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Abstract—Time Petri nets (TPNs) (Merlin 1974) are a classical
extension of Petri nets with timing constraints attached to
transitions, for which most verification problems are undecidable.
We consider TPNs under a strong semantics with multiple
enabling of transitions. We focus on a structural subclass of
unbounded TPNs, where the underlying untimed net is free
choice, and show that it enjoys nice properties under a multi-
server semantics. In particular, we show that the questions of
fireability (whether a chosen transition can fire), and termination
(whether the net has a non-terminating run) are decidable for this
class. We then consider the problem of robustness under guard
enlargement (Puri et al. 2000), i.e., whether a given property is
preserved even if the system is implemented on an architecture
with imprecise time measurement. This question was studied
for TPNs in (Akshay et al. 2016), and decidability of several
problems was obtained for bounded classes of nets. We show
that robustness of fireability is decidable for unbounded free
choice TPNs with a multi-server semantics.

I. INTRODUCTION

Modern systems are composed of several distributed com-
ponents that work in real-time to satisfy a given specifica-
tion. This makes them difficult to reason about manually
and encourages the use of formal methods to analyze them
automatically. This in turn requires the development of models
that capture all the features of a system and still allow efficient
algorithms for analysis. Further, to bring formal models closer
to real world implementions, it is important to design robust
models, i.e., models that preserve their behavior or at least
some important properties under imprecise time measurement.

In this paper, we consider Petri nets extended with time
constraints. These models have been used for modeling real-
time distributed systems, but for timed variants of Petri nets,
many basic problems are usually undecidable or algorithmi-
cally intractable. Our goal is to consider structural restrictions
which allow to model features such as unbounded resources
as well as time deadlines while remaining within the realm of
decidability and satisfying some robustness properties.

Time Petri nets (TPNs) [16] are a classical extension of
Petri nets in which time intervals are attached to transitions
and constrain the time that can elapse between the enabling
of a transition and its firing date. In such models, the basic
verification problems considered include: reachability, i.e.,
whether a particular marking (or a configuration) can be
reached in the net, termination, i.e., whether there exists
an infinite run in the net, boundedness, whether there is a
bound on the number of tokens in the reachable markings,
and fireability, i.e., whether a given transition is fireable in
some execution of the net. It turns out that all these basic

problems are in general undecidable [15] for TPNs, though
they are decidable for the untimed version of Petri nets. The
main reason is that TPNs are usually equipped with an urgent
semantics: when the time elapsed since enabling of a transition
reaches the maximal value of its interval, a transition of the
net has to fire. This semantics breaks monotony (the behaviors
allowed from a marking, and from a larger marking can be
completely different). Indeed, with a TPN, one can easily
encode a two-counter machine, yielding undecidability of most
of verification problems (see [15], [19] for such an encoding).
Decidability can be obtained by restricting to the subclass of
bounded TPNs, for which the number of tokens in all places
of accessible markings is bounded by some constant. Another
way to obtain decidability is to weaken the semantics [19], or
restrict the use of urgency [2].

Another important problem in this setting is ensuring ro-
bustness. Robustness deals with preservation of properties in
systems that are subject to imprecision of time measurement.
The main motivation for considering this issue is to address
the idealized representation of time in formal methods, which
assumes an unrealizable precision in time measurement that
cannot be guaranteed by real implementations. Robustness has
been considered extensively for timed automata since [17], and
more recently for TPNs [3], but decidability results are only
obtained in a bounded-resource setting.

The definition of the semantics plays an important role
both to define the expressive power of a model and to obtain
decidability results. When considering unbounded nets, where
multiple (and in fact unboundedly many) tokens may be
present at every place, one has to fix a policy on whether
and how multiply-enabled transitions are handled. And this
becomes even more complicated when real-time constraints
are considered. Several possible variants for multiple enabling
semantics have been considered in [8], [10] and later in [7].
In this paper, we fix one of the variants and consider TPNs
equipped with a multi-enabling urgent semantics, which allows
to start measuring elapsed time from every occurrence of
a transition enabling. This feature is particularly interesting:
combined with urgency, it allows for instance to model maxi-
mal latency in communication channels. We adopt a semantics
where time is measured at each transition’s enabling, and
with urgency, i.e. a discrete transition firing has to occur if
a transition has been enabled for a duration that equals the
upper bound in the time interval attached to it. Obviously,
with this semantics, counter machines can still be encoded,
and undecidability follows in general.



We focus on a structural restriction on TPNs in which the
underlying net is free choice, and call such nets free choice
TPNs. Free choice Petri nets have been extensively studied in
the untimed setting [13] and have several nice properties from
a decidability and a complexity-theoretic point of view. In this
class of nets, all occurrences of transitions that have a common
place in their preset are enabled at the same instant. Such
transitions are said to belong to a cluster of transitions. Thus,
with this restriction, a transition can only prevent transitions
from the same cluster to fire, and hence only constrain firing
times of transitions in its cluster. Further, we disallow forcing
of instantaneous occurrence of infinite behaviors, that we call
forced 0-delay firing sequences in our nets. This can easily be
ensured by another structural restriction forbidding transitions
or even loops in TPNs labeled with [0, 0] constraints.

Our main results are the following: we show that for a free
choice TPN N under the multiple-enabling urgent semantics,
and in the absence of forced 0-delay infinite firing sequences,
the problem of fireability of a transition and of termination are
both decidable. The main idea is to show that, after some pre-
processing, we can reduce these problems to corresponding
problems on the underlying untimed free choice PN. More
precisely, we show that every partially-ordered execution of
the underlying untimed PN of a TPN N can be simulated by
N , i.e., it is the untimed prefix of a timed execution of N . To
formalize this argument we introduce definitions of (untimed
and timed) causal processes for unbounded TPNs, which is a
second contribution of the paper.

Finally, we address the problem of robustness for TPNs
which has previously been considered in [3]. We show that
robustness of fireability wrt guard enlargement, i.e., whether
there exists a ∆ > 0 such that enlarging all guards of a TPN by
∆ preserves the set of fireable transitions, is decidable for free
choice TPNs. Up to our knowledge, this is the first decidability
result on robustness for a class of unbounded TPNs.

Related work. Verification, unfolding, and extensions of Petri
nets with time have been considered in many works. Another
way to integrate time to Petri nets is to attach time to tokens,
constraints to arcs, and allow firing of a transition iff all
constraints attached to transitions are satisfied by at least one
token in each place of its preset. This variant, called Timed-arc
Petri nets, enjoys decidability of coverability [1], but cannot
impose urgent firing, which is a key issue in real-time systems.
In TPNs, [19] propose a weak semantics for TPNs, where
clocks may continue to evolve even if a transition does not fire
urgently. With this semantics, TPNs have the same expressive
power as untimed Petri nets, again due to lack of urgency,
which is not the case in our model.

Recently, [2] considers variants of time and timed-arc Petri
nets with urgency (TPNUs), where decidability of reachability
and coverability is obtained by restricting urgency to transi-
tions consuming tokens only from bounded places. This way,
encoding of counter machines is not straightforward, and some
problems that are undecidable in general for time or timed-
arc Petri nets become decidable. The free choice assumption

in this paper is orthogonal to this approach and it would be
interesting to see how it affects decidability for TPNUs.

Partial-order semantics have been considered in the timed
setting: [20] defines a notion of timed process for timed-arc
Petri nets and [21] gives a semantics to timed-arc nets with
an algebra of concatenable weighted pomsets. However, pro-
cesses and unfoldings for TPNs have received less attention.
An initial proposal in [5] was used in [9] to define equivalences
among time Petri nets. Unfolding and processes were refined
by [11] to obtain symbolic unfoldings for safe Petri nets. The
closest work to ours is [12], where processes are defined to
reason about the class of free choice safe TPNs. However, this
work does not consider unbounded nets, and focuses more on
semantic variants wrt time-progress than on decidability or
robustness issues.

The paper is organized as follows: Section II introduces
notations and defines TPNs with multi-enabling semantics.
Section III defines processes for these nets. Section IV intro-
duces the subclass of free choice TPNs and relates properties
of untimed and time processes. Section V proves decidability
of fireability and termination for FC-TPNs and Section VI
addresses robustness of fireability. Section VII discusses our
assumptions and deals with issues related to decidability of
other problems in FC-nets. Due to space constraints, some
proofs are only sketched, and details can be found in [4].

II. MULTI-ENABLEDNESS IN TPNS

Let Σ be a finite alphabet, Σ∗ be the set of finite words
over Σ. For a pair of words w,w′ ∈ Σ∗, we will write
w ≤ w′ iff w′ = w.v for some v ∈ Σ∗. Let N,Q≥0,R≥0,
respectively, denote the sets of naturals, non-negative rationals
and real numbers. An interval I of R≥0 is a Q≥0-interval iff
its left endpoint belongs to Q≥0 and right endpoint belongs
to Q≥0∪{∞}. Let I denote the set of Q≥0-intervals of R≥0.
For a set X of (clock) variables, a valuation v for X is a
mapping v : X → R≥0. Let v0(X) be the valuation which
assigns value 0 to each clock in X . For any d ∈ R≥0, the
valuation v + d is : ∀x ∈ X, (v + d)(x) = v(x) + d.

A Petri net (PN) U is a tuple U = (P, T, F ), where P is a
set of places, T = {t1, t2, . . . , tK} is a set of transitions, and
F ⊆ (P × T ) ∪ (T × P ) is a flow relation. A marking M is
a function P → N that assigns a number of tokens to each
place. We let M0 denote an initial marking for a net. For any
x ∈ P ∪T (called a node) let •x = {y ∈ P ∪T | (y, x) in F}
and x • = {y ∈ P ∪ T | (x, y) in F}. For a transition t, we
will call •t the preset of t, and t • the postset of t. We will
assume that for every transition t, •t 6= ∅. The semantics of
a Petri net is defined as usual: starting from a marking M ,
a transition t can be fired if for every p ∈ •t,M(p) > 0.
This firing results in new marking M ′ such that M ′(p) =
M(p) − |•t ∩ {p}| + |t • ∩ {p}|. We denote a discrete move
of a Petri net from M to M ′ by M → M ′. Reach(U ,M0)
denotes the set of reachable markings, that can be obtained
via an arbitrary number of moves starting from M0. Let x
be any node of a net. The cluster of x (denoted by [x]) is a
minimal set of nodes of N satisfying following conditions: (i)



x ∈ [x], (ii) if a place p is in [x], then p • ⊆ [x], and (ii) if a
transition t is in [x], then •t ⊆ [x].

Definition 1: A time Petri net (TPN) N is a tuple (U ,M0, I)
where U = (P, T, F ) is the underlying net, M0 is an initial
marking, and I : T → I(Q≥0) associates with each transition
a firing interval.

We denote by eft(t) and lft(t) the lower and upper
bound of interval I(t). For a TPN N = (U ,M0, I) let
Untime(N ) = (U ,M0) denote the underlying net i.e., without
timing constraints on transitions.

Let us now describe the semantics of Time Petri nets
with multi-enabledness. In a multi-enabling semantics, when
a marking associates to each place in the preset of a transition
a number of tokens that is several times the number of
tokens needed for the transition to fire, then this transition is
considered as enabled several times, i.e. several occurrences
of this transition are waiting to fire. Defining a multi-enabling
semantics needs to address carefully which instances of en-
abled transitions can fire, what happens when an instance of
a transition fires, in terms of disabling and creation of other
instances. Several policies are possible as discussed in [7], [8],
[10]. In the rest of the paper, we adopt a semantics where the
oldest instances of transitions fire first, are subject to urgency
requirements, and the oldest instances are also the disabled
ones when a conflict occurs. We formalize this below.

Definition 2: Let M be a marking of a TPN N =
(U ,M0, I). A transition t ∈ T is k-enabled at marking M ,
for k > 0, if for all p ∈ •t,M(p) ≥ k and there exists a
place p ∈ •t such that M(p) = k. In this case, k is called the
enabling degree of t at marking M , denoted deg(M, t).

Therefore, from a marking M , and for each transition t,
there are exactly deg(M, t) instances of transition t which are
enabled. A configuration of a time Petri net associates a clock
with each instance of a transition that has been enabled. This
is called threshold semantics. Time can elapse if no urgency
is violated, and an occurrence of a transition t is allowed to
fire if it has been enabled for a duration d ∈ I(t).

Formally, a configuration is a pair C = (M, enab), where
M is a marking, and enab is a partial function enab : T →
(R≥0)N. We denote by enab(t)i the ith entry of enab(t). For
a marking M , t ∈ T , enab(t) is defined iff there exists k > 0
such that t is k-enabled at M . We further require that the
length of vector enab(t) is exactly deg(M, t), and if 1 ≤ i <
j ≤ deg(M, t), then enab(t)i ≥ enab(t)j .

In a configuration C = (M, enab) each enabled transition t
is associated with a vector enab(t) of decreasing real values,
that record the time elapsed since each instance of t was newly
enabled. With this convention, the first enabled instance of a
transition t (that must have the maximal clock value) is the first
entry enab(t)1 of the vector. For a value δ ∈ R, we will denote
by enab(t)+δ the function such that associates enab(t)i+δ to
the ith occurrence of t. The initial configuration of a TPN is
C0 = (M0, v0(X0)), where X0 is a set of vectors containing
deg(M0, t) clocks per transition t.

A timed move from a configuration C = (M, enab) consists
in letting δ time units elapse, i.e. move to configuration C ′ =

(M, enab+δ). Such move is allowed only if it does not violate
urgency, i.e. enab(t)i + δ ≤ lft(t) for every instance i of t.

A discrete move consists in firing an instance of a transition
t which clock lays in interval I(t). When firing transitions,
we will use the first enabled first fired (FEFF) policy, that is
the instance of transition t fired is the one with the highest
value of time elapsed, i.e., enab(t)1. Similarly, we disable
transitions according to the first enabled first disabled (FEFD)
policy. A standard way to address time in TPNs semantics
is to start measuring time for a transition as soon as this
transition is newly enabled. However, as highlighted in [19],
there are several possible interpretations of new enabledness. A
frequently used semantics is the intermediate semantics, which
considers intermediate markings, i.e. when firing a transition
t, we consider the marking M ′′ obtained after removing the
tokens in •t from M , and comparing the set of enabled
transitions in M ′′ with those enabled after production of
tokens in the places of t •. Let transition t be k-enabled
at marking M for k > 0, and enab(t)1 ∈ I(t). Then, an
instance of t can fire, and we obtain a new marking M ′ via
an intermediate marking M ′′ as follows:
M ′′(p) = M(p)− 1 if p in •t else M ′′(p) = M(p).
Then we obtain marking M ′ as :
M ′(p) = M ′′(p) + 1 if p in t • else M ′(p) = M ′′(p).
Firing an instance of a transition t changes the enabling

degree several transitions (and not only of t). We will say
that a transition is newly enabled by firing of t from M
iff its enabling degree is larger in M ′ than in M ′′. Then
newly enabled transitions are attached an additional clock
initially set to 0 in enab. For transitions which enabling degree
decreases (i.e. that are in conflict with t), the first clock in
enab is discarded. We refer readers to [4] for a more formal
presentation of the semantics. We will write C −→N C ′ when
there exists a move from C to C ′ allowed by net N .

A timed firing sequence of N starting from configuration
q1 = (M1, enab1) is a sequence of timed and discrete moves
ρ = q1

α1−→ q2
α2−→ . . .

αn−1−−−→ qn where αi is either a transition
of T or a value from R≥0. A configuration C is reachable iff
there exists a firing sequence from the initial configuration to
C. Let Reach(N , C0) denote the set of reachable configura-
tions of a TPN N , starting from configuration C0. For a con-
figuration C = (M, enab) we denote by Untime(C) = M the
untiming of configuration C. Similarly, Untime(Reach(N ))
denotes the set of markings M such that there exists a reach-
able configuration (M,v) of N . Note that Reach and Untime
operations are not commutative and Reach(Untime(N )) could
be different from Untime(Reach(N )) for a TPN N . A TPN
N is bounded if Untime(Reach(N )) is finite.

A timed word over T is a word of (T × R≥0). Let
ρ = q1

α1−→ q2
α2−→ . . .

αn−1−−−→ qn be a firing sequence
starting from q1, and let i1, . . . ik denote the indexes of discrete
moves in ρ. The timed word associated with ρ is the word
w = (t1, d1) . . . (tk, dk), where each tj is transition αij ,
d1 =

∑
j<i1

αj , and for every m > 1, dm = dm−1 +∑
im−1<j<im

αj . A timed word w is enabled at configuration
C if there exists a timed firing sequence ρ starting from C,



and w is the timed word associated with this sequence. The
untiming of a timed word w = (t1, d1) . . . (tn, dn) is the word
Untime(w) = t1 . . . tn.

For a TPN N = (U ,M0, I), let Lang(N ) denote the
set of all timed words enabled at initial configuration C0,
and ULang(N ) be defined as Untime(Lang(N )), i.e., the
set of words obtained by removing the timing component
from Lang(N ). Observe that ULang(N )) can be differ-
ent from Lang(Untime(N )). Similarly, we let R(N , C0) =
Untime(Reach(N , C0)) be the set of (untimed) reachable
markings, i.e., R(N , C0)={M | ∃(M,v) ∈ Reach(N , C0)}.

A forced 0-delay timed firing sequence of N is a sequence
from (Q×T )∞ such that qi−1

αi−→ qi where αi is a transition
of T with eft(αi) = lft(αi) = 0. Hence transitions are
enabled at each configuration and fired immediately without
letting any other transition of the net fire. Specifications with
such sequences should be considered as ill-formed, as they
contain mandatory instantaneous executions of unbounded sets
of actions. Note that forbidding such sequences still allows the
net to exhibit some sequences that may execute in 0 time. For
example, a TPN in which each transition has eft(t) = 0 and
lft(t) > 0 can exhibit an infinite sequence of 0-duration, but
it has no forced 0-delay timed firing sequence.

III. PROCESSES OF UNTIMED AND TIMED NETS

We now define a partial-order semantics for timed nets
with multi-enabledness using processes. These notions will be
central to reason about TPNs and their properties. The notion
of time causal process for TPNs has been introduced by [5],
and later used by [11] to study a truly concurrent semantics for
TPNs. First, we recall the definitions in the untimed setting.

Definition 3 (causal net): A causal net ON = (B,E,G)
is a finitary (each node has finite number of predecessors)
acyclic net with B as a set of conditions, E as set of events,
flow relation G ⊆ B×E∪E×B, such that E = {e | (e, b) ∈
G} ∪ {e | (b, e) ∈ G}, and for any condition b of B we have
|{e | (e, b) ∈ G}| ≤ 1 and |{e | (b, e) ∈ G}| ≤ 1.
When causal nets are used to give a partial order semantics to
Petri nets, events represent occurrences of transitions firings,
and conditions occurrences of places getting filled with tokens.
The last condition in the definition states that a token in a place
is produced by a single transition firing, and is consumed by a
single transition. As conditions have a single successor, causal
nets are conflict free. They are hence well suited to represent
executions of nets. Let ≺= G+ and �= G∗. We define e↓ as
the downward closure e↓ = {f ∈ E | f � e}. A set E′ ⊆ E
is downward closed iff E′↓ = E′.

We define ON• = {b ∈ B | b• = ∅} and •ON = {b ∈ B |
•b = ∅}; Note that if we are looking at finite causal nets then
ON• is always defined.

Definition 4 (causal process): Given a PN U , a causal
process of U is a pair U = (ON, π) where, π is mapping
from B ∪ E → P ∪ T , satisfying following conditions:

1) π(B) ⊆ P and π(E) ⊆ T
2) π↓e• is a bijection between sets e• and π(e)•.
3) π↓•e is a bijection between sets •e and •π(e).

4) For each p, M0(p) = |{b ∈ •ON | π(b) = p}|.
To relate transitions of a PN and events of a causal net, we

will consider that events are of the form e = (X, t), where
π(e) = t and X = •e i.e., event e corresponds to firing of
transition t and X is a set of conditions consumed when firing
t. We will also let conditions be of the form b = (e, p), where
e is the event that creates condition b, and p = π(b) is the place
that is represented by condition b. We will write place(b) to
denote such place in the original net. We let posb(ON) denote
the set of possible events which could be added to ON and
is defined as posb(ON) = {e = (X, t) | X ⊆ B ∧ π(X) =
•t ∧ ∀x ∈ X, x • = ∅}. Following these definitions, one can
inductively build processes to capture the semantics of (even
unbounded) Petri nets.

Proposition 1: Let U be any untimed net. For any word
w ∈ Lang(U ,M0), there exists a causal process U of U , such
that w ∈ Lang(U).

Now we define the notions of time causal net, and time
causal process for Time Petri nets with muti-enabling seman-
tics. Similar notions appear in [5] for Time Petri nets.

Definition 5 (time causal net): A time causal net is a tuple
ON = (B,E,G, τ) where (B,E,G) is a causal net, and τ :
E→R≥0 is a timing function s.t. eG+e′⇒τ(e)≤τ(e′).

For a time causal net ON = (B,E,G, τ), we define
Untime(ON) as the net (B,E,G) i.e., ON without its tim-
ing function. Now, given two untimed causal nets ON =
(B,E,G) and ON ′ = (B′, E′, G′), ON ′ is said to be prefix
of ON , denoted by ON ′ ≤ ON if B′ ⊆ B,E′ ⊆ E,G′ =
G ∩ (B′ × E′ ∪ E′ × B′), where E′ is finite and downward
closed subset of E. If ON and ON ′ are time causal nets, E′

is required to be timely sound, i.e., for all e′ in E′ we have
τ ′(e′) ≤ τ(e′).

Definition 6 (time causal process): A time causal process
a TPN N is a pair N = (ON, π) where ON is a time causal
net, and π is mapping from B ∪ E → P ∪ T , satisfying
conditions 1-4 of a causal process, and:

5) for every event e = (X, t), minx∈X{τ(e) − τ(•x)} ∈
I(π(e)), i.e. the time elapsed between enabling of the
occurrence of t represented by e and its firing belongs
to I(t).

6) if there exists X ⊆ ON • and a transition t such that
Place(X) = •t and τ(•x) is minimal for every occur-
rence of a place place(x) in ON •, then max(τ(En))−
max(τ(•X)) < lft(t). This last condition means that if
a transition was urgent before the date of the last event
in ON , then it belongs to the time causal net, or was
not appended due to a conflict.

For a time causal process (ON, π) we define
Untime(ON, π) as (Untime(ON), π). As for Petri Nets,
for a time causal net ON = (B,E,G, τ), we denote by
posb(ON) (and we define similarly) the set of events that
can be appended to ON (regardless of timing considerations).
Abusing our notation, for a condition b = (e, p) we will
define τ(b) as τ(b) = τ(e).

As for Petri nets, we can show that time causal processes
faithfully describe the semantics of Time Petri nets. Given a



time causal process N = (ON, π), where ON = (B,E,G, τ),
a timed word of N is a timed word w = (e1, d1) . . . e|E|, d|E|
such that e1 . . . e|E| is a linearization of Untime(ON), di =
τ(ei). Note that as w is a timed word, this means in addition
that for every i < j, we have di < dj . We denote by Lang(N)
the set of timed words of time causal process N . Note that
there exist some words w ∈ Lang(Untime(N)) such that w is
not the untiming of a word in Lang(N). We can now prove
the following proposition:

Proposition 2: Let P be the set of time causal processes of
a time Petri net N . Then, Lang(N ) =

⋃
N∈P

Lang(N)

Example 1: Consider the FC-TPN (N,M0) shown in Fig-
ure 6. Nets ON1 and ON2 in Figure 1 are causal nets of
Untime(N,M0). One can notice that ON1 ≤ ON2.

p1 p2 p3 p1

q3 q1 q2 q3

a b c

d e f

p1 p2 p3 p1

q3 q1 q2 q3 q1

a b c

d e f d

Fig. 1. Untimed causal nets ON1 and ON2

Nets ON3 and ON4 in Figure 2 below are time causal nets
of (N,M0). We have ON3 ≤ ON4. Let us now compare ON3

and ON4 with (untimed) causal processes: we have ON1 ≤
Untime(ON3) and ON2 ≤ Untime(ON4).

p1 p2 p3 p1

q3 q1 q2 q3

a b c

d e f

1 3 5

2 4 5

p1 p2 p3 p1 p2

q3 q1 q2 q3 q1

a b c a

d e f d

1 3 5 6

2 4 5 7

Fig. 2. Time causal net ON3 and ON4

IV. FREE CHOICE TIME PETRI NETS

Time Petri nets with urgent semantics [16] are very expres-
sive. They can be used to model distributed timed systems
with unbounded resources. Unsurprisingly, most problems,
particularly those listed below are undecidable for this model:
Fireability: Given a TPN N = (U ,M0, I) and a transition t,
is there a configuration (M, enab) ∈ Reach(N , C0) such that
t is fireable at (M, enab).
Termination: Given a TPN N = (U ,M0, I), does it have a
non-terminating run?
Coverability: Given a TPN N = (U ,M0, I) and marking M ,
is there a marking M ′ ∈ Reach(N ,M0) such that M ′ ≥M?
Reachability: Given a TPN N = (U ,M0, I) and a marking
M , decide if M ∈ Reach(N ,M0).
Boundedness: Given a PN N = (U ,M0, I) decide if
Reach(N ,M0) is finite.

To obtain decidability, one often considers bounded TPNs,
where the number of tokens in places cannot grow arbitrarily.
In this case, one can compute a finite state class graph [6]
representing all runs of the the TPN, on which reachability,
coverability, and all regular properties are decidable. However,
bounded TPNs cannot represent systems with unbounded

resources. Furthermore, it is undecidable in general whether a
TPN is bounded. One usually has to rely on a priori known
bounds on place contents, or restrict to the class of nets such
that Untime(N ) is bounded.

In this paper, we consider a different structural restriction of
TPNs, which is based on the untimed underlying PN, namely
free choice. This is a standard restriction in the untimed
setting, that allows for efficient algorithms (see [13]). In this
section, we show the interesting properties it engenders in
TPNs. In section V we show how it affects their robustness
under guard enlargement.

Definition 7 (Free choice PN and free choice TPN): A Petri
net U = (P, T, F ) is called (extended) free choice, denoted
FC-PN, if for any pair of transitions t and t′ in T : •t∩ •t′ 6=
∅ =⇒ •t = •t′. A TPN N = (U ,M0, I) is called a free
choice TPN (FC-TPN for short), if its underlying untimed net
Untime(N ) = U is free choice.

A. Pruning a TPN while preserving reachability

As mentioned above, the fireability and termination prob-
lems are undecidable for TPNs in general. In the next section
we show that they are decidable for FC-TPNs. As a first step,
given an FC-TPN N , whose underlying net is free choice, we
construct another FC-TPN Prune(N ) in which we remove
transitions from a cluster if they can never be fired (due to
the lower bound of their time constraint) and tighten timing
constraints. Note that we do not delete all dead transitions
from the net, but remove only transitions for which we can
decide locally, by considering their clusters, that they will
never fire. Let us illustrate this with an example.

Example 2: Consider the FC-TPN N in Figure 3. Consider
transition b, and its cluster [b]. One can notice from the
definition of FC-TPNs that all transitions from the same
cluster have a new instance created as soon as any transition
from the same cluster has a new instance. Note also that
in this example, it is clear that transition c will never be
fired: in a configuration (M, enab), every instance of c is
created at the same time as another instance of b and d,
and hence we have enab(c) = enab(b) = enab(d). Let
enab(c) = enab(b) = r1 . . . rk. Transition b has to fire or
be disabled at lft(b) − r1, lft(b) − r2, . . . . If b fires or is
disabled, then the oldest instance of c is also disabled. As
we have lft(c) > lft(b) every ith instance of b will fire or
be disabled before the ith instance of c. Hence one can safely
remove transition c without changing the semantics of the net.

Similarly, in the cluster [e], we cannot say for sure that
some transition will be never fired, but only that the maximum
amount of time any transition can elapse is 2 time units.
Note that, in fact, neither transition f nor e is fireable in
this net, but we cannot decide it just by looking at the
clusters. Indeed in order to decide if e and f are fireable,
we have to study the behaviour of the net. Hence our pruning
operation does not modify this. Thus, after removing transition
c from its cluster, modifying the flow relation appropriately
and changing the upper bounds of remaining transitions, we
obtain the free choice net in Figure 4. One can see that



Reach(N ,M0) = Reach(Prune(N ),M0). Therefore, we also
obtain Lang(N,M0) = Lang(Prune(N),M0).

p1

p2 p3

p4 p5 p6

p7 p8

p9 p10

a

b c d e f

gh

[0,3]

[0,1] [2,3] [0.5,3] [0,2] [1,3]

[2,8][0,9]

Fig. 3. a FC-TPN N
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Fig. 4. The pruned net Prune(N )

Formally, we can define pruning as follows:
Definition 8 (pruned cluster and pruned net): Given an FC-

TPN N = (U = (P, T, F ),M0, I)), we define the pruned
cluster of a transition t as Prune([t]) = {t′ ∈ [t] | eft(t′) ≤
mint′′∈[t](lft(t

′′))}. The pruning of a FC-TPN N is the
pruned net Prune(N ) = (U ′ = (P, T ′, F ′),M0, I

′), where:
• T ′ = T↓∪t∈TPrune([t]).
• F ′ = F↓T ′ ⊆ (P × T ′) ∪ (T ′ × P ).
• For each transition t in T ′, we define I ′(t) =(

eft(t),mint′∈[t] lft(t
′)
)
.

Lemma 1 below shows that pruning away unfireable tran-
sitions from clusters of a FC-TPN, does not modify its
semantics. More precisely, the LTS obtained for a pruned FC-
TPN is isomorphic to the LTS for the original net. This is
not surprising and has already been considered in [12], where
pruning is called ’normalization’ and is used to reason about
free choice (but not to remove transitions nor places).

Lemma 1 (Pruning Lemma): Given an FC-TPN N , the
net Prune(N ) is such that (CN ,−→N ) is isomorphic to
(CPrune(N ),−→Prune(N ))).
Proof: ( Sketch) LetN be a FC-TPN, and letN ′ = Prune(N ).
We define a relation R from configurations of N to configura-
tions of N ′, by simply erasing clock values attached to pruned
transitions. We can then prove that R is an isomorphism by
induction on the length of runs. Details can be found in [4].

An immediate consequence of lemma 1 is that Lang(N ) =
Lang(Prune(N )). Note that this lemma holds only under the
free choice assumption. Indeed, in a standard TPN, one can
disable the most urgent transition from a cluster without
disabling other instances of transitions in this cluster. In the

example of Figure 5, for instance, transition t2 and t3 belong
to the same cluster, and pruning would remove t3. However, in
the unpruned net, transition t2 can be disabled by firing of t1,
which still allows t3 to fire later. Hence, for this non-FC-TPN,
Lang(N ) 6= Lang(Prune(N )).

p1 p2

t1 t2 [0, 1] t3

p3 p4 p5

[0, 2] [3, 5]

Fig. 5. Pruning only works for FC-TPNs

B. Simulating runs in the timed and untimed FC-TPN

We now prove our main theorem, which relates time causal
processes of pruned FC-TPNs with untimed causal processes
of their untimed nets.

Theorem 1 (Inclusion of untimed prefixes): Let N =
(U ,M0, I) be a pruned FC-TPN (without forced 0-delay time
firing sequences) and let U ′ = Untime(N ). Let U ′ be an
(untimed) causal process of U ′. Then there exists a time causal
process N of N such that U ′ ≤ Untime(N).
Proof: We are given U ′ a causal process of U ′. We will
iteratively construct a pair ρi, σi, where ρi is a causal process
of U ′, σi a time causal process of N , and such that ρi is a
prefix of Untime(σi). The construction ends at some n ∈ N
such that ρn = U ′. At that stage of the algorithm, σn is a
time causal process such that U ′ ≤ Untime(σn) which is the
desired result. For this, we maintain the following invariants
at every intermediate step, i.e., for all 0 ≤ i ≤ n:

(I1) ρi is a prefix of U ′ and
(I2) ρi is a prefix of Untime(σi)
(I3) either |ρi|+ 1 = |ρi+1| or |σi|+ 1 = |σi+1|
(I4) e ∈ posb(ρi) and e /∈ σi implies that e ∈ posb(σi)
(I5) eG+

i e
′⇒ τ(e)≤τ(e′), (with G+

i the flow relation of σi).

The first two conditions have been explained above. Con-
dition (I3) ensures that the algorithm progresses at every
iteration, either in ρi or σi. Condition (I4) says that if an
event e is enabled in the untimed causal process ρi and has
not yet been fired in σi, then it must be enabled at σi. Note
that due to urgency, e may still be not fireable in σi. Finally,
Condition (I5) ensures that the time stamps that we add in σi
are consistent with its causal order.

We start by defining, for a time causal process ON , the
maximal firing date for an event e = (X, t) ∈ posb(ON)
as mfd(ON, e) = maxx∈X(τ(x)) + lft(t). This represents
the maximal date that can be attached to event e = (X, t)
when it is appended to ON . Further, we use td(ON, e) to
denote the difference between mfd(ON, e) and the maximal
date attached to an event in ON . Note that this value can be
negative if the maximal date in ON is above mfd(ON, e),
i.e., e has already been fired in ON . This represents the
time that has to elapse before (or has elapsed after) event e
corresponding to firing of a transition t becomes urgent.



Finally, for a (time) process ON and an event e, we use
ON ∪{e} to denote the (time) process obtained by appending
event e to ON , when it is possible to do so. Now we start
from an untimed causal process and describe a time-stamping
algorithm to obtain a time causal process in Algorithm 1.

Algorithm 1: Causal-net-to-time-causal-net
Input: N = (U ,M0, I) a pruned FC-TPN without forced

0-delay firing sequences, U ′ = (B′, E′, G′) a
(untimed) causal process of U ′ = Untime(N )

Output: N a time causal process of N such that
U ′ ≤ Untime(N)

1 Initializations: // ρi (resp. σi) is a untimed
(resp. time) causal process

2 CLK := 0, ρ0 := (B0, ∅, ∅), σ0 := (B0, ∅, ∅, ∅);
3 while ρi 6= U ′ do
4 Choose an event e = (Xe, te) from posb(ρi) ∩ U ′;
5 if e ∈ σi then
6 ρi+1 ← ρi ∪ {e}; σi+1 ← σi ;
7 else
8 min = mine′∈posb(σi) mfd(σi, e

′);
9 Si = {e′ ∈ posb(σi) | mfd(σi, e

′) = min and
min 6=∞};

10 if S′ = Si ∩ E′ 6= ∅ then
11 Pick an event et = (X, t) from S′;
12 else
13 if Si = ∅ then
14 CLK ′ = CLK +max{0, td(σi, e)};
15 τ(e) = CLK ′;
16 σi+1 ← σi ∪ {e} ; ρi+1 ← ρi;
17 GOTO Step-23;
18 else
19 Pick an event et = (X, t) from Si;

20 CLK ′ = CLK + lft(t)− td(σi, et) ;
21 τ(et) = CLK ′ // adding time stamp
22 σi+1 ← σi ∪ {et}; ρi+1 ← ρi ;

23 i← i+ 1 ;

Let us now explain the algorithm. At initialization, B0 is the
set of conditions corresponding to marked places in M0, and
CLK, a real valued variable which stores the time-elapsed till
now, is set to 0. ρi and σi are respectively, untimed and time
causal processes at i-th iteration. Si is the set of events that
are the most urgent instances of transitions in σi. The idea is
that, at each iteration, we pick (in line 4) an event e enabled
in the current ρi, which would grow ρi to eventually reach the
untimed causal process U ′. If this event has already been fired
in σi, then we just add it to ρi and go to the next iteration.

Else, we try to fire it in σi. However, to do so, we first
compute Si the set of all urgent transitions in σi (line 8–9). If
there is an urgent transition instance et whose corresponding
event is also in U ′, then we pick it (in line 11) and fire it,
i.e., add it to σi and update time information correctly (line
20-23). This makes sure σi has grown at this iteration so we

go the next iteration. On the other hand, if there is no urgent
transition in Si which is also in U ′, we check if there is no
urgent transition at all, i.e., Si is empty. In this case, we elapse
time till e can fire and fire it as soon as possible (line 14),
updating clocks appropriately.

Finally, if there is some urgent transition in Si that is not
in U ′, then we fire it as late as possible (line 20–23). The fact
that this does not change the enabling of e (due to conflicts)
is proved by our invariant I4.

Now, we conclude the proof of Theorem 1 from the two
following lemmas, whose complete proofs are provided in [4].

Lemma 2: Algorithm 1 preserves all invariants at each
iteration of the while loop.

If invariants I1, I2, I3, I4, and I5 are satisfied for all itera-
tions then Algorithm 1 is correct, i.e. when it stops it has built
a time causal process N of N such that U ≤ Untime(N). It
remains to show that the algorithm always terminates.

Lemma 3 (Termination Lemma): Algorithm 1 terminates in
finitely many steps.
Proof: (sketch) We show that σ cannot grow unboundedly.
Each step of the algorithm adds either an event to ρi, or to σi.
While the number of steps that add events to ρi is finite, the
algorithm may still not terminate if σ can grow unboundedly,
i.e. the while loop is exited at line 22 unboundedly without
progress in ρ. To show that this is not possible, at every step,
a set of events from U ′ are listed as possible events. Now,
the crucial idea is that since there are no forced 0-delay firing
sequences, time can and must progress, so these events cannot
be ignored forever. Hence, σi can grow only up to some finite
point.

We can now extend Theorem 1 from causal nets to words.
Let U = (P, T, F ) be an untimed Petri net. Given a causal
process U = (ON = (B,E,G), π) of U , consider the partial
order �= G∗. We denote by lin(U), the set of words over
alphabet of transitions obtained by considering linearizations
of the partial order of G∗ and projecting onto the labeling
alphabet (of transitions T ), i.e., lin(N) = {ρ ∈ T ∗ | there
exists ρ′ a linearization of G∗ such that π|E(ρ′) = ρ}.

Now, recall that given an untimed net U , its language
Lang(U ,M0) is a set of firing sequences, i.e., words over the
alphabet of transitions. Now, we obtain our characterization
for words rather than causal processes.

Corollary 1 (Words version): Let N be a pruned FC-TPN
(without forced 0-delay time firing sequences) and let U ′ =
Untime(N ). Then, for each w ∈ Lang(U ′,M0) there exists
a time causal process N of N and w′ ∈ Lang(Untime(N))
such that w � w′.
Proof: Given a word w ∈ Lang(U ′,M0), using Proposition 1,
we get an untimed causal process U ′ of net U ′, such that w ∈
lin(U ′). By Theorem 1, we get a time causal process N of net
N such that U ′ ≤ Untime(N). Now since w ∈ lin(U ′), and
U ′ ≤ Untime(N), we can extend w to w′ ∈ lin(Untime(N)).

V. DECIDABILITY RESULTS FOR FC-TPNS

In this section, we will show some consequences of the
above characterization.



Theorem 2 (Fireability): Given an FC-TPN N = (U ,M0, I)
(without forced 0-delay time firing sequences), and a transition
t ∈ T , checking fireability of transition t in N is decidable.
Proof: Given a FC-TPN N , one can compute an equivalent
pruned version NPruned, i.e. a Petri nets with the same timed
language and the same set of processes, but which clusters
have only fireable transitions. One can compute a Petri net
U ′ = Untime(NPruned). For every PN, it is well known
that coverability of a marking is decidable [18]. A particular
transition t is fireable in a Petri net U iff its preset •t is
coverable. Coverability can be obtained by construction of
a coverability tree, or using backward algorithms (see for
instance [14] for recent algorithms). In both cases, one can
exhibit a sequence of transitions witnessing coverability of
a particular marking. If w = t0. . . . tk is such a sequence
witnessing coverability of •t from M0 in Untime(NPruned),
then one can immediately infer that w.t ∈ Lang(U ′), and
hence t is fireable in U ′. Using Corollary 1, there exists a timed
word v = (t0, d0) . . . (tk, dk).(t, dk + 1) ∈ Lang(NPruned),
and hence v ∈ Lang(N ). Conversely, assume that t is not
fireable in Untime(N ) and that t it is fireable in N . Then
there exists a run ρ of N firing t. Then, Untime(ρ) is a run
of Untime(N ) which fires t (contradiction).

Theorem 3 (Termination): Given an FC-TPN N (without
forced 0-delay time firing sequences), it is decidable if N
terminates.
Proof: Let N be a FC-TPN and let Np be its pruned version.
Since the reachability graphs of N and Np are isomorphic
by Pruning Lemma 1, it is sufficient to decide if Np has
only terminating runs. Let N ′ = Untime(Np). If N ′ does
not terminate, then it allows sequences of transitions that are
unboundedly long. As we know from Corollary 1 that for
every word w′ of Lang(N ′), there exists a timed word w of
Lang(Np) of length |w| ≥ |w′|, then Np (and hence N ) allows
sequences of transitions of unbounded lengths, i.e., it does not
terminate either. In the other direction, if Np has an infinite
run, as time constraints in free choice TPNs can only prevent
occurrence of a transition, then the untimed net clearly has
an infinite run too. Thus, we have reduced the problem to
termination of an untimed Petri net, which is decidable by the
classical coverability tree construction.

The proof technique using relation between untimed pro-
cesses and processes of untimed nets does not work for all
properties, in particular for reachability. Consider, e.g, the net
shown in Figure 6. Marking {p1, q1} is not reachable from
the initial marking {p1, q3} with a multi-server semantics.
However, it is reachable in the corresponding untimed net.
Note also that marking {p1, q3} is also reachable for this net
under a weak semantics (as proposed in [19]), which proves
that strong multi-server and weak semantics of TPNs differ.

VI. ROBUSTNESS OF FC-TPNS TO GUARD ENLARGEMENT

As mentioned in the introduction, robustness addresses
preservation of properties of systems that are subject to
imprecision of time measurement. In this section, we show
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Fig. 6. Pruning and untiming does not preserve reachability

decidability of robustness of fireability for our class of FC-
TPNs. Note that this class contains unbounded nets. To the
best of our knowledge, this is the first decidability result of
robustness for an unbounded class of TPNs allowing urgency.
To do this, we use the reduction from fireability checking in
FC-TPNs to fireability checking in the untimed underlying net
shown in section V.

Let us now formally define the notion of robustness and
the problems considered in this paper. Let int = [a, b] be
a time interval. The enlargement of int by ∆ > 0 is the
interval int∆ = [max(0, a−∆), b+ ∆]. Let N = (U ,M0, I)
be a FC-TPN. The enlargement of N by ∆ > 0 is the net
N∆ = (U ,M0, I∆), obtained from (U ,M0, I) by replacing
every interval I(t) by its enlarged version I(t)∆. The robust-
ness problem for a chosen enlargement ∆ > 0 consists of de-
ciding whether properties of a net (reachability, boundedness,
coverability) or its (untimed) language are preserved in N∆. A
more general robustness question asks whether there exists a
value for ∆ such that N∆ preserves reachability, coverability,
or the (untimed) language of N . A positive answer to this
question would imply that changing guards slightly preserves
the considered property, i.e. this property is robust w.r.t a small
time imprecision.

In general, robustness problems are undecidable for TPNs,
as shown in [3], and become decidable when the consid-
ered nets are bounded. An interesting question is whether
robustness of some of the above mentioned problems is
decidable for TPNs with multiple enabling for unbounded
classes of nets. Answering this would provide useful tools
to check properties of systems of bounded timed processes
communicating through bag channels.

Let us now consider robustness of fireability: let
Fireable(N ) denote the set of transitions which are fireable
in N . We will say that a net N is robust w.r.t fireabiliy
of transition iff there exists a real value ∆ > 0 such that
Fireable(N ) = Fireable(N∆). Intuitively, this property says
that in an imperfect time measurement setting, there exists
some precision of clocks that allows to preserve fireability
of transitions of N during an implementation. It is easy to
observe (see [4] for details) that all FC-TPNs are not robust.

Proposition 3: The class of FC-TPNs is not robust wrt
fireability of transitions.

As fireability of every transition in a FC-TPN is decidable,
for a fixed enlargement ∆, one can decide whether the
fireability set of N differs from that of N∆. So the next
question is to decide whether there exists a ∆ > 0 such that
net N is robust with respect to fireability.

Definition 9 (Fireability robustness problem): Given a TPN
N , does there exist ∆ ∈ Q>0 such that Fireable(N ) =



Fireable(N∆)?
Theorem 4: LetN be a FC-TPN without forced 0-delay time

firing sequences. Then robustness of fireability is decidable. If
N has robust fireability, then one can effectively compute a
value ∆ such that Fireable(N ) = Fireable(N∆).
Proof: We first observe that in a pruned FC-TPN N , a
transition t is fireable iff all transitions in t’s cluster are
fireable. Next, all timed words of N are also timed words
of N∆. So, enlarging a net can only result in new behaviors.
As a consequence, if a transition t is fireable in N , it is
necessarily fireable in N∆. Further, note that as they have the
same underlying untimed net, N and N∆ are both free choice
and they have the same clusters. Now the pruning operation
applied to each of these nets results in removing transitions (it
can never add transitions) and pruning lemma holds for both of
them. If after the pruning, we still have the same clusters, then
the set of fireable transitions remains the same. The only way
to have an extra transition that can fire in Prune(N∆) is if this
transition t in cluster C has been removed in Prune(N ) but
remains in Prune(N∆) due to enlargement. By our pruning
construction there must exist another fireable transition in this
cluster in Prune(N ) (else we would not remove t):

Claim: For any ∆ > 0, Fireable(N ) 6= Fireable(N∆) iff
there exists a cluster C∆ of Prune(N∆) such that C ⊂ C∆

for some cluster C of Prune(N ), and at least one transition
t of C is fireable.

Thus, it suffices to look at each cluster of Prune(N )
and compute the smallest possible enlargement that does not
give new behaviors. More formally, two intervals I1, I2 are
neighbors if the smallest closed intervals containing them
have a non-empty intersection. Given two intervals I1 with
end-points a ≤ b and I2 with end-points c ≤ d that are
not neighbors and such that b < c, then one can easily
compute a value ∆I1,I2 < (c − b)/2. One can for instance
choose ∆I1,I2 = (c−b)

4 . For a cluster C of N with transitions
t1 . . . tk such that t1 . . . ti are not pruned, and ti+1 . . . tk
are pruned, we have eft(tj) > min{lft(tq), q ∈ 1..i}
for every j ∈ i + 1..k. Similarly we can compute ∆C =
min{eft(tj) − min{lft(tq), q ∈ 1..i}}. Then, enlarging N
by ∆C

4 does not change the set of transitions preserved by
pruning. Now, if any transition of ti+1 . . . tk is a neighbor of
[0,min{lft(tq), q ∈ 1..i}], such a ∆C does not exist.

Consequently to check robustness of fireability, it suffices to
check existence of a value ∆C for each cluster C of N that
has a fireable transition. If one such cluster does not allow
computing a strictly positive enlargement, then the net is not
robust. Otherwise, it suffices to choose as ∆ the smallest value
allowing enlargement encountered for a cluster of N . Clearly,
enlarging N by ∆ does not change the fireability set of N .

From the above proof we can characterize a class of
unbounded FC-TPNs for which robustness of fireability set
is guaranteed by definition.

Corollary 2: Let N be a FC-TPN such that
Untime(Prune(N )) = Untime(N ). Then the fireablility
set of N is robust w.r.t guard enlargement.

VII. DISCUSSION

The technique used to obtain decidability of fireability and
termination holds for free choice TPNs with a multiple server
semantics, when we disallow forced 0-delay infinite runs. All
these conditions are necessary for our proofs to hold.

Let us first address the free choice assumption, without
which the problems considered are undecidable. Indeed, the
two counter machine encoding of [15] relies on urgency
and uses non-free choice nets, in which transitions have at
least one 1-bounded place in their preset. One can easily
show that this encoding works even under a multiple server
semantics. In particular, Theorem 1 does not hold without the
free choice assumption. Consider the non-free choice net Nnfc
in Figure 7 (left). A causal process for Untime(Nnfc) is shown
in Figure 7(right, top). One can verify in this untimed net that
transition c is fireable. However, there is no way to build a
time causal net that contains this causal net. Indeed, transition
c is not fireable in Nnfc and one cannot add event e3 in the
only time causal net defined by Nnfc depicted in Figure 7
(right, bottom). Note also that marking {p1, p3} is reachable
in Untime(Nnfc) (and allows firing of c), but not in Nnfc.
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Fig. 7. A non-free choice TPN Nnfc (left), and a causal process (right, up)
and a time causal process (right, below) for it.

Next, we discuss the choice of a multi-server semantics.
With this semantics, one can consider that a new clock is
initialized at any enabling of a cluster (as all transitions from
a cluster carry the same set of clocks). Furthermore, when
a transition is fired, all remaining instances of transitions in
a cluster keep their clocks unchanged. Such a semantics is
meaningful and arguably powerful enough, for instance, to
address business processes with time that do not contain fork-
join constructs, i.e. where case processing are sequences of
choices up to completion. Unsurprisingly, with a single server
semantics, that keeps only one clock per transition instead of
one for every instance of a multi-enabled transition, Lemma 1
does not hold. Indeed, in a single-server semantics, the clock
of a fired transition is reset every time the transition fires. In
this setting, firing a transition postpones originally expected
maximal firing dates of the next occurrences of that transition,
which may allow firing of next instances of other transitions
that are pruned in our construction. Hence, one cannot easily
detect that a transition is useless.

Finally, the 0-delay assumption forbids an arbitrary number
of transitions to occur at the same time instant. If this condition
is not met, then our algorithm used to build a time process of
N from an untimed process of Untime(Prune(NP )) does not



necessarily terminate (Lemma 3). Furthermore, eagerness of
urgent transitions firing in zero time can prevent other transi-
tions from firing, which may result in discrepancies between
untiming of time processes of a net and untimed processes
of the untiming of this net. Consider the pruned and free
choice net N2 depicted in the Figure below. The only allowed
executions of N2 are Lang(N2) = {(a, 0)k | k ∈ N}. Hence,
N2 has a forced 0-delay firing sequence aω , and transition b
is not fireable. However, Untime(N2) allows sequences of the
form ak.b, and hence transition b is fireable. Note that this
does not mean that there is no effective procedure to build a
time causal net from an untimed causal net, and our algorithm
can be adapted to handle Zeno behaviors.

p1 p2 p3

a b

[0,0] [1,2]

Fig. 8. A free choice TPN N2 with Zeno behavior

Open issues: We have shown decidability of fireability, ter-
mination, and robustness of fireability for FC-TPNs with no
forced 0-delay time firing sequences. However, our proof
technique does not apply directly for closely-related problems
such as coverability and boundedness, that are hence still open.

Consider the FC-TPN Ncov shown in Figure 9. Clearly,
when removing time constraints from Ncov , the obtained
(untimed) Petri net allows sequence of transitions a.b, which
leaves the net in a marking M such that M(p1) = M(p3) = 1
and M(p2) = 0. However, the timed language of N contains
only w = (a, 1)(a, 2)(b, 8) and its prefixes. So, marking M
is not reachable or even coverable by N . Thus, unlike for
fireability and termination, one cannot immediately decide
coverability (or reachability) of a marking in an FC-TPN just
by looking at its untimed version. This does not contradict
Corollary 1: once untimed, the causal process for w does
indeed contain the causal process associated with a.b.

Next, the question of boundedness also does not immedi-
ately follow on the same lines as the proofs of theorems 2
and 3. Consider, for instance, the net Nbd of Figure 10. The
untimed version of this net allows sequences of transitions
of the form (t1.t2)k, for any k ∈ N. At each iteration
of this sequence, place p3 receives a new token. This net
is free choice, and following the result of Theorem 1, for
every untimed process Nk associated with a sequence (t1.t2)k,
there exists a time process N ′k of Nbd. However, this process
necessarily contains as many occurrences of t3, t1 as t2. As
t3 occurs as soon as p3 is filled, the only sequences of moves
allowed by Nk are of the form (t1.t2.t3)k, and hence Nbd is
bounded, even if Untime(Nbd) is unbounded.

Despite these remarks, we conjecture that we can indeed
modify the techniques in this paper to get decidability for
coverability and boundedness problems for FC-TPNs. It is
unclear whether reachability for FC-TPNs would similarly be
decidable. Finally, several robustness issues are still open. We
think the results in this paper can be used as a starting point
for future work on yet unsolved robustness questions.

p1 p2 p3

a b

[1,1] [8,8]

Fig. 9. A free choice TPN Ncov

p1

t1

p2

t2

p3 t3

[1, 2][1, 2]

[0, 0]

Fig. 10. A net Nbd that is bounded, but whose untimed version is not
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[3] S. Akshay, L. Hélouët, C. Jard, and P-A Reynier. Robustness of time
Petri nets under guard enlargement. Fundam. Inform., 143(3-4):207–
234, 2016.

[4] S. Akshay, L. Helouet, and R. Phawade. Combining free choice and
time in Petri nets. Technical report, IIT Bombay, 2016. www.cse.iitb.
ac.in/internal/techreports/reports/TR-CSE-2016-79.pdf.

[5] T. Aura and J. Lilius. A causal semantics for time Petri nets. TCS,
243(1-2):409–447, 2000.

[6] B. Berthomieu and M. Menasche. An enumerative approach for
analyzing time Petri nets. In IFIP Congress, pages 41–46, 1983.

[7] H. Boucheneb, D. Lime, and O.H. Roux. On multi-enabledness in time
Petri nets. In Proc. of PETRI NETS’13, volume 7927 of LNCS, pages
130–149, 2013.

[8] M. Boyer and M. Diaz. Multiple enabledness of transitions in Petri nets
with time. In Proc. of PNPM’01, pages 219–228. IEEE, 2001.

[9] D. Bushin and I. Virbitskaite. Time process equivalences for time Petri
nets. In Workshop on Concurrency, Specification and Programming,
volume 1269 of CEUR Workshop, pages 257–268, 2014.

[10] A. Cerone and A. Maggiolo-Schettini. Time-based expressivity of time
Petri nets for system specification. TCS, 216(1-2):1–53, 1999.

[11] T. Chatain and C. Jard. Complete finite prefixes of symbolic unfoldings
of safe time Petri nets. In ICATPN’06, pages 125–145. 2006.

[12] T. Chatain and C. Jard. Back in time Petri nets. In Proc. of
FORMATS’13, volume 8053 of LNCS, pages 91–105, 2013.

[13] J. Esparza and Jörg Desel. Free Choice Petri nets. Cambridge University
Press, 1995.

[14] A. Finkel and J. Leroux. Recent and simple algorithms for Petri nets.
Software and System Modeling, 14(2):719–725, 2015.

[15] N.D. Jones, L.H. Landweber, and Y.E. Lien. Complexity of some
problems in Petri nets. TCS, 4(3):277–299, 1977.

[16] P.M. Merlin. A Study of the Recoverability of Computing Systems. PhD
thesis, University of California, Irvine, CA, USA, 1974.

[17] A. Puri. Dynamical properties of timed automata. In DEDS, 10(1-2):87–
113, 2000.

[18] C. Rackoff. The covering and boundedness problem for vector addition
systems. TCS, 6:223–231, 1978.

[19] P.A. Reynier and A. Sangnier. Weak time Petri nets strike back! In
CONCUR, volume 5710 of LNCS, pages 557–571. 2009.

[20] V.V Ruiz, D. de Frutos-Escrig, and F. Cuartero. Timed processes of
timed Petri nets. In Proc. of ICATPN’95, volume 935 of LNCS, pages
490–509, 1995.

[21] J. Winkowski. Algebras of processes of timed Petri nets. In CONCUR
’94, volume 836 of LNCS, pages 194–209, 1994.


