γ1, γ2, . . . , γn, 0, 0, . . . , 0)t (13)

It is indeed easy to check that the Euclidean distance ‖M · y − v‖ satisfies

‖M · y − v‖2 =
∑

0≤i≤n
1≤j≤N

x2i,j ≤
∑

0≤i≤n
1≤j≤N

22µi,j (14)

If the distance is small enough, and if the lattice dimension (n+ 1)N is not
too high, one can find M · y as the closest lattice vector to v and hence get the
solution to the system. From the latter solution, one can recover the randomized
nonces ai (by (7)) which in turn yields the secret key x (by (5)).

Normalization. We consider unknown blocks xi,j that may be of different bit-
lengths µi,j . Therefore, we shall normalize the matrix M in order to have the
same weight in all the coordinates of M ·y, which shall lead to a better heuristic
on the resolution of the lattice problem. To do so, let us define ρi,j ∈ Z as

ρi,j =
1

2µi,j
. (15)

We then consider the lattice L′ spanned by the rows of the matrix M ′ = D ·M ,
where D denotes the following diagonal matrix:

D = D
(
(ρi,1)ni=1

∣∣ (ρ1,j)
N
j=2

∣∣ (ρn,j)
N
j=2

∣∣ (ρ0,j)
N
j=1

)
(16)
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where D is the function mapping a vector to the corresponding diagonal matrix.3

The non-lattice vector v′ is then defined as

v′ = D · v = (ρ1,1γ1, ρ2,1γ2, . . . , ρn,1γn, 0, 0, . . . , 0)t

and the target closest lattice vector is M ′ · y. The distance between these two
vectors then satisfies

‖M ′ · y − v′‖ = ‖D · (M · y − v)‖ =
( ∑

0≤i≤n
1≤j≤N

(ρi,jxi,j)
2
) 1

2 ≤
√

(n+ 1)N . (17)

3.2 Attack Parameters

We make the classic heuristic assumption that the CVP can be efficiently solved
as long as the dimension is not too high and the distance is upper-bounded by

‖M ′ · y − v′‖ ≤ c0
√

dim(M ′) det(M ′)
1

dim(M′) , (18)

for some constant c0 = 1/
√

2πe ' 0.24197 (see for instance [FGR13]). In our
attacks, we will actually use the polynomial-time LLL [LLL82] algorithm in order
to recover the lattice vector M ′ ·y. This gives a slightly worse inequality in (18)
and the CVP can be efficiently solved for smaller values c0 that may actually
depend on the dimension of the lattice.

Let us denote by µi =
∑
j µi,j the number of unknown bits in ai, and by

µ =
∑
i µi the total number of unknown bits. Let us also denote by δi = `+λ−µi

the number of known bits in ai, and by δ =
∑
i δi = (n + 1)(` + λ) − µ the

total number of known bits. The dimension of the matrix M ′ is (n + 1)N and
its determinant is det(M ′) = det(M) · det(D) = qn · 2−µ. By (17), the above
inequality is satisfied whenever we have4

1 ≤ c0(qn · 2−µ)
1
Nb ⇐⇒ µ+ c1Nb ≤ n · log2(q) < n` , (19)

where Nb = (n+ 1)N denotes the total number of unknown blocks in the n+ 1
signatures, and where c1 is a constant defined as c1 = − log2(c0) > 0. We can
deduce a sufficient condition on the number of bits δ that must be known for
the attack to succeed:

δ ≥ `+ (n+ 1)λ+ c1Nb ⇐⇒
n∑
i=0

(δi − λ− c1N) ≥ ` . (20)

This means that in order to mount a lattice attack against ECDSA protected
with classic randomization of the nonce, one must recover at least (λ+c1N) bits

3 In practice, we might take ρi,j = 2µmax−µi,j where µmax = maxi,j µi,j to work over
the integers.

4 In [HS01], Howgrave-Graham and Smart overlooked the linear dependency in Nb in
(19) as they assumed c0 = 1. As we show in Section 3.3, this increase in the number
of known bits is not an artifact of the technique but is actually necessary.
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of each blinded nonce plus some extra bits, where the total amount of extra bits
must reach `.

Varying number of blocks. For the sake of clarity, we described the attack by
assuming a constant number N of unknown blocks for all the signatures. Note
that the attack works similarly with a varying number of blocks N0, N1, . . . , Nn
and the above condition keep unchanged. To see this, simply consider the above
description with N = maxiNi and µi,j = 0 for every j > Ni. Note however that
for different block sizes, we have Nb =

∑n
i=0Ni instead of Nb = (n+ 1)N .

3.3 Experiments

The CVP can be solved using Babai’s rounding algorithm [Bab86], but in prac-
tice one shall prefer the embedding technique from [GGH97]. This technique re-
duces the CVP to the shortest vector problem (SVP), by defining the embedding
lattice Lemb spanned by the columns of M ′ v

0 · · · 0 −K

 (21)

where K is a constant taken to be of the same order as the greatest coefficient
of M ′. Informally, if M ′ · y ∈ L is close to v, then w =

(
(M ′ · y − v)t | K

)t
is a short vector of the embedding lattice Lemb. By applying LLL to Lemb, one
can therefore recover w as the shortest vector in the reduced basis, from which
M ′ · y is easily deduced.

In order to validate the constraint on the parameters (see (20)) and determine
the actual value of c1, we experienced the attack using the embedding technique
with different set of parameters. Specifically, we used the ANSSI 256-bit elliptic
curve (` = 256), different random sizes (λ ∈ {0, 16, 32, 64}), different numbers
of signatures ((n + 1) ∈ {5, 10, 20}), as well as different numbers of blocks per
signature (N ∈ {1, 2, 5, 10}). In each experiments, the blocks were randomly
distributed in the blinded nonces (by randomly sampling the starting index
among possible ones). Additionally, we considered that the number of bits per
block could vary according to a standard deviation parameter σ as follows. The
bit-length δi,j of each block is randomly sampled according to the distribution
N (m,σ) with m = δ/Nb, where we recall that δ =

∑
i,j δi,j is the total number of

known bits and Nb = (n+ 1)N is the total number of unknown blocks. Samples
are then rounded to the nearest integer with rejection for samples lower than 1
(minimum number of bits per block). Finally, samples are randomly incremented
or decremented until they sum to the desired value δ. In a nutshell, taking a
standard deviation σ = 0 makes all the δi,j ’s equal to m. On the other hand,
taking a standard deviation to σ ≈ m makes the δi,j ’s to vary over [[1, 2m]]
(with a few ones beyond 2m). For our experiments, we took σ = 0.1m (slight
deviation), σ = 0.5m (medium deviation), and σ = m (strong deviation).
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In each setting, the number of known bits is set to δ = ` + (n + 1)λ + τ for
a varying margin τ that shall correspond to c1Nb. For each tested value of τ ,
we record the success rate of the attack over 100 trials. Table 1 summarizes the
obtained ratio τ95/Nb where τ95 is the margin required to obtain a 95% success
rate. This ratio gives a good estimation of the practical value of c1.

Table 1. Ratio τ95/Nb for various set of parameters.

(n+ 1) = 5 (n+ 1) = 10 (n+ 1) = 20

Nb = 5 10 25 50 10 20 50 100 20 40 100

λ = 0 (slight dev) 2.80 2.50 2.36 2.90 3.90 3.55 3.58 4.62 5.20 4.90 5.26
λ = 0 (medium dev) 3.60 2.60 2.56 2.90 4.10 3.30 3.52 3.57 4.85 4.42 4.51
λ = 0 (strong dev) 3.20 2.50 2.28 2.54 4.10 2.95 3.14 3.07 5.25 4.17 3.93

λ = 16 (slight dev) 3.40 2.80 2.44 2.90 3.80 3.35 3.62 4.75 5.05 4.95 5.5
λ = 16 (medium dev) 3.40 2.60 2.40 3.02 4.20 3.15 3.40 4.20 5.25 4.77 4.96
λ = 16 (strong dev) 3.60 2.50 2.36 2.66 3.70 3.05 3.24 3.29 5.25 4.67 4.28

λ = 32 (slight dev) 3.80 2.70 2.68 3.06 3.80 3.45 3.74 4.71 4.75 4.70 5.17
λ = 32 (medium dev) 3.40 2.60 2.60 2.68 3.90 3.10 3.60 4.07 4.95 4.50 5.12
λ = 32 (strong dev) 3.00 2.90 2.36 2.60 4.00 3.05 3.32 3.41 4.90 4.73 4.62

λ = 64 (slight dev) 3.00 2.90 2.52 2.98 3.80 3.35 3.44 4.72 4.70 4.77 5.24
λ = 64 (medium dev) 3.20 2.80 2.36 2.98 3.70 3.55 3.68 4.31 4.80 4.60 5.23
λ = 64 (strong dev) 3.20 2.80 2.44 2.72 3.50 3.40 3.68 3.78 5.45 4.30 4.75

We observe that for the tested parameters, the experimental value of c1 lies
between 3 and 5 most of the time. We also observe that the size of the random (λ)
and the deviation on the number of bits per known blocks have a small impact
on the resulting c1, whereas the number of signatures and the total number of
blocks have a stronger impact.

4 Attacking Implementations with Classic Blinding

In this section we focus on attacking implementations of elliptic-curve signatures
that leak side-channel information on the blinded nonce as described in Section
2. In this model, one performs a template attack on the randomized scalar mul-
tiplication and recovers a probability score Pr(ai,j = 0) for every bit ai,j of every
blinded nonce ai. The goal is then to select a set of bits among all the recovered
noisy bits that has the required properties for solving the associated lattice sys-
tem and that has the highest possible probability of success (i.e. all the selected
bits must have been correctly guessed based on the probability scores).

For the lattice construction, we shall use the most probable value âi,j of each
bit ai,j , that is

âi,j = argmax
b∈{0,1}

Pr(ai,j = b) , (22)

and we shall denote by pi,j the probability that the bit ai,j is correctly guessed,
that is

pi,j = Pr(âi,j = ai,j) = max
b∈{0,1}

Pr(ai,j = b) . (23)
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Let I denote the set of indices corresponding to the selected signatures {σi}i∈I
and let Ji denote the set of indices corresponding to the selected guessed bits
{âi,j}i∈Ji within a random nonce for every i ∈ I. Then we will use the bits
{âi,j |i ∈ I, j ∈ Ji} to construct the lattice. The CVP’s algorithm will only
succeed in recovering the right solution if all these bits are correctly guessed,
namely if âi,j = ai,j for every i ∈ I and j ∈ Ji. The probability p that these
success events happen satisfies

p =
∏
i∈I

pi with pi =
∏
j∈Ji

pi,j , (24)

where pi is the probability that all the guessed bits within the random nonce ai
are correct. Our goal is hence to define the sets I, and Ji for every i ∈ I such
that the success probability is maximal and such that the prerequisites of the
lattice attack are well met.

Let Ni denote the number of unknown blocks in the blinded nonce ai, i.e. the
number of non-adjacent blocks of indices j /∈ Ji. The dimension ∆ of the lattice
satisfies ∆ =

∑
i∈I Ni (see Section 4). Let ∆max be the maximal dimension of a

lattice for which the attack can be practical, i.e. the LLL-reduction can be done
in a reasonable time.5 The selected bits must then satisfy∑

i∈I
Ni ≤ ∆max . (25)

Following Section 4, we denote by δi = |Ji| the number of recovered bits in the
nonce ai. We recall the necessary condition for the lattice reduction to work:∑

i∈I
(δi − λ− c1Ni) ≥ ` . (26)

From the two above conditions, a requirement for the selected bits within a
blinded nonce ai is to satisfy:

δi − λ
Ni

>
`

∆max
+ c1 . (27)

Otherwise, the contribution in terms of known bits is too small with respect to
the increase of the lattice dimension. In other words, if the above condition is
not satisfied then the maximal dimension ∆max is reached before the number of
necessary known bits.

The above condition on the pair (δi, Ni) is not sufficient in itself as it does
not specify how to select the sets Ji maximizing the success probability. Our
goal is now to define a sound criterion on each signature that will allow us to

5 For our experiments, we took ∆max = 256 for which SageMath (using the fplll
library) performs the reduction within 20 seconds on a 2.0 GHz Intel Xeon E5649
processor.
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select the best sets Ji i.e. the set maximizing the success probability defined
in (24). Maximizing this probability is equivalent to maximizing the log-success
probability log(p) =

∑
i∈I log(pi), and maximizing the latter sum while satisfy-

ing (26) can be done by selecting the sets Ji with maximal ratio log pi
δi−λ−c1Ni . We

hence look for the set of indices Ji that maximizes the following value

γi = p
1

δi−λ−c1Ni
i . (28)

Let f : N 7→ d `·N
∆max

e+c1N +λ be the function that define the minimum number
of known bits from a number of unknown blocks for condition (27) to hold. For
each signature σi and for each possible number of blocks N ∈ J1, NmaxK we
define:

Ji(N) = argmax
J;|J|=f(N)
g(J)≤N

( ∏
j∈Ji

pi,j

)
, (29)

where the function g(J) gives the number of unknown blocks in the set J .
We then define

pi(N) =
∏

j∈Ji(N)

pi,j and γi(N) = pi(N)
1

f(N)−λ−c1N . (30)

Eventually, we shall set

Ni = argmax
N

γi(N) , γi = γi(Ni) , Ji = Ji(Ni) , and δi = f(Ni) .

Remark 1. At this point, a natural idea is to take I as the set of indices with the
highest values γi. However, this strategy is not reliable in practice. Indeed, it can
occur that a bad guess âi,j 6= ai,j comes with a strong probability pi,j (i.e. one
gets a strong confidence in the wrong choice). Since each γi aggregates many
probabilities pi,j , the occurrence of such an extreme event is only marginally
correlated to the actual value of γi.

In view of the above remark, our approach in practice is to try several random
combinations of signatures, namely to take I uniformly at random among the
subsets of signatures (tightly) satisfying the constraint (26).

Evaluating Equation (29). We now explain how to evaluate the function

N 7→ max
J;|J|=f(N)
g(J)≤N

( ∏
j∈Ji

pi,j

)
(31)

for some family of probabilities pi,0, pi,1,. . . , pi,`+λ−1 (getting the argmax is then
straightforward). For this purpose, we define maxp as the function mapping a
triplet (j, δ,N) to the above max but with the condition J ⊆ [[j, ` + λ − 1]],
|J | = δ, and g(J) ≤ N , so that the target function in (31) can be rewritten as:

N 7→ maxp(0, f(N), N) (32)
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The maxp function can then be evaluated by the following recurrence relation:

maxp(j, δ,N) = max
(
block(j, δ,N), next(j, δ,N)

)
(33)

where

block(j, δ,N) = max
w∈[[1,δ]]

( j+w−1∏
k=j

pi,k

)
maxp(j + w + 1, δ − w,N − 1) , (34)

next(j, δ,N) = maxp(j + 1, δ,N) . (35)

The term block(j, δ,N) in the above max represents the case where the next w
bits are added to the set J , while the term next(j, δ,N) is for the case where the
next bit is not taken in the set J .6 The tail of the recursion is fourfold:

maxp(j, δ,N) =


0 if j + δ > `+ λ∏`+λ−1
k=j pi,k if j + δ = `+ λ

0 if N = 0 and δ > 0

1 if δ = 0

(36)

Remark 2. In order to get a higher success probability, we can also use exhaus-
tive search to guess certain bits in a signature. In fact, between two blocks of
bits selected by the block function, we can find a small block of bits with poor
probability score which will discard the chance of selecting a larger unique block.
To tackle this issue and improve the probability of success, we can use exhaustive
search to recover these bits with probability 1 (independently of the underlying
pi,j values). This improvement of our method is described in Appendix A.

5 Attacking Implementations with Euclidean Blinding

In this section we focus on attacking implementations protected with Euclidean
blinding [CJ03], i.e. for which the nonces are decomposed as ki = ai · ri + bi for
i ∈ {1, . . . , n} where ri is picked uniformly at random over J1, 2λ− 1K, ai = dkiri e
and bi = ki mod ri (see Section 3). We suppose that the attacker can recover
the probability score for every bit of ai, ri and bi for i ∈ {1, . . . , n} with the
same template attack as in the previous section.

One approach to mount an attack is to use the information we have on each
nonce to derive a system of equations which we may solve using a lattice attack.
The equations are of degree 2 and the number of involved monomials increases
quadratically with the number of unknown blocks. A natural idea is to use the
famous Coppersmith method [Cop96b,Cop96a] which is a family of lattice-based
techniques to find small integer roots of polynomial equations. The method gen-
erates more non-linear equations by multiplication of several non-linear equations

6 A particular case occurs when j = 0 for which the recursive call to maxp in block
does not decrement N since no unknown block appears before the index j = 0.
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before the linearization step in order to improve attacks. However, in this case
the structure of the variables is complex and even using polynomials of small
degree leads to a lattice of very large dimension.

Our approach is different and practical: from the recovered noisy bits, one can
compute probability scores for the individual bits of the nonces ki themselves.
If the probability that the individual bits in ai, ri and bi for i ∈ [[1, n]] are all
correctly guessed is equal to 1/2 + ε, for some ε > 0, it can be checked that the

obtained probabilities Pr(k̂i,j = ki,j) that the j-th bit of the nonce ki is correctly
guessed tends towards 1/2 quickly as j grows towards the middle bit `/2.
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Fig. 1. Estimated error probability of individual nonce bits

To show this fact, we ran the following experiments:

– for several bias ε ∈ {1/4, 1/8, . . . , 1/24}, we picked uniformly at random
10,000 nonces ki and random ri (for λ = 16) and we computed the corre-
sponding ai and bi such that ai · ri + bi = ki;

– we computed noisy versions of (ãi, r̃i, b̃i) of (ai, ri, bi) as if they were trans-
mitted over a binary symmetric channel with crossover probability ε and we
computed k̃i = ãi · r̃i + b̃i;

– for each bias and each individual bit, we computed the proportion of k̃i,j
that matches ki,j .

The estimated error probability Pr(k̃i,j 6= ki,j) is plotted in Figure 1 for the first
64 bits (in log-scale for the x-axis). These experiments show that the probabilities

Pr(k̂i,j = ki,j) tends towards 1/2 exponentially as j comes close to the middle
bit `/2. For this reason, in the case of the Euclidean blinding, we will only focus
on two particular blocks of ki for each signature: the block of δi,1 least significant
bits (lsb) and the block of δi,2 most significant bits (msb), for some δi,1, δi,2. In
this model, the necessary condition for the lattice reduction to work (see (20))
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becomes: ∑
i∈I

(δi − c1) ≥ ` where δi = δi,1 + δi,2, (37)

since λ = 0 and Ni = 1 (there is a single unknown block per nonce), implying:

δi ≥
⌈

`

∆max

⌉
+ c1 (38)

as a sound condition on each signature. As seen in the previous sections, the CVP
algorithm will only succeed in recovering the right solution if the two blocks of
ki are correctly guessed for each signature. In order to select the blocks and
their respective sizes δi,1, δi,2, we use an approach similar to the one proposed
in Section 5.

Let Bi,1 and Bi,2 denote the blocks of δi,1 lsb and δi,2 msb of ki. The guessed
blocks are defined as:

B̂i,j = argmax
x∈{0,1}δi,j

Pr(Bi,j = x) (39)

for j ∈ {1, 2}. The block probabilities are then defined as

pi,j = Pr(Bi,j = B̂i,j) = max
x

Pr(Bi,j = x)

for j ∈ {1, 2} and the probability for one signature is pi = pi,1 · pi,2. Then, we

select δi,1 and δi,2 such that they maximize the value γi = p
1

δi−c1
i .

Clearly, γi depends on the sizes δi,1 and δi,2 of the blocks Bi,1 and Bi,2. We
shall denote γi(δi,1, δi,2) to see γi as a function of these sizes. We then set δi,1
and δi,2 as (δi,1, δi,2) = argmax(δ1,δ2) γi(δ1, δ2) so that γi = max(δ1,δ2) γi(δ1, δ2).
Unlike for the classic blinding (see Remark 1), the number of selected bits δi
per signature can be small (it just has to be greater than c1). Therefore, it is
more relevant to select the signatures according to the γi value in the case of
the Euclidean blinding. In order to still allow several selection trials, we suggest
a hybrid approach: we first randomly pick half of the available signatures and
then select a subset I among them such that the values (γi)i∈I are the highest,
and such that the constraint (37) is well (tightly) satisfied.

Computation of block probabilities. We now explain how to evaluate (39),
i.e. how to evaluate the probabilities Pr(Bi,1 = x) and Pr(Bi,2 = x). For the
sake of simplicity, we drop the index i, namely we consider a nonce k = a · r+ b
for which we know some probability score Pr(aj = 1), Pr(rj = 1) and Pr(bj = 1)
for the bits of a, r, and b. Moreover, for some integer v, we shall denote v[j0:j1] =
b v
2j0
c mod 2j1−j0 , i.e. the integer value composed of the j0-th bit to the (j1−1)-

th bit of v. It is easy to check that the block B1 = k[0:δ1] only depends on the δ1
lsb of a, r and b. We can then compute the probability Pr(B1 = x) as:

Pr(B1 = x) =
∑
x,y,z

χ1(x,w, y, z)

δ1−1∏
j=0

Pr(aj = wj) Pr(rj = yj) Pr(bj = zj) (40)
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with χ1(x,w, y, z) = 1 if x = (w · y + z)[0:δ1] and χ(x,w, y, z) = 0 otherwise.
For the case of the block B2 = k[`−δ2:`], we shall denote by ah and rh the δ

msb of a and r respectively for some δ (i.e. ah = a[`−λ−δ:`−λ] and rh = r[λ−δ:λ]).
We then have

k[`−2δ:`] = ahrh + c where c =

⌊
a · r + b− ahrh2`−2δ

2`−2δ

⌋
. (41)

It can be checked that the carry c is lower than 2δ+1. Then if we take δ sufficiently
greater than δ2, we get B̃2 = B2 with high probability, where B̃2 denotes the δ2
msb of ahrh (i.e. B̃2 = (ahrh)[2δ−δ2:2δ]). We then approximate

Pr(B2 = x) ≈ Pr(B̃2 = x) =

22δ−δ1∑
x0=0

Pr(ahrh = x0 + 22δ−δ1x) , (42)

where the probability mass function of ahrh satisfies

Pr(ahrh = x) =
∑
w,y

χ2(x,w, y)

δ−1∏
j=0

Pr(a`−λ−δ+j = wj) Pr(rλ−δ+j = yj) (43)

where χ2(x,w, y) = 1 if x = w · y and χ2(x,w, y) = 0 otherwise.
The above approximation is sound as long as we take δ sufficiently greater

than δ2. Since we have c ≤ 2δ+1, it can be checked that the approximation
error is upper bounded by 2δ1+1−δ. We shall then take δ such that the latter
approximation error does not impact the selection of the maximal probability
Pr(B2 = x).

6 Experimental Results

This section provides experimental results: we have implemented our attacks
against ECDSA on the ANSSI 256-bit elliptic curve (i.e. ` = 256) with the
two considered blinding schemes for 3 different random sizes, specifically λ ∈
{16, 32, 64}. We considered a three-dimensional leakage model with unbalanced
multivariate SNR θ = α · (0.5, 1, 2), where α ∈ {1.5, 2.0}. For each setting,
the used signatures and blinded nonces were randomly generated, and the corre-
sponding likelihood scores were simulated from the multivariate SNR θ as shown
in Proposition 1. We then applied our filtering methods to select the best blocks
of bits from which we constructed the Howgrave-Graham and Smart lattice with
the constant c1 set to 4, and we checked whether the correct solution was well re-
trieved by the CVP algorithm. We experimented our attacks with nsig available
signatures and ntr trials for the subset selection (and the underlying lattice re-
duction) for (nsig, ntr) ∈ {(10, 1), (20, 5), (20, 10), (100, 10), (100, 50), (100, 100)}.

The obtained success rates are reported in Table 2. The lattice reduction
worked almost every time the selected bits were correctly guessed (we noticed
only a few lattice failures in all the performed experiments). These results suggest
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Table 2. Success rate of our attacks.

(nsig, ntr) (10,1) (20, 5) (20, 10) (100, 10) (100, 50) (100, 100)

Classic blinding

α = 1.5
λ = 16 13.5 % 38.3 % 54.0 % 70.1 % 99.0 % 99.9 %
λ = 32 3.5 % 13.6 % 22.7 % 27.8 % 73.9 % 91.9 %
λ = 64 0.2 % 0.6 % 1.2 % 1.5 % 6.2 % 11.7 %

α = 2
λ = 16 91.2 % 99.9 %
λ = 32 90.5 % 99.5 % 100 % 100 % 100 % 100 %
λ = 64 85.7 % 99.3 %

Euclidean blinding

α = 1.5
λ = 16
λ = 32 0 % 0 % 0 % 0 % 0 % 0 %
λ = 64

α = 2
λ = 16 0.7 % 3.1 % 5.8 % 42.8 % 76.8 % 83.3 %
λ = 32 0.1 % 0.4 % 0.8 % 41.1 % 74.9 % 82.6 %
λ = 64 0.1 % 0.4 % 1.0 % 40.2 % 75.0 % 82.8 %

that the classic blinding is more sensitive to our attack than the Euclidean
blinding. However, one should note that the classic blinding is inefficient when
the group order is sparse. We also observe that for the Euclidean blinding, the
random size λ has a small impact on the resulting success rate, which is not
surprising since it can be checked from Section 5 that this parameter is not
expected to play a significant role.
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A Using Exhaustive Search

In order to increase the success probability of our attack, we can make use
of exhaustive search to guess certain bits in a signature. Specifically, we can
select m bits among all the signatures for which we shall try the 2m possible
values and apply the previously defined lattice attack. To select the guessed
bits in a signature we follow the same approach as previously but with a new
dimension for the parameters: the number of bits allowed to be exhaustively
guessed. Specifically, we shall compute the optimal parameters γi, Ji and Ni for
each possible mi ≤ mmax, where mi is the number of bits exhaustively guessed
in the i-th signature and mmax is the maximal value for m. We hence get a new
constraint to the selection of the signatures, that is:

n∑
i=0

mi ≤ mmax . (44)

Let us introduce the function πi defined for every J ⊆ [[0, ` + λ − 1]] and
m ∈ N as:

πi(J,m) = max
J′⊆J

|J′|=|J|−m

∏
j∈J′

pi,j . (45)

Namely, πi(J,m) is the maximal product of |J |−m probabilities among (pi,j)j∈J .
This gives the probability of correctly guessing the bits (ai,j)j∈J while m among
them are exhaustively guessed. We then define

Ji(m,N) = argmax
J;|J|=f(N)
g(J)≤N

πi(J,m) (46)
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and

pi(m,N) = πi(Ji(m,N),m) , γi(m,N) = pi(m,N)
1

f(N)−λ−c1N , (47)

from which we set

γi(m) = max
N

γi(m,N) , Ni(m) = argmax
N

γi(m,N) , and Ji(m) = Ji(m,Ni(m)) .

(48)
Eventually, we select I and (Ji(mi))i∈I such that (44) and

` ≤
∑
i∈I
|Ji(mi)| − λ− c1Ni (49)

are both satisfied.

Evaluating Equation (46). We now explain how to evaluate the function

(m,N) 7→ max
J;|J|=f(N)
g(J)≤N

πi(J,m) , (50)

from which getting the argmax is then straightforward. For such a purpose, we
extend the maxp function of Section 4 to deal with the m parameter i.e. the
number of bits that can be exhaustively guessed. Here, maxp maps a quadruple
(j, δ,N,m) to the above max with the condition J ⊆ [[j, `+ λ− 1]], |J | = δ, and
g(J) ≤ N , so that the target function in (50) can be rewritten as:

(m,N) 7→ maxp(0, f(N), N,m) (51)

The difference with the original method is that in a recursive call to the maxp
function, one can spend v out of m bits to be exhaustively guessed. Specifically,
the recurrence relation becomes:

maxp(j, δ,N,m) = max(block(j, δ,N,m), next(j, δ,N,m)) (52)

with

block(j, δ,N,m) = max
w∈[[1,δ]]
v∈J0,mK

πi(Jj, j + w − 1K, v)

×maxp(j + w + 1, δ − w,N − 1,m− v)

next(j, δ,N,m) = maxp(j + 1, δ,N,m)

The recursion tail is pretty similar to the original case:

maxp(j, δ,N,m) =


0 if j + δ > `+ λ

πi(Jj, `+ λK,m) if j + δ = `+ λ− 1

0 if N = 0 and δ > 0

1 if δ = 0

(53)

Only the second case changes, where the m left bits of exhaustive search are
spend for the final block.
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