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Abstract. Scan-based design-for-testability, which improves access and thus the
test quality, is highly vulnerable to scan attack. While in-field test is enabled
through the scan design to provide debug capabilities, an attacker can leverage
the test mode to leak the secret key of the chip. The scan attack can be thwarted
by a simple defense that resets the data upon a switch from the normal mode
to the test mode. We proposed a new class of scan attack in [15] using only the
test mode of a chip, circumventing this defense. In this book chapter we extend
our earlier work by introducing case studies to explain this new attack in greater
detail. Furthermore, we study the effectiveness of existing countermeasures to
thwart the attack and propose a new input corruption countermeasure that requires
a smaller area overhead compared to the existing countermeasures.
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1 Introduction

Scan-based design-for-testability (DFT) technique is widely used, which provides in-
ternal access to the circuit in order to enhance the testability of manufacturing defects.
To provide debug capabilities, in-field test is enabled, by retaining scan capabilities.
However, the scan design can be misused by an attacker to leak secret information of a
crypto-chip. The intermediate results of a crypto-chip can be shifted out during the test
mode through the scan interface. This attack is known as a scan-based side-channel at-
tack, and was reported first in [1], which targets Data Encryption Standard (DES) chip.
The attacker applies the plaintext in the normal mode after which he/she switches to the
test mode to observe the intermediate result of the DES chip. With this information in
hand, the attacker can retrieve the secret key by applying differential analysis on the re-
sponse patterns. Scan-based side-channel attack can also reveal the 128-bit secret key of
Advanced Encryption Standard (AES) chip even in the presence of advanced DFT tech-
niques such as partial scan [3], X-masking [4], and X-tolerant architecture [5, 6]. Other
ciphers such as RSA [7,8], ECC [9,10], and stream ciphers [11], are also vulnerable to
scan attack.
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The existing scan-based attacks switch the chip between the normal mode and the
test mode and assume that the content of the scan cells is retained intact. A mode-reset
countermeasure [12] thwarts these attacks by resetting the scan cells upon switching
from the normal mode to the test mode.

We proposed a new scan-based attack on AES using only the test mode to cir-
cumvent the mode-reset countermeasure [15]. The attack showed how to overcome the
challenges introduced by the mode-reset countermeasure and to leak the secret key of
a AES crypto core. In this book chapter we explain the attack in greater detail with
case studies. We also discuss some of the existing countermeasures and their effective-
ness against our test-mode-only attack. We also propose a novel cost-effective input
corruption countermeasure, crafted to thwart our test-mode-only scan attack.

The remainder of the paper is organized as follows. Section 2 provides background
on AES and DfT. Section 3 provides motivations and challenges of the test-mode-
only attack. Section 4 describes the proposed test-mode-only attack. Section 5 gives
an overview of the existing countermeasures against scan attacks while Section 6 pro-
vides a new countermeasure to thwart the test-mode-only attacks. Finally, we conclude
the paper and elaborate on our future work in Section 7.

2 Preliminaries

2.1 AES

AES is a 128-bit symmetric key block cipher available in three different key lengths:
128, 192 and 256 bits. The entire AES algorithm is divided into several identical round
operations. The number of rounds in the three different versions of AES are 10 (128-
bit key), 12 (192-bit key) and 14 (256-bit key) respectively. Each round comprises of
following four basic transformations,

– SubBytes is a non-linear substitution operation.
– ShiftRows is the byte-wise permutation.
– MixColumns is the four-byte mixing operation
– AddRoundKeys is the XORing the state with the round key.

We will refer to these operations as SB, SR, MC and ARK respectively. Figure 1 shows
the structure of first round of AES which contains an extra key XORing at the beginning.

Each transformation of AES round has specific properties. We use the following
properties in our attack.

2.2 Differential Properties of AES

In S-box, for an input X and the input difference α , the output difference β is repre-
sented as

β = SB(X⊕α)⊕SB(X) (1)

For a given value of (α,β ), there could be two, four or no solution of X [13]. In case of
two solutions, if one solution is δ , the other solution will always be δ ⊕α . On the other
hand for four solutions, the solutions will be δ , δ ⊕α , 0 and α .
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Fig. 1. First round of AES: pi is the plaintext byte, ki is the initial key byte, qi is the SR output
byte, k′i is the round key byte, and ri is the round output byte

Lemma 1. For a given input X and two one-bit differences ei and e j (where ei and e j
are eight bit strings with a 1 in position i and j respectively where i 6= j), the output
differences di and d j are generated as

di = SB(X)⊕SB(X⊕ ei)

d j = SB(X⊕ e j)⊕SB(X⊕ e j⊕ ei)

For any value X, di can not be the same as d j.

Proof. We prove this by contradiction. Let as assume that there is a value x of X for
which di = d j. We also have y = x⊕ e j. Therefore, we have two equations:

di = SB(x)⊕SB(x⊕ ei)

d j = SB(y)⊕SB(y⊕ ei),

where di = d j implies x and y are the two solutions of (1) where β = di = d j and
α = ei. If x and y are the two solutions of the equation, then either y = x⊕ ei or one
of these two values must be zero and the other equals ei. If we consider the first case
then y = x⊕ ei ⇒ x⊕ e j = x⊕ ei ⇒ e j = ei which contradicts our assumption. Let us
consider the second case, x = 0 and y = ei which implies y = x⊕ e j = ei ⇒ e j = ei.
Again this contradicts our assumption. Therefore, di and d j can not be the same under
the given condition.

2.3 DFT Structure

Scan design is a well-known DFT technique that provides direct access to flip-flops.
Scan design converts each flip-flop into a fully accessible scan cell that can be con-
trolled and observed easily through shift operations. Due to the limited number of tester
channels, especially for integrated circuits with a large number of input/output pins,
boundary scan design [14] is used, which associates a boundary scan cell to each pri-
mary input/output of the circuit (BSC in Figure 2). Boundary scan design enables a
cost-effective few-pin access to the primary inputs/outputs in the test mode. On one
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hand, in the normal mode, the input pins directly drive the primary inputs (PIs) of the
chip, while the primary outputs (POs) drive the output pins. On the other hand, in the
test mode, the boundary scan cells break the connection between the chip pins and the
primary input/outputs. The test mode consists of shift and capture operations. During
shift operations, the test vectors are serially shifted into the scan chains through the chip
input pins, while test responses can be observed through the chip output pins. During
the capture operation, the scan cells capture the response of the combinational logic,
while the boundary scan cells drive the PIs and capture the POs. As a result, there is no
direct path from the chip inputs to the primary inputs in the test mode.

System Logic

Chipin1

Chipin2 Chipout2

Chipout1PI1

PI2

PO3

PO4

BSC1

BSC2 BSC3

BSC2

Fig. 2. DFT structure for a design with two scan chains; TDI/TDO pins not shown

3 Motivation and Challenges

In this section we review the existing state-of-the-art scan attack on AES and discuss
its limitations. Subsequently, we elaborate on how to overcome these limitations and
propose a new scan attack on AES: test-mode-only scan attack.

3.1 State-Of-The-Art Scan Attack

The state-of-the-art scan attack requires switching between the normal and test modes.
Figure 3 shows the AES core with a single scan chain which consists of AES round
register flip-flops (SC in the figure). In the normal mode, a plaintext is applied to the
AES core through the primary input and the results are stored in the round register.
The round register content is again applied to the AES in the next round operation. The
round operation is highlighted green in Figure 3. After completion of ten rounds the
ciphertext output is generated at the primary outputs. In the test mode, the flip-flops of
the round register are connected into a scan chain. During the shift cycle a test vector
is shifted to the scan chain, while in the capture cycle the response of the AES core is
captured and shifted out through the SO line.

The attack works in two steps. In the first step, the chip is run in the normal mode
with a desired input plaintext applied from the primary inputs for only one round of

mrmeds
Sticky Note
The lettering in figures should not use font sizes smaller than 6 pt (~ 2mm character height). 



AES. The round output is stored in the round register. Then, in the second step, the
chip is switched to the test mode and the stored round output is shifted out through the
SO line by applying repeated shift cycles. These two steps are repeated for different
plaintexts.

The attack uses one of the basic differential properties of the AES round operation.
In AES, if one-bit difference is applied in the least significant bit of any one of the
sixteen bytes, the output difference can have 18 possible hamming distances. Out of
these hamming distances, only four can be generated by a unique pair of S-box inputs.
Therefore, the attacker should follow the above two steps for all possible 27 pairs of
plaintexts, in order to get any such hamming distance. Once the hamming distance is
observed, the corresponding key byte is retrieved by XORing the plaintext byte with the
corresponding unique pair of S-box inputs. Therefore, each unique pair will produce
two possible key bytes. The same procedure is repeated for all the sixteen key bytes.
Finally, by applying 27 · 16 = 211 plaintext pairs, the search space of the AES key is
reduced to 216. These 216 key hypotheses can be brute-forced by using the plaintext-
ciphertext pairs in negligible time.

AES Core 

sc	   sc	   sc	   sc	  

Chip Inputs 

Chip Outputs 

SO 

PO 

Ciphertext 

Plaintext 

PI 

AES Key 

SI 
Shift operation 

Round/Capture operation 

Fig. 3. AES Core with a single scan chain; SC represents the flip-flop/scan cell of the round
register

3.2 Limitations of the Existing Scan Attacks

One fundamental limitation of this kind of attacks is that they require switching from
the normal mode to the test mode under the assumption that the data in the scan cells
can be preserved intact during the switch. One simple countermeasure is resetting the
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device whenever there is a switch from the normal mode to the test mode. In this case,
the attacker can perform the first step of the attack and the round output will be stored
in the round register. However, whenever the second step of the attack is applied i.e.,
switching to the test mode, the content of the SCs will reset. Hence, the second step
will only produce the zero response of the AES core. Therefore, any scan attack that re-
quires switching between the normal and test modes is bound to fail against this simple
countermeasure.

3.3 Overcoming the Limitations of Existing Scan Attacks

In order to overcome the limitations of the above attack, the attacker must come up with
an attack that will only use the test mode. As there is no switching required from the
normal mode to the test mode, the aforementioned mode-reset countermeasure will be
circumvented. The attacker is then constrained to use only the operations highlighted in
blue and green in Figure 3.

The major challenge associated with such an attack is to apply the desired input
plaintext to AES. As explained in Section 2.3, the primary inputs are not directly ac-
cessible in the test mode. The inputs should rather be applied by shifting them in as
test vectors through SI line. However, the problem is that the attacker does not know
which scan cell drives which input of AES. The physical placement tools determine the
mapping between scan cells and the AES inputs.

We need to leverage some of the basic differential properties of AES to (1) find out
the exact order of the scan cells which correspond to the AES input register, and (2)
launch the attack and leak out the secret key.

4 Test-Mode-Only Attack on AES

In this section we explain our test-mode-only attack on AES [15]. In this attack, the
plaintexts are applied in the form of test vectors. Before going into the detail of the
attack we first define the attackers ability in the form of the resources and information
he/she has. As in the conventional scan attack, we assume that the attacker knows the
AES algorithm running inside the security chip and the in-field debug of the chip is
enabled. For the sake of simplicity, we assume that there are only 128 scan cells in the
design, which correspond to the 128-bit round register.

Let us first consider one example of AES operation. Figure 4 shows the results
corresponding to each step of the AES first round, and finally the corresponding round-
output difference. P and P120 are the two plaintexts (120 is the bit position of 1 from
the right), while K0 and K1 are the first and the second round keys, respectively. It may
be noted that K0 is the whitening key, which is also the 128-bit AES key. The goal
of the attacker is to retrieve K0. The values in the figure are represented in 32-digit
hexadecimal format.

In test-mode-only attack, the major challenge to the attacker is to figure out which
scan cell corresponds to which input bit of AES. For P, the test vector is same as the
plaintext. However, in order to apply P120, the attacker should precisely know which
scan cell corresponds to the 120-th input bit of AES. Therefore, to attack AES using
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P=00000000000000000000000000000000  
 

P120=01000000000000000000000000000000  
 

K0=000102030405060708090A0B0C0D0E0F  
 

K0=000102030405060708090A0B0C0D0E0F  
 

010102030405060708090A0B0C0D0E0F	


7C7C777BF26B6FC53001672BFED7AB76	


7C6B6776F201AB7B30D777C5FE7C6F2B	


547543642C6D3351B0D95D61279C215C	

K1=D6AA74FDD2AF72FADAA678F1D6AB76FE  
 

K1=D6AA74FDD2AF72FADAA678F1D6AB76FE 

000102030405060708090A0B0C0D0E0F	


637C777BF26B6FC53001672BFED7AB76	


636B6776F201AB7B30D777C5FE7C6F2B	


6A6A5C452C6D3351B0D95D61279C215C	


BCC028B8FEC241AB6A7F2590F13757A2	
 82DF3799FEC241AB6A7F2590F13757A2	


3E1F1F21000000000000000000000000 

Fig. 4. Example input-outputs of each transformation of first round of AES

only the test mode the attacker has to determine the mapping between the scan cells
and the AES inputs. The mapping is determined by the physical placement tool and it
is considered as almost random. We determine the mapping in three steps. In the first
step, we determine the scan cells corresponding to the AES words. The second step
determines the scan cells corresponding to the AES bytes. In the third step, the order
of the bytes in a word is determined. Finally, we determine the order of the scan cells
in a byte, and identify the corresponding key. Once we have the key bytes, we combine
them as per the assumed order, and deduce the possible key hypotheses. In the next
subsection, we explain the first step.

4.1 Determining the Mapping Between Scan Cells and AES Input Words

Similar to Figure 4, we use two types of test vectors. One with all zero bits (P) and the
other (Pi) with only one bit set to one (i-th bit where 0 ≤ i ≤ 127) and the rest of the
bits set to zero. At first, the test vector P is shifted in and the response R is captured
and shifted out. It may be noted that R is the jumbled up value of the round output
BCC028B8FEC241AB6A7F2590F13757A2.

Next, in each step a test vector Pi is shifted in and the corresponding response Ri is
captured and shifted out. The difference Di = R⊕Ri will pinpoint the positions where
the bits are flipped. In our example, P0 and P120 differ in the 120-th bit. For this input
pair, we apply a one-bit difference to the leftmost input byte. The figure shows that the
output difference (0x3e1f1f21) confines within only the leftmost four bytes of the same
word. The one-bit input difference affects only one output word. Therefore, two such
input differences in the same input word will affect the same output word. We use this
property of AES to partition the scan cells into AES input words.

Say, D j
i is the j-th bit of Di and FDi = { j| D j

i = 1}. So, FDi is the set of output
bit-flip positions corresponding to input bit-flip at i. In 128 iterations, 128 different sets
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of output bit-flip positions (FD = {FDi|0≤ i≤ 128}) are generated. These 128 sets are
combined into four sets by considering the common bit-flip positions in the sets.

Algorithm 1 describes the detailed procedure, where Enc() is the AES round func-
tion. The first loop determines the 128 sets FD0 . . .FD127. In the second loop, in each
iteration, a set FDx is chosen from FD, and compared with the rest of the sets for com-
mon output bit-flip positions. If a common bit-flip position is found in any set (FDy),
both sets are combined into one set (FDx) and the new set (FDy) is deleted from FD.
Therefore, at the end of the iteration, FDx will have all the output bit-flip positions,
which correspond to a particular word. These bit-flip positions, which represent the po-
sitions of the scan cells, are saved in Wi. Hence, four iterations of the second loop will
partition the 128 scan cells into four words W0 . . .W3, which correspond to four different
MC operations of AES.

Algorithm 1: Determining the bits in the words
Input: P and Pi where 0≤ i≤ 127
Output: W0,W1,W2,W3

R = Enc(P)
for i = 0 to 127 do

Ri = Enc(Pi); Di = R⊕Ri
for j = 0 to 127 do

if D j
i = 1 then
FDi = FDi∪ j

end
end
FD = FD∪FDi

end
for i = 0 to 3 do

Select any element FDx from FD
FD = FD−FDx
for Each element FDy in FD do

if FDx∩FDy 6= /0 then
FDx = FDx∪FDy; FD = FD−FDy

end
end
Wi = FDx

end

4.2 Determining the Mapping Between Scan Cells and AES Input Bytes

In order to determine the mapping between scan sells and AES input bytes we use
Lemma 1. Similar to previous step, we create four test vectors: P, Pi, Pj and Pi j. We
already have the response for the base plaintext P. Now we choose any two bit positions,
say i and j, where i 6= j. We then create Pi and Pj. Say the byte corresponding to bit i is
Bl , where 0≤ l ≤ 15. We get the response Ri = Enc(Pi) corresponding to Pi. Therefore,
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the difference is Di = R⊕Ri. It may be noted that any non-zero value in Di is due to
the input difference in byte Bl from the plaintext pair (P,Pi). In the rest of the 15 bytes,
both plaintexts have the same values.

Next, we create Pj and Pi j, where Pi j is the same as Pj except in the i-th bit, which is
also 1; Pi j has only two ones in positions i and j. It may be noted that the j-th bit may be
in the same byte as the i-th bit or in a different byte. We get the response R j = Enc(Pj)
and Ri j = Enc(Pi j) corresponding to plaintexts Pj and Pi j respectively. Therefore, we
have another difference D j = R j⊕Ri j. Still, this difference is due to the input difference
in byte Bl generated from the plaintext pair (Pj,Pi j).

Now there are two possibilities: the j-th and the i-th bits are either in different bytes,
or in the same byte Bl . Let us consider the first case; the input difference in byte Bl is
only due to the flip in the i-th bit which is the same for both plaintext pairs (P,Pi) and
(Pj,Pi j). Therefore, the differences Di and D j corresponding to the two plaintext pairs
will be the same. On the other hand if the i-th and j-th bits are both in Bl , then we have
the same input difference corresponding to bit i, but in addition to other differences as
well. Therefore, as per Lemma 1, this should result in different output differences; the
MC operation is linear. Therefore, Di and D j will be different in the second case.

For example in Figure 5, the two plaintext pairs (P, P124) and (P120, P124,120) have
two bit-flips with respect to P; one in the 124-th bit and the other one in the 120-th bit. It
may be noted that both bit-flips are in the same byte. Therefore, we have two different
input pairs with the same input differences (in bit position 124). Hence, the output
difference should always be different. As shown in the figure, the output differences
D0 and D2 are unequal. If the second bit-flip (120-th) were in a different byte, say in
the 100-th bit, the corresponding output differences would be the same. Therefore, by
comparing the output differences we can determine whether the two input bit-flips are
in the same byte. This way by flipping bits in input pairs we can partition the bits into
the AES bytes.

D0=R⊕R124=49A9A9E0000000000000000000000000 

01001001101010011010100111100000 

D1=R⊕R12o=3E1F1F21000000000000000000000000 

00111110000111110001111100100001 

P              =00000000000000000000000000000000  
P124        =10000000000000000000000000000000  
P120        =01000000000000000000000000000000 
P124,120=11000000000000000000000000000000 
 

AES	  Round	  

R               =BCC028B8FEC241AB6A7F2590F13757A2  
R124        =F5698158FEC241AB6A7F2590F13757A2 
R120        =82DF3799FEC241AB6A7F2590F13757A2 
R124,120=6521C980FEC241AB6A7F2590F13757A2 

D2=R120⊕R124,120=E7FEFE19000000000000000000000000 

D0=R0⊕R124=49A9A9E0000000000000000000000000 

Fig. 5. Four inputs and the corresponding one round outputs, and the differences

So one can determine whether two different bits are in the same byte by just ob-
serving the output differences Di and D j, and checking whether they are different. In
order to determine the same for all the bytes, we follow Algorithm 2. It takes the set of
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bits W corresponding to a word, which is generated in the previous step, and partitions
the bits into four bytes B0 . . .B3. The outer loop selects a bit from W and passes it to
the inner loop. The inner loop finds all the bits, which lie in the byte that corresponds
to the given bit. The four iterations of the outer loop determine the four bytes B0 . . .B3.
In order to reduce the number of test vectors, we can use a single pair of test vectors
to identify the differences in all the four words in one shot. As the four MC operations
of AES in a round are independently calculated, we can apply the above technique to
determine the bytes in all the four words simultaneously by flipping bits in four words
of the input plaintexts. Therefore, the number of input test vectors will reduce by four.

Algorithm 2: Determining the bits in the bytes
Input: W
Output: B0, B1, B2, B3

for l = 0 to 3 do
Bl = /0; Wt = /0
Select i where i ∈W
Bl = Bl ∪ i ; W =W − i; Pi = P⊕ (0x1� i)
Ri = Enc(Pi); R = Enc(P); Di = R⊕Ri
for Each j ∈W do

W =W − j
Pj = P⊕ (0x1� j); Pi j = Pj⊕ (0x1� i)
R j = Enc(Pj); Ri j = Enc(Pi j); D j = R j⊕Ri j
if Di 6= D j then

Bi = Bi∪ j
end
else

Wt =Wt ∪ j
end

end
W =Wt ; Wt = /0

end

Note It may be noted that there could be more than 128 registers in the AES design.
However, these extra registers can be identified by considering their effects on the AES
round output. If the registers are not part of the round operation (e.g. AES controller
registers), they will not affect the round output. If they are part of the round opera-
tion, their effect on the output will reveal their position in the round operation. Once
identified, the extra registers can be discarded in the attack.

4.3 Determining the Order of Bytes in a Word

In this section, we try to determine the position of each byte in the words. In order to
do that, we use the properties of the AES MC operation. Figure 6(a) shows the basic
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operation of AES MC in terms of a matrix multiplication operation. As illustrated in
Figure 6(b), if there is a non-zero value a in only one of the four input bytes, the output
bytes will have values (a,a,2a,3a).
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(b) Byte difference distribution in MC

Fig. 6. AES Mixcolumns operation and its differential properties

We analyze the hamming distance to determine the order of the bytes. As per the
AES MC operation, two of the four output bytes will always have the same hamming
distance (two output bytes with values a).

We apply two plaintexts (P and P′) in a way that only one input byte of the MC
operation gets a non-zero difference and the rest of the three bytes all get zero differ-
ences. Say we have scan cells corresponding to the four bytes B0,B1,B2,B3 of a word.
We need to find the actual order of these bytes corresponding to MC, i.e., to a0 . . .a3 in
Figure 6(a). If the input difference value a is applied in B0, the output difference value
2a should be loaded in this byte. We need to determine which two bytes will have the
same hamming distance. However, for some value of a, the rest of the three bytes (other
than the byte B0) may have the same hamming distance.

We experimentally observed that in 52 out of the 255 different values of a, more
than two bytes will have the same hamming distance. We need to try at least 53 differ-
ent values of a to exactly know the two bytes that correspond to the output differences
a and a respectively. Say, B2 and B3 are the two bytes. Then we also determine that B1
corresponds to the output difference 3a. However, as B2 and B3 have the same value,
we can’t directly identify the order of these two bytes. In order to determine their or-
der, we next apply the input difference to the byte B1. Then B0 corresponds to output
difference a, and either B2 corresponds to a and B3 corresponds to 3a or vice versa. In
the first case, the exact order of the four bytes is identified to be (B0,B2,B3,B1), which
corresponds to the first of the four cases presented in Figure 6(b). We can have three
more possible permutations, which are the circular rotations of this permutation. The
procedure is repeated for the rest of the three words. It may be noted that instead of ap-
plying difference in one byte at a time, we can apply the byte difference in four words
corresponding to four different MC operations, which will help determine the order of
the bytes in the four words simultaneously.



So, given the four bytes in a word, we can tell the four possible permutations as per
the AES input.

4.4 Determining the Order of Bits in a Byte

At this point, we do not know which scan cell corresponds to which bit of a given byte
although we know the order of the bytes. If we apply the existing attack [5] by varying
the input pairs in order to get a particular hamming weight, we will uniquely determine
the key byte. In our case we don’t know the exact value of the input plaintext as we do
not know the order of the bits in a byte. Therefore, the key byte which we determined
is corresponding to the assumed order of the scan cells in the bytes. Eight scan cells
corresponding to a byte can be arranged in 8!

4!·4! = 70 (consider the average case where
half of the bits are one and rest are zero) ways. Therefore, in average each byte can have
70 possible values. If we combine all the sixteen bytes we get (10)16 values, which is a
large number. Therefore, we must determine the order of the scan cells.

We develop a new technique to determine the key despite the unknown order of the
scan cells in the byte. In this scheme, instead of considering the difference in any par-
ticular bit, we consider eight different differences, each corresponding to a one-bit dif-
ference in one of the eight input bits. As all the bits are considered, the output signature
is irrespective of the order of the bits. In order to do that, we choose an input plaintext
P with all zero bits. Therefore, the chosen byte will have the value B = 00000000. Then
we produce eight different plaintexts P0 to P7 by varying the bit-flip position 0 to 7.

Let us consider the chosen byte is the first byte. Then the first bytes of the eight
plaintexts are 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, and 0x80. It may be noted that
in these eight values, the bit-flip position varies from the right-most bit to the leftmost
bit. Each of these eight plaintexts is paired with P. We compute the output difference Di
( 0 ≤ i ≤ 7) of each pair and get the hamming distance. From Di we get the hamming
distance of the four bytes. Two of these bytes will have the same hamming distance as
shown in Figure 6(b). So, we consider only one of these two.

We maintain a signature table where, for each value of K, we have eight the three-
byte hamming distances corresponding to eight input differences. The values are shown
in Table 1. The data in the table shows that the last eight columns uniquely determine the
row. Therefore, given eight hamming distances corresponding to eight input differences,
one can uniquely determine the value of K, which is the key byte itself. It may be noted
that we have sixteen tables corresponding to sixteen S-boxes of AES. We need to search
the eight hamming distances in all the sixteen tables.

Algorithm 3 shows the detail technique of determining the value of the key byte and
the order of the bits in a byte. The attacker get the output differences corresponding to
eight pair of plaintexts. She then determines the four output bytes which have got the
non-zero output differences. The function Trim() determines four none-zero bytes and
reduce them to three after removing the duplicate one. HD will have eight hamming
distances correspond to eight input differences. These eight value are searched in the
rows of Table 1. When a row matches, the value of K corresponding to that row is the
value of the key byte. The position of the bit is determined by the column index of the
hamming weight corresponding to the bit. The position of the i-th bit is the index of the
column of HDi in the row K.



Table 1. Signature Table

K B0 B1 B2 B3 B4 B5 B6 B7
0 525 224 334 446 334 455 446 455
1 525 233 444 466 367 233 358 233
2 222 224 222 112 556 455 556 334
3 222 233 556 224 222 556 334 345
4 334 255 334 222 112 345 145 255
...

...
...

...
...

...
...

...
...

255 255 224 334 266 134 233 244 345

Algorithm 3: Determining the key byte and the order of the bits in a byte
Input: P and Pi where 0≤ i≤ 7
Output: Key and order of the bits

HD = /0 R = Enc(P) for i = 0 to 7 do
Ri = Enc(Pi)
Di = R⊕Ri
HDi = Trim(Di)
/*Getting three bytes*/ HD = HD∪HDi

end
for K = 0 to 255 do

Search HD in row K of Table 1
if All elements of HD is found in row K then

Key=K
Order of the bit is the column index of the element of HD

end
end

4.5 Determining the AES Key

In the previous section, we determine the order of the scan cells in a byte as well as the
key corresponding to the byte. Now we have to determine the order of bytes in a word
(Section 4.3). We have four possible permutations of the four bytes in a word. Therefore,
if we know the position of the four words, then there will be 44 = 28 possible values of
the key. However, we don’t know the order of the four words, which can be arranged in
4! = 24 ways. The total possible hypotheses of the AES key is 24 ·256 = 6144 = 212.58.
As we know the plaintext and the ciphertext, we can brute-force the key hypotheses in
negligible time.

4.6 Attack Complexity Analysis

In the first step of the attack (Section 4.1), we need 128+1 = 129 test vectors to parti-
tion scan cells into the AES words. In determining the bytes in a word in the second step
(Section 4.2), we need (1+31 ·2)+(1+23 ·2)+(1+15∗2) = 141 test vectors. For get-
ting the order of the bytes in a word in the third step (Section 4.3), we used 52 ·2 = 104

mrmeds
Sticky Note
Program listings or program commands in the text are normally set in typewriter font: 



test vectors. In the fourth step (Section 4.4), where we determine the order of the bits in
bytes, we don’t need any extra test vectors, because the required test vectors are already
available from the first step. Therefore, in total we need 129+ 141+ 104 = 375 test
vectors to determine the secret key.

Regarding the time complexity, it can be observed that most of the execution time
is spent on partitioning the scan cells corresponding to bytes and in determining the
order of bits in a byte. For the first part, the time complexity is 31+15+7 = 53. In the
second part the time complexity is 256 · 8 = 211. However, the final key hypotheses is
around 212.58, which need to be brute-forced to get the master key. Therefore, the time
complexity of the complete attack is 212.58.

5 Existing Countermeasures

So far we have shown that the mode-reset countermeasure, which provides protection
against all the existing attacks, fails against the proposed test-mode-only attack. In this
section we discuss some of the other existing countermeasures and their level of effec-
tiveness against our proposed test-mode-only attack. Our goal is to devise a counter-
measure for our attack.

5.1 Insertion of Inverters in the Scan Path

In this technique the scan chain is divided into multiple subchains in the form of a scan
tree [16]. The subchains are placed in a random order so that it will be difficult for the
attacker to figure out the exact round output. Some of the scan cell values are flipped by
placing inverters selectively on the scan paths (Figure 7). The location of the inverters
is known only to the designer or the tester. Therefore, only the designer or the tester can
retrieve the exact response of the chip, while the attacker can only observe the modified
response of the chip.

SI SO0 

SO1 

SO2 

SO3 

Fig. 7. Insertion of inverters in the scan path

In the differential scan attack, such countermeasures will fail, as the effect of the
inverters will be cancelled out in the output difference. Therefore, the proposed test-
mode-only attack can easily overcome this countermeasure through the differential
analysis it employs. In the same way, our proposed scan attack can thwart the scan
scrambling technique proposed in [17].
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5.2 Masking

There are two masking countermeasures proposed in [6]. The first method masks the
128-bit round register and then unmasks it for the subsequent round operation. The
mask value is generated by using an input and a key of size 128-bit (Figure 8). During
the normal operation, the masking remains transparent. In the capture operation during
the test mode, the scan chain captures the masked response of the circuit. Only the
tester and the designer have the knowledge about the mask value. Therefore, they can
unmask the scan output and retrieve the actual response of the circuit. On the other
hand, the attacker will be unable to retrieve the actual response, hence failing to apply
the differential analysis to reveal the secret key. Thus the attack will fail. The drawback
of this countermeasure is not only the area overhead, but also the prolongation of the
critical path, and thus the performance degradation.

Round	  Register	  

AES Round 
Mask	  

Func2on	  

Input 128-bit 

 Key 128-bit 

Fig. 8. Round register masking

To overcome the critical path issue, a second masking technique is proposed, which
modifies the response compactor output (Figure 9). This technique is based on an en-
hanced Linear Feedback Shift Register (eLFSR), which can either operate as a register
or an LFSR. In the test mode, the LFSR output is XORed with the response compactor
output bit-stream. Therefore, each compacted slice is XORed with a pseudorandom bit.
A 128-bit LFSR is used to prevent the attacker from retrieving the initial state of the
LFSR. Although the countermeasure has no impact on the critical path delay, the area
overhead remains a problem, which is around 5% of the AES chip.

5.3 Noise Injection In the Scan Output

This technique is similar to the previous masking technique. It includes two levels of
security: one is the LFSR and the other one is the True Random Number Generator
(TRNG) [18]. Figure 10 shows the architecture of the countermeasure. In this case, the
masking values are controlled by both the LFSR and the TRNG. Therefore, on average
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Fig. 9. Masking the compactor output

half of the scan output bits are masked and the rest of the bits remain unchanged. As
the TRNG hides some of the LFSR outputs, the designer can choose a smaller LFSR,
which will drastically reduce the area overhead of this countermeasure. The success
rate of the attack in the presence of this countermeasure depends on how frequently the
masking is done. It was shown that the attack will fail, only when the masking is done
in each clock cycle.

	  	  	  	  	  	  	  	  	  	  	  	  	  LFSR	  

TRNG	  

Compactor output 

Fig. 10. Randomized noise injection

5.4 On-chip Comparison of Responses

The countermeasure in [19] provides a scan protection scheme using an on-chip com-
parison of the circuit response and the expected response that is shifted in. The attacker
can only observe a one pass-fail bit per test vector, which is insufficient to leak the se-
cret key of the chip. Similar to the traditional test process, the test vector is shifted into
the scan architecture during the shift operations. Then, the response is captured during
the capture operation. Instead of shifting out the captured response, the expected re-
sponse is shifted in through another pin that replaces the scan output pin, while shifting
in the next test vector by using the scan input pin. This countermeasure performs an
on-chip comparison, which produces a pass, only when the whole captured response
matches the expected response. The test time and data volume is the same compared to
traditional testing.
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This countermeasure impacts the diagnosis and debug capabilities of the IC, as the
entire information about the IC under test consists of one pass-fail bit per test vector.
To support the diagnosis of the IC, an expected faulty response of one fault at a time is
shifted into the scan architecture instead of the fault-free response, which is compared
with the captured response. However, such procedure is only valid for modeled faults.
Furthermore, the diagnostic time becomes unaffordable.

6 Proposed Countermeasure

As we have seen in the previous section, there are various proposed countermeasures to
provide a certain level of security against scan-based side-channel attack. However, all
these countermeasures have been proposed with the existing scan attack model in mind,
thus failing to provide protection against a fundamentally different attack model, such
as the proposed test-mode-only attack. In this section, we present a countermeasure
judiciously crafted for the test-mode-only attack that relies on the access to the scan
input pin, which no other existing scan attack requires.

Our proposed test-mode-only attack is based on launching an individual bit-flip
from each scan cell in the round register independently of the remaining scan cells.
Disabling this capability will prevent the attacker from mapping each scan cell to its
corresponding word and byte of the AES. We propose a defense mechanism, which
injects random noise by randomly flipping the bits of the test vectors, while they are
shifted through the scan input pin, hampering the attack’s ability to classify scan cells
into words and bytes. The LFSR randomly selects the locations of the bit-flips of each
test vector. The LFSR generates a new bit per clock cycle that is XORed with the shifted
test vector bit. In other words, the shifted bit is flipped if the output of the LFSR is one.
No countermeasure for the existing scan attacks has considered the alteration of the test
vector shifted through the scan input pin, mainly because the previously proposed scan
attacks assume that the attacker can apply the plaintext through the primary inputs.

Without the capability of controlling the data delivered into the scan cells, the at-
tacker fails to launch the desired bit-flips. The attacker thus needs to circumvent this
defense by deciphering the LFSR sequence, which requires the LFSR structural details.
The only way the attacker can identify the LFSR configuration is to apply the same test
vector for a sufficient number of times by using the scan flush test capabilities, where
the test vector can be shifted in and out without any capture operation. If the LFSR con-
sists of m bits, the attacker has to apply the same test vector for 2m−1 times to figure
out the structure of the LFSR that can be chosen to implement a primitive polynomial.
For an LFSR of medium size, this can be quite costly for the attacker.

clk

Scan enable

Fig. 11. Timing diagram of the clock signal and the scan enable signal in a dummy capture attack



To provide a higher level of security, we propose the optional integration of a second
defense mechanism to disallow a specific number of continuous shift cycles. Another
possible smaller LFSR can be used to inject extra noise on the shifted stimulus, once
a specific number of consecutive shift cycles with no capture operation in between is
detected. The maximum allowed number of continuous shift cycles should be selected
carefully to maintain both security and testability of the chip. If the maximum number
of continuous shift cycles is too small, the scan flush test will be affected. On the other
hand, permitting a large number of continuous shift cycles may enable the identification
of the first LFSR structure, and thus, compromise the security of the chip. An n-bit
counter can be used to allow up to 2n − 1 consecutive shift operations. Every clock
pulse during the test mode increments the counter as long as the scan enable signal
is high, indicating a shift operation. When the counter saturates, it signals the second
LFSR to kick in and add a second level of bit flipping.

To circumvent the second level of defense, an attacker can employ a dummy capture
attack as shown in Figure 11; in this scheme, the attacker pulls down the scan enable
signal (to indicate capture) in between the active clock edges. The goal of the attacker
is to reset the counter and be able to extend the number of the consecutive shift cycles
without corrupting the scan chain content with a capture operation. To thwart such
attacks, the reset structure of the counter is designed carefully. The counter is reset only
with a capture during an active clock. Figure 12 provides the implementation details.

Scan chain 
LFSR1(m-‐bit)	  

LFSR2(s-‐bit)	  

test 
scan enable 

CLK 
Counter	  

SI 

reset 

optional 

Fig. 12. The proposed countermeasure for test-mode-only attack

The area cost is an m-bit LFSR and one XOR gate for the level-1 defense, and an
s-bit LFSR, c-bit counter, 3 AND gates, one OR gate, one inverter, and one XOR gate
in addition for the optional level-2 defense.

7 Conclusion and Ongoing Work

With a simple yet effective chip mode-reset countermeasure in place, none of the exist-
ing scan attacks can leak the secret information of a security-critical IC. In this work,
we bring a new perspective to scan attack research by introducing a new class of scan
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attacks, test-mode-only attack, that targets circumventing this commonly used mode-
reset countermeasure. The proposed attack misuses the in-field debug capabilities of
the IC by leveraging operations, such as shift and capture that the test mode offers. By
remaining in the test mode, the proposed attack circumvents the mode-reset counter-
measure.

A fundamentally different type of scan attack comes with its own challenges to be
tackled. As the boundary scan cells block the access to the primary inputs during the test
mode, the proposed attack ends up having to use the scan interface to load the attack
patterns, in contrast to all the existing scan attacks that benefit from the available PI
access in the normal mode. The prerequisite for applying the proposed test-mode-only
attack is therefore to decipher the mapping between the scan cells and the AES inputs,
which is dictated by the physical position of the scan cells and the physical placement
tools used by the designer.

In this work, we tackle the aforementioned challenges and devise a test-mode-only
attack, which we illustrate for AES, while we note that the technique herein can be eas-
ily extended for other ciphers as well. The attack analysis shows that only 375 test vec-
tors are sufficient to reveal the 128-bit AES secret key where the 128-bit key is reduced
to only 12 bits. Furthermore, we also present a brief overview of existing countermea-
sures, and devise a cost-effective one that can circumvent the proposed test-mode-only
attack. We thus present a two-level defense with an underlying input corruption coun-
termeasure that prevents an attacker from launching the bit-flips required to leak the
secret key.

Our future work will focus on contemporary scan architectures where a test stimulus
decompressor and a response compactor reside on the scan path. We have already made
some progress on attacks using compactor [20] and boundary scan chains [21]. The
technique we present in this paper is readily applicable on ICs that enable debug and
diagnostics with a bypass of such advanced DFT features. When this bypass capability
is not supported, however, the attack should be enhanced by developing techniques to
launch bit-flips through the decompressor in the scan cells, and to perform differential
analysis on the compacted responses. The ultimate goal of this line of work is to develop
techniques that facilitate the design of testable yet secure ICs.
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