
HAL Id: hal-01379635
https://inria.hal.science/hal-01379635

Submitted on 12 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Structural Bioinformatics Library: modeling in
biomolecular science and beyond

Frédéric Cazals, Tom Dreyfus

To cite this version:
Frédéric Cazals, Tom Dreyfus. The Structural Bioinformatics Library: modeling in biomolecular
science and beyond. [Research Report] RR-8957, Inria. 2016. �hal-01379635�

https://inria.hal.science/hal-01379635
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
89

57
--

FR
+E

N
G

RESEARCH
REPORT
N° 8957
September 2016

Project-Team ABS

The Structural
Bioinformatics Library:
modeling in biomolecular
science and beyond
F. Cazals and T. Dreyfus

RESEARCH CENTRE
SOPHIA ANTIPOLIS – MÉDITERRANÉE

2004 route des Lucioles - BP 93
06902 Sophia Antipolis Cedex

The Structural Bioinformatics Library:
modeling in biomolecular science and beyond

F. Cazals and T. Dreyfus

Project-Team ABS

Research Report n° 8957 — September 2016 — 22 pages

Abstract: Motivation: Software in structural bioinformatics has mainly been application
driven. To favor practitioners seeking off-the-shelf applications, but also developers seeking ad-
vanced building blocks to develop novel applications, we undertook the design of the Structural
Bioinformatics Library (SBL, http://sbl.inria.fr), a generic C++/python cross-platform soft-
ware library targeting complex problems in structural bioinformatics. Its tenet is based on a mod-
ular design offering a rich and versatile framework allowing the development of novel applications
requiring well specified complex operations, without compromising robustness and performances.
Results: The SBL involves four software components (1-4 thereafter). For end-users, the SBL pro-
vides ready to use, state-of-the-art (1) applications to handle molecular models defined by unions of
balls, to deal with molecular flexibility, to model macro-molecular assemblies. These applications
can also be combined to tackle integrated analysis problems. For developers, the SBL provides a
broad C++ toolbox with modular design, involving core (2) algorithms, (3) biophysical models,
and (4) modules, the latter being especially suited to develop novel applications. The SBL comes
with a thorough documentation consisting of user and reference manuals, and a bugzilla platform
to handle community feedback.
Availability: The SBL is available from http://sbl.inria.fr

Key-words: Structural bioinformatics, Scientific software, Software libraries

http://sbl.inria.fr
http://sbl.inria.fr

La Structural Bioinformatics Library:
modélisation des systèmes biomolécules et au-delà

Résumé : Motivation: Le logiciel pour la bioinformatique a essentiellement été motivé par
les applications. De façon à satisfaire les utilisateurs cherchant des applications clef en main,
mais aussi les developpeurs ayant besoin de briques logicielles afin de créer de nouvelles applica-
tions, nous avons développé la Structural Bioinformatics Library (SBL, http://sbl.inria.fr),
une librairie générique C++/python cross-platform. Elle offre un design modulaire et un envi-
ronnement riche en briques algorithmiques complexes, sans compromis sur la robustesse et les
performances.

Resultats: La SBL offre quatre compartiments logiciels. Pour les utilisateurs en fin de chaîne,
elle propose des (1) applications permettant de manipuler des modèles moléculaires définis par
des unions de boules, d’explorer la flexibilité des molécules, et de modéliser de gros assemblages.
De plus, son design rend aisé la combinaison de ces applications, permettant de mener à bien des
analyses intégrées. Pour les développeurs, la SBL propose une boite à outil C++ à large spectre,
au design modulaire, avec (2) algorithmes, (3) modèles biophysiques, et (4) modules, ces derniers
rendant trivial le développement de nouvelles applications. Par ailleurs, une documentation
exhaustive est proposée (user et référence manuels), ainsi qu’une plate-forme bugzilla pour la
gestion des bogues.

Accès:: rendez-vous sur http://sbl.inria.fr

Mots-clés : Bioinformatique structurale, logiciel scientifique, librairie scientifique

http://sbl.inria.fr
http://sbl.inria.fr

The Structural Bioinformatics Library 3

Contents
1 Introduction 4

1.1 Software for computational structural biology . 4
1.2 Software design . 4

2 The SBL for end-users 5
2.1 Rationale . 5
2.2 Key features . 5

3 The SBL for developers 7
3.1 Rationale . 7
3.2 Structure of the SBL . 8
3.3 Development of novel programs and applications 8
3.4 Low level developments . 9
3.5 License, releases, distribution . 9

4 Discussion 9
4.1 High quality applications . 9
4.2 Towards more integration and further applications 10

5 Outlook 11

6 Supplemental 19
6.1 Simplified version of sbl-vorlume-txt.exe . 19
6.2 Managing batches of executions, and using PALSE to extract statistics 21

RR n° 8957

4 Cazals and Dreyfus/ ABS

1 Introduction

1.1 Software for computational structural biology

Computational structural biology is concerned with the investigation of the relationship between
the structure and dynamics of biomolecules on the one hand, and their function on the other
hand. The questions in this realm are especially challenging due to the dynamic nature of
the phenomena studied, the time-scales involved, and the size of systems, which vary from
small molecules or peptides to large assemblies involving hundreds of macro-molecules. Another
source of complication is the hybrid nature of the relevant data, as insights on complex systems
typically mix experiments (X ray crystallography, NMR, electron microscopy, mass spectrometry)
and modeling. This state of affairs is such that a very large number of software applications
and libraries have been developed in structural bioinformatics, with more than 350 classified at
http://www.ks.uiuc.edu/Development/biosoftdb/biosoft.cgi. In this offer, several large
software tools stand out. Platforms such as MODELLER ([1] and http://salilab.org/modeller),
Rosetta ([2] and https://www.rosettacommons.org/software), or the Integrative Modeling
Platform ([3] and https://integrativemodeling.org) enabled notable scientific advances in
biophysics and computational biology. Docking algorithms at large are invaluable to predict
the structure of complexes ([4] and https://en.wikipedia.org/wiki/Docking_(molecular)).
Force fields and the associated simulation platforms, including CHARMM ([5] and https://www.
charmm.org), AMBER ([6] and http://ambermd.org), NAMD ([7] and http://www.ks.uiuc.edu/
Research/namd), GROMACS ([8] and http://www.gromacs.org), or the Cambridge suite software
suite for energy landscapes ([9] and http://www-wales.ch.cam.ac.uk/software.html), proved
invaluable to study the dynamics of (bio-)molecules. Likewise, molecular visualization programs
such as VMD ([10] and http://www.ks.uiuc.edu/Research/vmd), Pymol ([11] and https://www.
pymol.org/), Chimera ([12] and https://www.cgl.ucsf.edu/chimera/), or SAMSON (http://
www.samson-connect.net) leverage the analysis of simulation results. Finally, BioPython ([13]
http://biopython.org/) provides several tools in the realm of computational biology–even if
its focus is not on structure.

1.2 Software design

The aforementioned software environments are major scientific achievements. However, they
usually do not clearly disentangle the end-user applications solving well specified biophysical
problems, and the underlying low level algorithmic classes. This in turn hinders the design of
software solutions combining complementary building blocks from various sources, as no unified
design principle is common to most libraries.

To change the state of affairs, we undertook the design and development of the Structural
Bioinformatics Library (http://sbl.inria.fr), a highly modular software library matching the
best standards in two directions. On the one hand, similarly to the previously cited environ-
ments, the SBL offers end-user applications with state-of-the-art performances. On the other
hand, these applications are based on low-level algorithmic classes whose design matches that
of comprehensive C++ libraries such as the Computational Geometry Algorithms Library
(CGAL, http://www.cgal.org) or the boost C++ libraries (http://www.boost.org/). This
unique combination makes it possible to develop novel challenging applications, by reusing highly
parameterized software components. In the sequel, we present the main software components
geared towards end-users and developers.

Inria

http://www.ks.uiuc.edu/Development/biosoftdb/biosoft.cgi
http://salilab.org/modeller
https://www.rosettacommons.org/software
https://integrativemodeling.org
https://en.wikipedia.org/wiki/Docking_(molecular)
https://www.charmm.org
https://www.charmm.org
http://ambermd.org
http://www.ks.uiuc.edu/Research/namd
http://www.ks.uiuc.edu/Research/namd
http://www.gromacs.org
http://www-wales.ch.cam.ac.uk/software.html
http://www.ks.uiuc.edu/Research/vmd
https://www.pymol.org/
https://www.pymol.org/
https://www.cgl.ucsf.edu/chimera/
http://www.samson-connect.net
http://www.samson-connect.net
http://biopython.org/
http://sbl.inria.fr
http://www.cgal.org
http://www.boost.org/

The Structural Bioinformatics Library 5

2 The SBL for end-users

2.1 Rationale

From the structural bioinformatics standpoint, the SBL aims to provide reference methods solving
specific problems. The methods are grouped by-so called applications, themselves ascribed to
categories depending on the models manipulated (for the Applications page of the web site, see
http://sbl.inria.fr/applications/; for the Applications page from the on-line documenta-
tion, see http://sbl.inria.fr/doc/group__sbl-applications.html; see also Fig. 1). The
groups of applications are:

• Space filling models: applications dealing with molecular models defined by unions of balls,
e.g. van der Waals or solvent accessible models [14]. Prototypical applications provide interface
modeling (Figs. 1(A) and 2, [15, 16, 17]), the calculation of molecular surfaces and volumes
[18, 19], or the design of coarse grain models [20].

• Conformational analysis: applications dealing with molecular flexibility [9, 21]. Reference
methods are provided to sample potential energy landscapes [22] (Fig. 1(B)), to analyze and
compare ensembles of conformations and sampled energy landscapes [23, 24]. Future additions
will focus on novel methods to compute thermodynamic and kinetic properties of bio-molecular
systems, with a focus on Monte Carlo based methods (in particular Wang-Landau type algo-
rithms to compute densities of states[25]), as well as methods exploiting the formalism of energy
landscapes[9].

• Large assemblies: applications dealing with macro-molecular assemblies involving from tens to
hundreds of subunits [26]. Particularly noticeable is the application inferring contacts between
subunits of a large assembly from native mass spectrometry data [27], as it doubles performances
of competing methods [28] (Fig. 1(C)). Future additions will focus on methods to assess [29, 30]
models stemming from reconstruction by data integration [31, 3].

• Integrated analysis: Applications combining several ingredients from the previous groups. An
application is provided to estimate binding affinities of protein complexes, with state-of-the-art
results [32] on the reference structure-affinity benchmark [33] (Fig. 1(D)).

To ease the reproducibility of computer experiments, the SBL also proposes specific data
management and analysis methods:
• Data Management: applications easing data management in large scale computer experiments.

• Data Analysis: applications providing novel data analysis - statistical analysis tools.

Using selected of these applications is especially easy, since an auto-installation script (avail-
able at http://sbl.inria.fr/applications/) makes them directly available under VMD and
Pymol. For example, under VMD, the interface analysis of Fig. 2 are readily reproduced using the
applications available from the menu Extensions> SBL> Intervor > { sbl_intervor_ABW_atomic,
sbl_intervor_IGAgW_atomic }. More generally, the user manual of each application provides
a detailed documentation, with in particular input files, output files, and command lines with
full lists of options.

2.2 Key features

From the software design standpoint, all applications meet the best practices of modern large
scale software libraries:

RR n° 8957

http://sbl.inria.fr/applications/
http://sbl.inria.fr/doc/group__sbl-applications.html
http://sbl.inria.fr/applications/

6 Cazals and Dreyfus/ ABS

• Versatility. In the SBL, an application is a set of programs characterized by inputs and outputs
obeying the same semantics. We illustrate this on the problem of modeling macro-molecular
interfaces (Fig. 2). Intuitively, an interface between two partners separates these partners, and
should therefore be oblivious to their nature (proteins, nucleic acids, metabolites, etc) or res-
olution (at interface may be defined at any resolution). Also, the notion of interface should
cover cases where the partners have a specific structure. For example, in modeling an antibody
- antigen complex, the antibody fragment antigen binding domain (FAB) may be decomposed
hierarchically into domains from the heavy and light chains, or into so-called complementarity
determining regions and framework regions. The SBL handles all such cases at once, making it
possible to study a given object at different levels of details, or to study objects with the same
semantic using the same concepts. The case of interfaces is explained in the documentation
at http://sbl.inria.fr/doc/Space_filling_model_interface-user-manual.html. More
generally, the derivation of programs within a given application is explained in section 3.

• Documentation. Each application comes with a detailed user manual, stating the main goals,
defining the pre-requisites, and specifying the inputs and outputs. Moreover, example runs of
the programs are provided, together with the associated input and output files.

• Specifications and workflows. All applications come with a sharp specification of pre-requisites,
inputs and outputs. Most importantly, each application comes with a workflow, namely a graph
specifying the sequence of operations, each undertaken by a so-called module (Fig. 3 and section
3). The workflow of an application is automatically generated by this application, which guar-
antees coherence with the source code and the claimed functionalities. It is instrumental to view
the application at a glance, and to design data processing pipelines.

• Perennial data formats. Programs from the SBL generate results in perennial data format,
in particular XML. The hierarchical structure of XML, in conjunction with the XPath query
language, allows automating data storage, parsing and retrieval, so that upon running calcula-
tions with applications, statistical analysis and plots are a handful of Python lines away. This
also allows a trivial coupling with data analysis modules provided in Scikit-learn (http:
//scikit-learn.org/stable/) or R (https://www.r-project.org/).

• Reproducibility. A critical point in bioinformatics is the ability to reproduce results [34]. To this
end, the SBL provides tools to configure, execute and repeat large scale computer experiments.
Automating computer experiments is of paramount importance in particular when randomness
is at play, e.g. in cross validation experiments, Monte Carlo based exploration of conformational
spaces, or non convex optimization.

• Visualization. Whenever relevant, applications from the SBL are coupled to visualization
plugins for VMD and PyMol. In fact, automatic installation scripts are provided for these two
environments (http://sbl.inria.fr/applications/), so that all executables from the SBL are
two clicks away from the VMD and PyMol menus.

• Ability to handle complex multi-scale biophysical problems. Broadly speaking, the modeling
problems faced in structural bioinformatics may be ascribed to three categories. Atomic reso-
lution models aim at unveiling fine structural and dynamical properties of molecules or (small)
complexes. Such models typically require modeling the flexibility of molecules, to obtains ther-
modynamic and/or kinetic descriptors [9, 21]. Coarse-grain models aim at unveiling the structure
of larger systems, by giving access to the overall shape, and possibly to pairwise contacts within
an assembly. Such models typically rely on various experimental data such as mass spectrome-
try, cryo electron microscopy or SAXS data [31, 3]. Finally, hybrid models aim at approaching
atomic resolution models, by combining low resolution models of an assembly with high resolution
structures of subunits [35].

Inria

http://sbl.inria.fr/doc/Space_filling_model_interface-user-manual.html
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
https://www.r-project.org/
http://sbl.inria.fr/applications/

The Structural Bioinformatics Library 7

Most of the problems in these three realms can be tackled using two types of representations,
based on union of balls on the one hand (van der Walls, solvent accessible models, coarse grain
models), and coordinate based representations on the other hand (internal coordinates or Carte-
sian coordinates). The SBL provides such formats, with easy conversion between them–from a
geometric standpoint, so as to foster inter-connections between atomic resolution, low resolution,
and hybrid models.

• Robustness and performances. Structural data are geometric in nature, which requires handling
possibly degenerate situations so as to guarantee robustness and accuracy of results. To see why,
consider the seemingly simple problem of computing the volume of a molecule, so as e.g. to assess
the atomic packing properties. This calculation is generally undertaken using floating point
numbers, which typically yields errors of 5-10% [18, 19]. The SBL resorts to numerically certified
operations instead, which warrants robust programs and accurate results. This entails using
appropriate number types (with arbitrary precision, interval number types) when appropriate.
Likewise, the algorithms have been optimized, so as to guarantee that their complexity scales
ideally as a function of the data size.

• Modularity and extensibility. Addition of new applications is especially easy, due to the coher-
ence between the representations just discussed, and the highly modular structure of the library
as detailed below.

• Interoperability. Applications are inter-operable in three respects. First, standard file formats
are used as input. The PDB format is generally used for molecular conformations. But all
algorithms are templated by so-called loaders, which makes it especially easy to import data
from any (custom) format. Second, results are stored in XML files, to ease the integration of
applications within bioinformatics pipelines. Third, on the programming side, the source code
can be directly embedded into external applications, as detailed below.

3 The SBL for developers

3.1 Rationale

In the perspective of software development, the design of the SBL has been guided by two main
principles. The first one is to provide a broad C++/python toolbox, fostering code re-usability
and the development of complex applications with clear workflows. In a nutshell, C++ is used
whenever generic classes are in order–see our description of template based design in section 3.2.
The second is to offer a modular design fostering the integration and exchange of core building
blocks, be they from computer science or biophysics. These principles aim at accommodating
the complexity of software in structural bioinformatics, which inherently mixes two difficulties.
The first one relates to the variety of models used in biophysics at large, namely models from
physics (e.g., potential and free energy models), chemistry (e.g., force fields), and biology (e.g.,
sequence - structure information, functional annotations, etc). The second one pertains to the
variety of concepts and algorithms essentially covering the whole spectrum of computer science
and applied mathematics, including combinatorial algorithms and data structures (e.g., sorting
and searching methods, graph algorithms), numerics (e.g, number types, optimization methods),
geometric and topological methods (e.g., Delaunay and Voronoi representations, spatial search
data structures), data analysis.

Through its modular design, the SBL fosters the integration of software components in these
two realms, which also warrants code re-usability and the development of novel applications.

RR n° 8957

8 Cazals and Dreyfus/ ABS

3.2 Structure of the SBL

To further describe the structure of the SBL (Fig. 4), some familiarity with generic software in
general and C++ in particular is essential [36]. In C++, a template class is a class accommodating
different data types providing the same pre-requisites, upon so-called instantiation. For example,
a simple list may be a list of integers, floats, proteins, complexes, etc. This mechanism avoids
rewriting basic classes for specific types. The requirements of a template class are concepts, a
concept being a set of types and methods. A model for a concept is a class implementing these
types and methods. Within the SBL, we distinguish two categories of template parameters: (i)
the internal types, namely concepts for which default models are provided, and (ii) the external
types, namely concepts depending on the software component developed. This classification also
simplifies the instantiation of template classes, since external types are grouped within traits
classes. (In particular, this is always the case for the so-called modules, see below.)

This said, the structure of the SBL is as follows:

• SBL-APPLICATIONS: applications solving specific applied problems, as described in section
2.

• SBL-CORE: C++ classes providing (advanced) algorithms, ascribed to four tiers: CADS:
Combinatorial Algorithms and Data Structures, GT: Computational geometry and compu-
tational topology, CSB: Computational Structural Biology, IO: Input / Output. Selected
classes are templated by traits classes specifying C++ concepts, namely requirements in
terms of functionalities.

• SBL-MODELS: C++ models coding physical and/or chemical and/or biological knowledge.
These classes typically match the C++ concepts required to instantiate those classes from
SBL-CORE which are templated.

• SBL-MODULES: C++ classes instantiating classes from SBL-CORE with specific biophysical
models from SBL-MODELS. A module may be seen as a black box transforming an input into
an output. With modules, an application workflow is merely a graph of interconnected mod-
ules, whose automatic traversal generates the application workflow.A module is provided
for a package in SBL-CORE when the corresponding algorithms are key steps of an applica-
tion from SBL-APPLICATIONS. There are currently 15 modules scattered over 13 SBL-CORE
packages, as listed at http://sbl.inria.fr/doc/group__sbl-core-modules.html.

3.3 Development of novel programs and applications

Using the structure just discussed, several types of developments can be undertaken.
Recall that an application is a set of programs characterized by inputs and outputs obey-

ing the same semantics. We handle such invariants using generic software design techniques in
C++. More precisely, each application is developed using generic concepts resorting to template
parameters. For an existing application, a novel program may be obtained by replacing a tem-
plate parameter by another one sharing the prescribed specifications. For example, given the
C++ skeleton of our application dissecting macro-molecular interfaces (Fig. 2), deriving a novel
program taking into account specific features of antibodies merely requires replacing the class
labeling the atoms of the two partners by a class which in addition ascribes the atoms of the IG
to its heavy and light chains. Phrased differently, deriving the new program requires changing
one type specification and recompiling.

Inria

http://sbl.inria.fr/doc/group__sbl-core-modules.html

The Structural Bioinformatics Library 9

Novel applications may be developed in two ways. The easiest route consists of combining
(pooling) existing modules, as exemplified in the supplementary section 6.. A more challeng-
ing route, for experienced C++ programmers, consists in instantiating classes from SBL-CORE
(existing ones or novel ones) with models from SBL-MODELS (existing ones or novel ones).

3.4 Low level developments

Basic algorithms provided in SBL-CORE underlie essentially all complex data processing tasks,
which we illustrate with three examples. In the Space Filling Models group of applications,
most of the software components rely on Voronoi diagrams and so-called α-shapes [37], which
provide parameter free models of macro-molecules structures and their complexes. Such calcula-
tions are notoriously difficult from the combinatorial and numerical standpoint, and our solution
relies on a mix of packages from CGAL and developed in the CADS tier of SBL-CORE. For applica-
tions dealing with Conformational Analysis, a critical operation to deal with large ensembles
of conformations is to perform so-called nearest neighbor queries [38], to report e.g. the con-
formation in a set most similar to a query conformation. Depending on the metric used, these
operations require advanced algorithms in metric spaces, which are provided again within CADS
tier of SBL-CORE. Finally, in the Large assemblies group, a key problem is to accommodate
uncertainties on models. A fundamental tool to assess stable geometric and topological features
of such models is topological persistence [39], and again, the SBL provides several key algorithms
in this realm, e.g. used in the mode seeking based clustering algorithm [40].

It should also be stressed that the modular structure of the SBL makes it simple to replace
one building block by another one, provided coherent specifications.

3.5 License, releases, distribution

The SBL is released under a proprietary open source license, see http://sbl.inria.fr/license/.
In a nutshell, academic users can use and modify the code at their discretion, for research purposes
– commercial exploitation of the SBL requires a specific license. Contributions from the outside
are also welcome, provided that they comply with the development philosophy. One such exam-
ple is the Apurva package (http://sbl.inria.fr/doc/group__Apurva-package.html), which
provides reference methods to perform structural alignments [41].

The source code is distributed from http://sbl.inria.fr, using tarballs and a git repository.
Full support via a Bugzilla interface is provided for linux and MacOS. For windows, individual
executables were compiled and tested, but full support is not provided since scripts and plugins
were not thoroughly tested.

Applications can be directly downloaded and installed from http://sbl.inria.fr/applications/,
and the whole documentation is available at
http://sbl.inria.fr/documentation-and-tutorials/.

4 Discussion

4.1 High quality applications

Having presented the structure of the SBL, we argue that the high quality applications provided
rely on the combination of two features, namely a careful specification of the mathematical
properties of the algorithms used, and an advanced C++ design which makes it possible to
couple elaborate building blocks. We provide one illustration for each group of applications.

RR n° 8957

http://sbl.inria.fr/license/
http://sbl.inria.fr/doc/group__Apurva-package.html
http://sbl.inria.fr
http://sbl.inria.fr/applications/
http://sbl.inria.fr/documentation-and-tutorials/

10 Cazals and Dreyfus/ ABS

Space filling models. Consider the application computing molecular surfaces and volumes, see
http://sbl.inria.fr/doc/Space_filling_model_surface_volume-user-manual.html. Clas-
sical contenders typically resort to float or double number types to do so, typically yielding
errors measured in percents [19], a fact inherent to the rounding of floating point numbers. Our
application provides certified results, a property stemming from the instantiation of low-level
algorithms from SBL-CORE with number types equipped with guarantees (types with arbitrary
precision, interval number types).

Conformational analysis. Consider the application exploring potential energy landscapes (PEL)
of biomolecular systems, see http://sbl.inria.fr/doc/Landscape_explorer-user-manual.
html. For (models of) biomolecules, PEL typically involve a very large number of local min-
ima [22, 24]. The efficient exploration of such landscapes requires efficient algorithmic compo-
nents (random sampling, exploration of high dimensional space, location of nearest neighbors in
metric spaces), coupled with the biophysical models (potential energy) scrutinized. In the SBL,
deriving new exploration programs is especially easy, since one merely needs to instantiate the
required low-level algorithms from SBL-CORE with biophysical models form SBL-MODELS.

Large assemblies. A key difficulty in modeling large assemblies is to harness the uncertainties
inherent to coarse-grain models. In the SBL, this is done by putting the emphasis on the qual-
ity of geometric approximations, and on the enumeration of solutions achieving optimal scores.
For example, for coarse grain modeling, see http://sbl.inria.fr/doc/Space_filling_model_
coarse_graining-user-manual.html, the SBL provides the only algorithms producing models
with volumetric approximation guarantees, a fact stemming from insights on the NP-complete
problems solved. In a different realm, in inferring pairwise contacts for native mass spectrometry
data, see http://sbl.inria.fr/doc/Connectivity_inference-user-manual.html, our con-
nectivity inference methods enumerate all optimal solutions, which avoids arbitrariness in the
solutions exploited.

Integrated analysis. Consider the problem of estimating binding affinities from structural data,
see http://sbl.inria.fr/doc/Binding_affinity_prediction-user-manual.html. By com-
bining several constructions provided by programs from the space filling model group, the appli-
cation provided delivers state-of-the-art affinity predictions, with accuracy typically better than
1.4 kcal/mol [32].

4.2 Towards more integration and further applications
The architecture just discussed can be beneficial to design involved applications in molecular
science and beyond.

In molecular science, several of our building blocks may be combined to develop novel hybrid
and/or integrated models. As an illustrative example, one may consider the computation of
absolute binding free energies via accurate thermodynamic calculations [42, 43]. While such
calculations are usually based on ab initio calculations using force fields, they could be hybridized
with recently designed knowledge based parameters which were instrumental to obtain estimates
of unprecedented accuracy [44, 32]. The fact that the SBL provides both classes of methods is a
significant asset to develop such models. Another example is the design and the assessment of
models in the context of reconstruction by data integration [31], where the coupling of improved
exploration functions for non convex functionals [22] and delicate geometric and graph theoretical
assessment methods [29, 30] may yield improved models.

Beyond molecular science, our low-level algorithms can naturally be used in a variety of con-
texts. A striking illustration is provided by geometric models based on union of balls, as such
models are also encountered in material sciences (e.g. to represent materials and study their

Inria

http://sbl.inria.fr/doc/Space_filling_model_surface_volume-user-manual.html
http://sbl.inria.fr/doc/Landscape_explorer-user-manual.html
http://sbl.inria.fr/doc/Landscape_explorer-user-manual.html
http://sbl.inria.fr/doc/Space_filling_model_coarse_graining-user-manual.html
http://sbl.inria.fr/doc/Space_filling_model_coarse_graining-user-manual.html
http://sbl.inria.fr/doc/Connectivity_inference-user-manual.html
http://sbl.inria.fr/doc/Binding_affinity_prediction-user-manual.html

The Structural Bioinformatics Library 11

properties), in geometric modeling (e.g. to represent shapes via the medial axis transform), in
biomedicine (e.g. to represent approximations of discretized organs), in computer graphics (e.g.
to define hierarchies of bounding volumes used in collision checking), or even in astrophysics (e.g.
to study the topology of galaxies using α-shapes). In fact, our previous software Vorlume, com-
puting surfaces and volumes of unions of balls Vorlume[19] was used in all these contexts. With its
generic design (section 2.2), the repackaged application Space_filling_model_surface_volume
goes even further and makes it trivial to accommodate models based on union of balls whose
semantics is arbitrary.

5 Outlook

Computer programming may be considered as an art, as a science, or both. Following Donald
Knuth in his Turing award lecture [45], � Science is knowledge that we understand so well that
we can teach it to a computer; and if we don’t fully understand something, it is an art to deal with
it. �. Later in his lecture, Knuth also mentions that a good program should (i) work correctly,
(ii) be easy to change, (iii) allow graceful interaction with its users, and (iv) be efficient given
the computer resources at hand.

The development of software tools for structural bioinformatics in general and within the SBL
in particular may be considered in light of these thoughts. The correctness is certainly critical,
and calls for a careful specification of the inputs and outputs of a program, a tenet for every
single application of the SBL. Correctness issues were actually considered down to the most
exquisite levels, as all algorithms are parameterized by number types which may be adapted
to match specific requirements. The ability to easily change a program to accommodate a new
setting clearly calls for a versatile design. Advanced software design techniques relying on C++
templates offer such a flexibility, allowing a new program to be compiled by merely changing
a type definition. Moreover, for end-users not versed into programming, a vast array of ready
to use applications are provided. The graceful interaction with users stems from perennial data
formats on the one hand, and the coupling with classical visualization systems on the other hand.
Finally, the efficacy of applications is ensured by resorting to low level algorithms providing the
best complexities, be they from the SBL itself or from external specialized libraries.

Summarizing, the SBL matches the four aforementioned requirements both for end-users and
developers. In fact, it is to the best of our knowledge the first library doing so in structural bioin-
formatics. We anticipate that this unique design will prove invaluable, reducing the development
of complex applications to a few days, as opposed to months starting from scratch. Naturally,
we also anticipate that in combining insights obtained from complementary advanced modeling
techniques such as the ones offered, stimulating views on complex bio-molecular systems will be
obtained, and that these will in turn raise novel questions and hypothesis.

Our ambition for the near future is twofold. First, we shall expand the functionalities, both in
terms of off-the shelf applications and low level algorithmic classes. Second, we shall welcome and
integrate contributions from the community, provided that these comply with the development
philosophy.

RR n° 8957

12 Cazals and Dreyfus/ ABS

Figure 1 Example end-user applications, see http://sbl.inria.fr/ > Applications.
(A) Group Space filling models: Space_filling_model_interface_finder. A package to
seek interfaces of molecular assemblies. A graph is reported, with one node per subunit (chain
or domain in a chain), and one edge per interface between any two subunits in contact. Each
edge is decorated by the number of interface atoms and the number of patches. Each such
interface can be studied in much mode detail (Fig. 2). (B) Group Conformational analy-
sis: Landscape_explorer. A package providing Monte Carlo based algorithms (basin hopping,
rapidly exploring random trees, hybrid algorithms) to explore potential energy landscapes of
molecular systems. Shown here is a rapidly exploring random tree crawling along the valleys of
a 2D mathematical landscape. (C) Group Large assemblies: Connectivity_inference. A
package to perform connectivity inference between subunits of large assemblies, from native mass
spectrometry data. Given a set of oligomers (one oligomer is one list of subunits, three of them
are shown as colored polygons in subpanels (A,B,C)), pairwise interfaces between these subunits
are inferred (subpanel D). (D) Group Integrated analysis: Binding_affinity_predictions.
A package to perform binding affinity predictions from structures of partners and their complex.
For high resolution structures, an accuracy on ∆Gd circa 1 kcal/mol is achieved.

(A)

(B)

(C)

(D)

Inria

http://sbl.inria.fr/

The Structural Bioinformatics Library 13

Figure 2 On the versatility of applications from the SBL: illustration on
the problem of modeling interfaces, http://sbl.inria.fr/doc/Space_filling_model_
interface-user-manual.html. An application is a set of programs characterized by inputs and
outputs obeying the same semantics – modeling the interface between subunits of a complex in
this example. From the applied standpoint, an interface is qualified by pairs of atom in contacts,
interfacial solvent molecules, binding patches (i.e. connected components) together with their
surface area and curvature, etc. Formally, an interface is parameterized by properties of the
partners (defined by atoms or pseudo-atoms), as well as specific properties of these partners (i.e.
the decomposition of a partner into groups of atoms). This parameterization allows investigating
a variety of systems in a coherent way, by instantiating the same generic C++ code with different
biophysical models. In the sequel, we illustrate this possibility by studying an antibody (IG) -
antigen complex at two levels of detail (PDB: 1vfb): by considering the IG as a whole, and by
splitting its fragment antigen binding domain (FAB) into contributions from its heavy and light
chains. (A) Interface atoms of the IG - Ag complex: blue (atoms of the IG), read (atoms of the
antigen), gray (crystal water molecules sandwiched between the partners). NB: all atoms are
displayed in their solvent accessible representation i.e. radii have been expanded by 1.4. (B)
In green, the Voronoi interface from (A), which separates the partners. (C) Top view of the
Voronoi interface from (B), with interfacial water molecules. (D) Interfacial atoms contributed
by the heavy (blue) and light chain (cyan) of the IG. (E) Voronoi interface of the heavy chain
and interfacial atoms from the light chain. (F) Voronoi interface of the light chain and interfacial
atoms from the heavy chain.

(A) (B)

(C) (D)

(E) (F)RR n° 8957

http://sbl.inria.fr/doc/Space_filling_model_interface-user-manual.html
http://sbl.inria.fr/doc/Space_filling_model_interface-user-manual.html

14 Cazals and Dreyfus/ ABS

Figure 3 The structure of applications as a workflow connecting modules: workflow of
the interface finder of Fig. 1(A), see http://sbl.inria.fr/doc/Space_filling_model_
interface_finder-user-manual.html. In the SBL, a module is a black box transforming an
input into an output. With modules, an application is a graph whose nodes are modules. By
introspecting i.e. traversing this graph, the application generates its workflow. Moreover, nodes
of the printed workflow are clickable–they point to the documentation of the software components.
Practically, modules are C++ classes parameterized by classes from SBL-CORE and SBL-MODELS.
This workflow indicates that there are two steps in the application considered. The first one
(compulsory), reports all pairwise interfaces found in the structure. The second one (optional),
may be called to computed surface areas buried on each subunit. Note that these pieces of
information are summarized on the graph reported (Fig. 1(A)).

Inria

http://sbl.inria.fr/doc/Space_filling_model_interface_finder-user-manual.html
http://sbl.inria.fr/doc/Space_filling_model_interface_finder-user-manual.html

The Structural Bioinformatics Library 15

Figure 4 Overall architecture of the SBL. The SBL is organized in focus areas for end-users,
developers, and contributors. For end-users, applications solve well specified biophysical problems
(Figs. 1 and 2). For developers, the SBL provides software components easing the development
of novel applications (Fig. 3). For low level developers and contributors, the SBL proposes
core algorithmic packages dedicated to specific processing (CADS: Combinatorial Algorithms and
Data Structures, GT: Computational geometry and computational topology, CSB: Computational
Structural Biology, IO: Input / Output.). The corresponding packages are interchangeable those
from specific libraries, such as the BOOST C++ libraries or CGAL.

References

[1] B. Webb and A. Sali. Comparative protein structure modeling using modeller. Current
protocols in bioinformatics, pages 5–6, 2014.

[2] A. Leaver-Fay, M. Tyka, S.M. Lewis, O.F. Lange, J. Thompson, R. Jacak, K. Kaufman,
P.D. Renfrew, C.A. Smith, W. Sheffler, I.W. Davis, S. Cooper, A. Treuille, D.J. Man-
dell, F. Richter, Y.E. Ban, S.J. Fleishman, J.E. Corn, D.E. Kim, S. Lyskov, M. Berrondo,
S. Mentzer, Z. Popovic J.J. Havranek, J. Karanicolas, R. Das, J. Meiler, T. Kortemme, J.J.
Gray, B. Kuhlman, D. Baker, and P. Bradley. ROSETTA3: an object-oriented software suite
for the simulation and design of macromolecules. Methods Enzymol, 487:545–574, 2011.

[3] B. Webb, K. Lasker, J. Velázquez-Muriel, D. Schneidman-Duhovny, R. Pellarin, M. Bonomi,
C. Greenberg, B. Raveh, E. Tjioe, D. Russel, and A. Sali. Structural genomics: General ap-
plications. chapter Modeling of Proteins and Their Assemblies with the Integrative Modeling
Platform, pages 277–295. Humana Press, Totowa, NJ, 2014.

[4] I. Halperin, B. Ma, H. Wolfson, and R. Nussinov. Principles of docking: An overview of
search algorithms and a guide to scoring functions. Proteins, 47(4):409–443, 2002.

[5] B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan, and M. Karplus.
CHARMM: A program for macromolecular energy, minimization, and dynamics calcula-
tions. Journal of Computational Chemistry, 4:187–217, 1983.

RR n° 8957

16 Cazals and Dreyfus/ ABS

[6] Romelia Salomon-Ferrer, David A Case, and Ross C Walker. An overview of the Amber
biomolecular simulation package. Wiley Interdisciplinary Reviews: Computational Molecular
Science, 3(2):198–210, 2013.

[7] James C Phillips, Rosemary Braun, Wei Wang, James Gumbart, Emad Tajkhorshid, Eliza-
beth Villa, Christophe Chipot, Robert D Skeel, Laxmikant Kale, and Klaus Schulten. Scal-
able molecular dynamics with namd. Journal of computational chemistry, 26(16):1781–1802,
2005.

[8] D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. Mark, and H. Berendsen. GRO-
MACS: fast, flexible, and free. Journal of computational chemistry, 26(16):1701–1718, 2005.

[9] D.J. Wales. Energy Landscapes. Cambridge University Press, 2003.

[10] W. Humphrey, A. Dalke, and K. Schulten. VMD: visual molecular dynamics. Journal of
molecular graphics, 14(1):33–38, 1996.

[11] Warren L DeLano. The pymol molecular graphics system. 2002.

[12] Eric F Pettersen, Thomas D Goddard, Conrad C Huang, Gregory S Couch, Daniel M
Greenblatt, Elaine C Meng, and Thomas E Ferrin. UCSF chimera–a visualization system
for exploratory research and analysis. Journal of computational chemistry, 25(13):1605–
1612, 2004.

[13] T. Hamelryck and B. Manderick. Pdb file parser and structure class implemented in python.
Bioinformatics, 19(17):2308–2310, 2003.

[14] M. Gerstein and F.M. Richards. Protein geometry: volumes, areas, and distances. In M. G.
Rossmann and E. Arnold, editors, The international tables for crystallography (Vol F, Chap.
22), pages 531–539. Springer, 2001.

[15] F. Cazals, F. Proust, R. Bahadur, and J. Janin. Revisiting the Voronoi description of
protein-protein interfaces. Protein Science, 15(9):2082–2092, 2006.

[16] F. Cazals. Revisiting the Voronoi description of protein-protein interfaces: Algorithms. In
T. Dijkstra, E. Tsivtsivadze, E. Marchiori, and T. Heskes, editors, International Conference
on Pattern Recognition in Bioinformatics, pages 419–430, Nijmegen, the Netherlands, 2010.
Lecture Notes in Bioinformatics 6282.

[17] S. Loriot and F. Cazals. Modeling macro-molecular interfaces with Intervor. Bioinformatics,
26(7):964–965, 2010.

[18] S. Loriot, F. Cazals, M. Levitt, and J. Bernauer. A geometric knowledge-based biogeom-
grained scoring potential for structure prediction evaluation. In JOBIM, 2009.

[19] F. Cazals, H. Kanhere, and S. Loriot. Computing the volume of union of balls: a certified
algorithm. ACM Transactions on Mathematical Software, 38(1):1–20, 2011.

[20] F. Cazals, T. Dreyfus, S. Sachdeva, and N. Shah. Greedy geometric algorithms for collec-
tions of balls, with applications to geometric approximation and molecular coarse-graining.
Computer Graphics Forum, 33(6):1–17, 2014.

[21] G. Bowman, V. Pande, and F. Noé. An introduction to markov state models and their
application to long timescale molecular simulation, volume 797. Springer Science & Business
Media, 2013.

Inria

The Structural Bioinformatics Library 17

[22] A. Roth, T. Dreyfus, C.H. Robert, and F. Cazals. Hybridizing rapidly growing random
trees and basin hopping yields an improved exploration of energy landscapes. Journal of
Computational Chemistry, 37(8):739–752, 2016.

[23] F. Cazals, T. Dreyfus, D. Mazauric, A. Roth, and C.H. Robert. Conformational ensem-
bles and sampled energy landscapes: Analysis and comparison. Journal of Computational
Chemistry, 36(16):1213–1231, 2015.

[24] J. Carr, D. Mazauric, F. Cazals, and D.J. Wales. Energy landscapes and persistent minima.
The Journal of Chemical Physics, 144(5), 2016.

[25] D. Landau and K. Binder. A guide to Monte Carlo simulations in statistical physics. Cam-
bridge university press, 2014.

[26] David S Goodsell. The machinery of life. Springer Science & Business Media, 2009.

[27] J.L.P. Benesch, B.T. Ruotolo, D.A. Simmons, C.V. Robinson, et al. Protein complexes in the
gas phase: technology for structural genomics and proteomics. Chemical Reviews-Columbus,
107(8):3544–3567, 2007.

[28] D. Agarwal, C. Caillouet, D. Coudert, and F. Cazals. Unveiling contacts within macro-
molecular assemblies by solving minimum weight connectivity inference problems. Molecular
and Cellular Proteomics, 14:2274–2282, 2015.

[29] T. Dreyfus, V. Doye, and F. Cazals. Assessing the reconstruction of macro-molecular assem-
blies with toleranced models. Proteins: structure, function, and bioinformatics, 80(9):2125–
2136, 2012.

[30] T. Dreyfus, V. Doye, and F. Cazals. Probing a continuum of macro-molecular assembly
models with graph templates of sub-complexes. Proteins: structure, function, and bioinfor-
matics, 81(11):2034–2044, 2013.

[31] F. Alber, F. Förster, D. Korkin, M. Topf, and A. Sali. Integrating diverse data for structure
determination of macromolecular assemblies. Ann. Rev. Biochem., 77:11.1–11.35, 2008.

[32] S. Marillet, P. Boudinot, and F. Cazals. High resolution crystal structures leverage protein
binding affinity predictions. Proteins: structure, function, and bioinformatics, 1(84):9–20,
2015.

[33] P.L. Kastritis, I.H. Moal, H. Hwang, Z. Weng, P.A. Bates, A. Bonvin, and J. Janin. A
structure-based benchmark for protein-protein binding affinity. Protein Science, 20:482–
491, 2011.

[34] M Vihinen. No more hidden solutions in bioinformatics. Nature, 521(7552):261, 2015.

[35] N. Amir, D. Cohen, and H.J. Wolfson. Dockstar: a novel ilp-based integrative method for
structural modeling of multimolecular protein complexes. Bioinformatics, 31(17):2801–2807,
2015.

[36] A. Alexandrescu. Modern C++ design: generic programming and design patterns applied.
Addison-Wesley, 2001.

[37] H. Edelsbrunner. Geometry and topology for mesh generation. Cambridge, 2001.

RR n° 8957

18 Cazals and Dreyfus/ ABS

[38] G. Shakhnarovich, T. Darrell, and P. Indyk (Eds). Nearest-Neighbors Methods in Learning
and Vision. Theory and Practice. MIT press, 2005.

[39] H. Edelsbrunner and J. Harer. Computational topology: an introduction. AMS, 2010.

[40] F. Chazal, L.J. Guibas an dS.Y. Oudot, and P. Skraba. Persistence-based clustering in
Riemannian manifolds. In ACM SoCG, pages 97–106, 2011.

[41] I. Wohlers, N. Malod-Dognin, R. Andonov, and G.W. Klau. CSA: Comprehensive compari-
son of pairwise protein structure alignments. Nucleic Acids Research, 40(W1):W303–W309,
2012.

[42] H-J. Woo and B. Roux. Calculation of absolute protein–ligand binding free energy from
computer simulations. PNAS, 102(19):6825–6830, 2005.

[43] M.K. Gilson and H-X. Zhou. Calculation of protein-ligand binding affinities. Annual review
of biophysics and biomolecular structure, 36(1):21, 2007.

[44] A. Vangone and A. Bonvin. Contacts-based prediction of binding affinity in protein–protein
complexes. eLife, 4:e07454, 2015.

[45] Donald E Knuth. Computer programming as an art. In ACM Turing award lectures, page
1974. ACM, 2007.

Inria

The Structural Bioinformatics Library 19

6 Supplemental
In section 6.1, we show how the development of a complex applications stems directly from the con-
nexion of modules. As an example, we provide the code for a simplified version of our application
computing surfaces and volumes (details at http://sbl.inria.fr/doc/Space_filling_model_surface_
volume-user-manual.html). While this simplified version computes the volume of a union of geometric
balls without any specific meaning, the version from the SBL provides switches to handle this case and
also that of atomic models, with complete control of the PDB format and its features (filtering hydrogen
atoms, handling duplicates, filtering on occupancy factors, etc).

In section 6.2, we show (i) how to use the batch manager to run multiple calculations (details at
http://sbl.inria.fr/doc/Batch_manager-user-manual.html), and (ii) how to easily extract statistics
using the application Python Analysis L Scale Experiments (PALSE, details at http://sbl.inria.fr/
doc/PALSE-user-manual.html).

6.1 Simplified version of sbl-vorlume-txt.exe
sbl-vorlume-example.cpp The following piece of code defines a program taking as input a file
listing 3D balls—each line describes one ball by its center and radius, and computes the volume and the
surface of their union.

//Loading the input f i l e l i s t i n g the 3D sphere s .
#inc lude <SBL/Models/ Spheres_3_fi le_loader . hpp>

//Modules r equ i r ed f o r computing the volume o f the union o f b a l l s .
#inc lude <SBL/Modules/Alpha_complex_of_molecular_model_module . hpp>
#inc lude <SBL/Modules/Union_of_balls_surface_volume_3_module . hpp>

//Workflow
#inc lude <SBL/Modules/Module_based_workflow . hpp>

//Models to be used f o r d e f i n i n g the context o f the app l i c a t i o n .
#inc lude <SBL/Models/Geometr i c_part i c l e_tra i t s . hpp>
#inc lude <SBL/CSB/Alpha_complex_of_molecular_model . hpp>
//Alpha−complex module requ i rements f o r dumping VMD and PyMOL
// v i s u a l i z a t i o n f i l e s .
#inc lude <SBL/IO/Alpha_complex_of_molecular_model_molecular_view . hpp>

// Tra i t s c l a s s d e f i n i n g the types used by the modules
s t r u c t Tra i t s
{

typede f SBL : : Models : : T_Geometric_partic le_traits<> Pa r t i c l e_ t r a i t s ;
typede f std : : vector<Pa r t i c l e_ t r a i t s : : Part ic le_type> Par t i c l e s_con ta in e r ;
typede f SBL : : CSB : : T_Alpha_complex_of_molecular_model
<Pa r t i c l e_t r a i t s > Alpha_complex ;

} ;

// De f i n i t i o n o f the l o ade r s and modules to be used .
typede f SBL : : Models : : T_Spheres_3_file_loader
<Tra i t s : : P a r t i c l e_ t r a i t s : : Part ic le_type> Loader ;
typede f SBL : : Modules : : T_Alpha_complex_of_molecular_model_module
<Traits> Alpha_complex_module ;
typede f SBL : : Modules : : T_Union_of_balls_surface_volume_3_module
<Traits> Surface_volume_module ;

RR n° 8957

http://sbl.inria.fr/doc/Space_filling_model_surface_volume-user-manual.html
http://sbl.inria.fr/doc/Space_filling_model_surface_volume-user-manual.html
http://sbl.inria.fr/doc/Batch_manager-user-manual.html
http://sbl.inria.fr/doc/PALSE-user-manual.html
http://sbl.inria.fr/doc/PALSE-user-manual.html

20 Cazals and Dreyfus/ ABS

//Updating the alpha complex o f the volume module from the prev ious module
void set_alpha_complex (Alpha_complex_module∗ alpha_complex_module ,

Surface_volume_module∗ surface_volume_module)
{surface_volume_module−>get_alpha_complex () =

&alpha_complex_module−>get_alpha_complex () ; }

i n t main (i n t argc , char ∗ argv []) {

// Bui ld ing the workflow
SBL : : Modules : : Module_based_workflow workflow (" sbl−vorlume−example ") ;

//−− adding the l oade r
Loader∗ l oade r = workflow . add_loader<Loader>("Spheres Loader ") ;

//−− adding the f i r s t module (alpha−complex)
SBL : : Modules : : Module_based_workflow : : Vertex
u = workflow . register_module<Alpha_complex_module>("Alpha Complex ") ;
workflow . set_start_module (u) ;

//−− adding the second and l a s t module (s u r f a c e / volume)
SBL : : Modules : : Module_based_workflow : : Vertex
v = workflow . register_module<Surface_volume_module>(" Sur face / Volume ") ;
workflow . set_end_module (v) ;

//−− connect ing the l a t t e r two modules , s p e c i f y i n g how to update
// the input o f the second module from the output o f the f i r s t module .
workflow . make_module_flow (u , v , &set_alpha_complex , "alpha−complex ") ;

//Read the command l i n e and i n i t i a l i z e the module ’ s parameters .
workflow . parse_command_line (argc , argv) ;

//Load the data and i n i t i a l i z e the alpha complex with the input 3D sphere s
workflow . load () ;
((Alpha_complex_module&)workflow . get_module (u)) . g e t_pa r t i c l e s () =
&loader−>get_geometric_model () ;

// Star t the workflow
workflow . s t a r t () ;

r e turn 0 ;
}

CMakeLists.txt The program sbl-vorlume-example.cpp is compiled using CMake. The following
code defines the corresponding CMakeLists.txt file.

cmake_minimum_required (VERSION 2 . 6)

s e t (SBL_USE_LIBS CGAL MPFR GMP Boost)
f ind_package (SBL)
inc lude (${SBL_USE_FILE})
create_sbl_program (sbl−vorlume−example)

Inria

The Structural Bioinformatics Library 21

Running the executable. Assuming that the SBL library has been installed in a standard location,
the following command lines respectively compile and execute the program :

> mkdir bu i ld ; cd bu i ld ;
> cmake . . ; make ;
> . / sbl−vorlume−example . exe

Note that if the library is not installed in a standard location, CMake has to know where is located the
library, as specified in the documentation http://sbl.inria.fr/doc/sbl-devel-with-sbl-tutorial.
html. This can be achieved in several ways, depending on your configuration :

• if the library is not installed at all :

> cmake . . −DSBL_DIR=</path/ to / sb l / dir>

• if the library is installed in a non-standard location :

> cmake . . −DCMAKE_MODULE_PATH=</path/ to / sb l / dir >/share /cmake/Modules

6.2 Managing batches of executions, and using PALSE to extract statis-
tics

example-batch-palse-vorlume.py The following Python script reads an input list of directories
containing text files of 3D spheres, run the vorlume example over all the files in each directory, and
compute the mean volume for each directory. It uses the package Batch_manager for making and
runing batches of calculations, and the package PALSE for running analysis over the batches.

#! / usr / bin /python

from SBL import Batch_manager
from Batch_manager import ∗
from SBL import PALSE
from PALSE import ∗

f o r i in range (1 , l en (sys . argv)) :

batch = BM_Batch()
#Load f i l e s o f the datase t .
batch . load_dataset (sys . argv [i])
#Load the batch−vorlume−txt . spec s p e c i f i c a t i o n to compute the volume
of the b a l l s in the f i l e .
batch . l oad_run_spec i f i ca t i on (" batch−vorlume−txt . spec ")
#Run .
batch . run ()

database = PALSE_xml_DB()
database . load_from_directory (
" sbl−vorlume−example−"+os . path . basename (sys . argv [i]) , " . ∗ volumes . xml ")

volumes = database . get_all_data_values_from_database (
" r e s t r i c t i o n s / item/ total_volume " , f l o a t)
volumes = PALSE_DS_manipulator . c o n v e r t_ l i s t o f l i s t s_ t o_ l i s t (volumes)
p r i n t (sum(volumes)/ f l o a t (l en (volumes)))

RR n° 8957

http://sbl.inria.fr/doc/sbl-devel-with-sbl-tutorial.html
http://sbl.inria.fr/doc/sbl-devel-with-sbl-tutorial.html

22 Cazals and Dreyfus/ ABS

batch-vorlume-txt.spec The following is the specification file used by the Batch_manager pack-
age from the Python script example-batch-palse-vorlume.py . Please note that the second line of the
specification file corresponds to the path to the program to be executed : the program should be in one’s
$PATH – or the line modified to set the path to the executable.

#The executab l e .
EXECUTABLE sbl−vorlume−example . exe

#Any . txt f i l e from the datase t i s e l i b i g l e f o r the opt ion −f ,
as s p e c i f i e d by the python regex .
#NB: the datase t name i s s p e c i f i e d when con s t ruc t i ng the batch in the python s c r i p t .
IFO f "\ . txt$ "

#There i s a unique IFO , with one execut ion per va lue i . e . f i l e .
IFO−ASSOC−RULE unary

#These are the Non F i l e Options f o r the executab l e .
NFO log
NFO output−p r e f i x
NFO verbose

Running the executable. The following command line executes the Python script :

> chmod u+x example−batch−palse−vorlume . py
> ./ example−batch−palse−vorlume . py <path/ to / input / d i r e c to ry>

Inria

RESEARCH CENTRE
SOPHIA ANTIPOLIS – MÉDITERRANÉE

2004 route des Lucioles - BP 93
06902 Sophia Antipolis Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Software for computational structural biology
	Software design

	The SBL for end-users
	Rationale
	Key features

	The SBL for developers
	Rationale
	Structure of the SBL
	Development of novel programs and applications
	Low level developments
	License, releases, distribution

	Discussion
	High quality applications
	Towards more integration and further applications

	Outlook
	Supplemental
	Simplified version of sbl-vorlume-txt.exe
	Managing batches of executions, and using PALSE to extract statistics

