
HAL Id: hal-01380302
https://inria.hal.science/hal-01380302

Submitted on 12 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Complete Real-Time Feature Extraction and
Matching System Based on Semantic Kernels Binarized

Michael Schaffner, P. A. Hager, L. Cavigelli, Z. Fang, P. Greisen, F. K.
Gürkaynak, A. Smolic, H. Kaeslin, L. Benini

To cite this version:
Michael Schaffner, P. A. Hager, L. Cavigelli, Z. Fang, P. Greisen, et al.. A Complete Real-Time
Feature Extraction and Matching System Based on Semantic Kernels Binarized. 21th IFIP/IEEE
International Conference on Very Large Scale Integration - System on a Chip (VLSI-SoC), Oct 2013,
Istanbul, Turkey. pp.144-167, �10.1007/978-3-319-23799-2_7�. �hal-01380302�

https://inria.hal.science/hal-01380302
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Complete Real-Time Feature
Extraction and Matching System

Based on Semantic Kernels Binarized

M. Schaffner1,2, P. A. Hager1, L. Cavigelli1, Z. Fang1, P. Greisen1,
F. K. Gürkaynak1, A. Smolic2, H. Kaeslin1, and L. Benini1

1 ETH Zurich, Switzerland
{schaffner,greisen,kgf,kaeslin,benini}@iis.ee.ethz.ch

{phager,lukasc,fangz}@student.ethz.ch

2 Disney Research Zurich, Switzerland
{smolic}@disneyresearch.com

Abstract. Feature extraction and matching is an important step in many current
image and video processing algorithms. In this work, we designed and imple-
mented an efficient feature extraction and matching system for sparse point cor-
respondence search in stereo video. Our system is based on the recently proposed
Semantic Kernels Binarized (SKB) algorithm, which showed superior perfor-
mance with respect to other algorithms in our evaluation. The feature extraction
stage has been prototyped in 180 nm technology and the complete system with
two feature extraction pipelines (left and right view) together with the matching
unit have been implemented on a Stratix IV FPGA where it delivers a perfor-
mance of up to 42 frames per second on 720p video. Especially due to the high
throughput of up to 25 k matched descriptors per frame, our system compares
favourably with recent hardware implementations of similar algorithms.

Keywords: Features, Matching, Binary Descriptor, Semantic Kernels Binarized
(SKB), Stereo Video Processing, Real Time, VLSI, ASIC, FPGA

1 Introduction

Current image and video processing pipelines commonly rely on image features in or-
der to calculate sparse point correspondences among several images or frames. Over the
past decade, numerous different algorithms and variations thereof have been devised.
Earlier methods such as SIFT [14] and SURF [5] are costly to compute and the calcu-
lated descriptors consist of many floating point entries that require a significant amount
of memory – which renders them less attractive for embedded devices or hardware im-
plementations. This led to the development of more efficient binary descriptors such
as BRIEF [8], BRISK [13], FREAK [4] and Semantic Kernels Binarized (SKB) [26].
These are less expensive to compute (e.g. BRIEF and SKB directly compute the bi-
nary descriptor pattern by means of intensity comparisons or thresholding), require less
storage, and can be matched very efficiently using the Hamming distance.

DVI Interface
720p @30Hz
(top/bottom)

Line
Bu�er

Image
Pyramid

Memory Controller

SKB Core
Left

SKB Core
Right

Descriptor
Matching

Ethernet
Also implemented

on an ASICExt. Memory

Further processing
of point correspon-
dences (e.g. sparse
depth calculation)

Acquisition or
video source

FPGA

Fig. 1. Overview of the stereo video feature detection system with two SKB cores and one match-
ing unit. The ‘Teddy’ image shown here is from the dataset provided by [20].

In this work, we consider the calculation of a sparse disparity map from stereo
video, as this is a crucial ingredient for certain video processing methods such as au-
tomatic stereo-to-multiview conversion [22]. Our system implements the SKB algo-
rithm [26], as it provides competitive results in the restricted setting of stereo vision and
is amenable to efficient hardware implementations. We present a hardware architecture
of the whole feature extraction and matching system (a system overview is shown in
Figure 1). The feature extraction core has been implemented and fabricated in 180 nm
CMOS technology, and the whole system has been implemented on a Stratix IV FPGA.

1.1 Related work

There exist many FPGA and ASIC implementations of SIFT and SURF, such as [6, 7,
12,18,21,23]. But to our knowledge, the following two are the only other FPGA/ASIC
implementations of complete feature extraction and matching systems which are based
on binary descriptors. J. S. Park, et al. [16] implemented a variant of BRIEF with FAST
keypoints [17] on an ASIC that has a throughput 94.3 full-HD frames per second with
512 extracted feature points per frame. J. Wang, et al. [25] propose a FPGA system
which is also based on BRIEF, but with SIFT keypoints. In their implementation, they
achieve a feature throughput of 60 fps for 720p video with 2k detected points. Both
of these works are single view systems matching the extracted descriptors to the ones
extracted from the previous frame. In contrast, our system operates on the left and right
views simultaneously, and the constrained stereo camera set-up is exploited in order
to match the descriptors from both views on-the-fly. Further, our system is capable of
extracting and matching a much larger number of features per frame (15 k - 25 k).

1.2 Summary of contributions

We have developed a hardware architecture for real-time SKB feature extraction and
matching from 720p stereo video for real-time stereo vision applications. Instead of
using a two-dimensional integral image1 to compute the filter responses, we use a local
one-dimensional integral image in order to overcome the large memory entries and the

1 The 2D integral image is defined as IIxy = ∑
x′≤x

∑
y′≤y

Ix′y′ [24].

associated bandwidth that a two-dimensional integral image entails. Since the feature
extraction part is able to extract a large amount of interest points (up to 25 k) per frame,
we developed a high throughput matching engine able to match interest points at this
rate. The system has been implemented on a Stratix IV based FPGA evaluation board
where it runs with up to 142 MHz, delivering a throughput of 42 fps (stereo video).
Finally, we compare our work with other state-of-the-art implementations.

This chapter is an extension of our conference paper [19], where we developed and
implemented the feature extraction core of the presented system.

1.3 Chapter Organization

The system overview and our version of the SKB algorithm is explained in Section 2,
and a performance simulation of the implemented configuration is shown at the end of
this section. The hardware architecture is explained in Section 3.1, the implementation
results and comparisons are given in Section 4, and Section 5 concludes the chapter.

2 Algorithm Details

When searching for sparse point correspondences in an image pair using features, the
three main steps that have to be performed are the interest point detection, the descriptor
calculation and the descriptor matching. In the following, we summarize these steps of
our version of the SKB algorithm and point out the differences to the original [26]. A
performance comparison with other descriptors is given at the end of this section.

2.1 Interest Point Detection

Similar to the original SKB implementation, we use a variant of the simple Differ-
ence of Boxes (DoB) filter to detect interest points in the image. However, our system
builds upon the original DoB version of CenSurE [2] instead of the modified SUSurE
DoB [9] that is used in the SKB paper. The CenSurE detector basically performs a
pixel-dense scan on all scales, whereas the SUSurE detector uses a scan line sparsi-
fication to leave out pixel positions which are not likely to lead to an extremal filter
response. The SUSurE detector is about 3× faster than the CenSurE in software [9], but
it exhibits a data dependent, irregular flow which inhibits parallel processing of differ-
ent filter scales. The DoB filter is a simplified Laplacian of Gaussian (LoG) filter and
its response is given by the subtraction of the pixel sums within two quadratic boxes
with side length 2n+ 1 and 4n+ 1. The advantage of this simplification is that it can
be efficiently calculated using an integral image [24], since the area of a box can be
obtained by only adding/subtracting the integral image values at the box corners. The
image is filtered using different sizes of this filter, thereby forming a volume of filter
responses which is also denoted as scale space. As noted in [5, 21], the largest number
of interest points is found on the first few scales. Therefore, and because and in our
application we do not require a large scale invariance, the scale space is limited to the
first 8 scales (i.e. n ∈ [1,2, . . . ,Nmax = 8]).

The DoB filter responses in the scale space are checked for extremal points in a local
3×3×3 neighborhood using non-maximum suppression (NMS), and a weak response
threshold twk is applied in order to filter out non-robust interest points. Since a part of
the NMS neighborhood is unknown at the scale space border, maxima are not allowed
to occur there. Interest points are therefore only detected on 6 out of 8 scales. Note that
the integrated box areas must be properly normalized [2] such that comparisons among
different scales are possible. The accuracy of the interest point coordinates could be
enhanced by additional interpolation of the maxima location, but since the DoB filters
are evaluated pixel-dense on each scale this is not done here. Further, no Harris corner
test is performed in our implementation, since this operation is very costly and often
not necessary in this application [26]. The output of the interest point detection is a set
of tuples {(xi,yi,si)}i∈{0,1,...,M}, where xi and yi are the integer image coordinates and
si is the index of the scale of a particular interest point i.

Depending on the value of the weak response threshold twk, different amounts of
interest points are detected. It is desirable to adjust this threshold, such that each frame
of a video yields around the same number of points. Since the DoB filter responses
are basically differences of image areas, their magnitudes correlate with the average
gradient magnitude2 in the image. Although this relationship may be used to set the
threshold to a suitable value, we found that this does not stabilize the number of points
well over a video sequence since the image content itself has a large influence on how
many points are detected. A feedback loop with simple rules on how to adapt the thresh-
old has proven to be much more effective. In our version of the DoB detector, we use
the following rules

twk :=


if I < Ilo2 , max

(
twk−∆ twk2, tmin

wk

)
else if I < Ilo1 , max

(
twk−∆ twk1, tmin

wk

)
else if I > Ihi2 , min

(
twk +∆ twk2, tmax

wk

)
else if I > Ihi1 , min

(
twk +∆ twk1, tmax

wk

) , (1)

where Ilo2, Ilo1, Ihi1, Ihi2 are the decision boundaries, and ∆ twk1, ∆ twk2 are the step
sizes, and tmin

wk , tmax
wk are the minimal and maximal threshold values (used for saturation).

Figure 2a shows the behavior of the feedback loop when applied to a test video sequence
containing three scene cuts. Using 4 decision boundaries instead of only 2 allows to use
larger step sizes if the number of interest points is far away from the target. Note that the
step size should not be chosen too large since this may cause an oscillatory behavior. A
similar functionality to control the population of detected interest points is provided by
the AdjusterAdapter class in OpenCV [1].

2 The average gradient magnitude is given by mavg =
1

X ·Y
X
∑

x=1

Y
∑

y=1

∥∥∇Ixy
∥∥.

0 5 10 15 20 25 30 35 40
0

2000

4000

6000

8000

10000

frame #

0.3

0.6

0.8#interest pts threshold value

a)

lo

b)

2

hi2

lo1

hi1

desired operation region

0.5

0.7

0.4

Fig. 2. a) Behavior of the weak response threshold adjustment scheme in the interest point de-
tection step (every 10 frames there is a scene change in this video sequence). The following
parameter set has been used in order to stabilize the number of points between 3k and 4k:
(Ilo2, Ilo1, Ihi1, Ihi2) = (2k,3k,4k,5k), (∆ twk1,∆ twk2) = (0.05,0.1) and

(
tmin
wk , tmax

wk
)
= (0.1,1.0).

b) example for a sparse disparity estimation using SKB 256 bit type B descriptors (this is the left
image and the estimated disparity has been color-coded). Note that there are almost no outliers
even tough no post-processing step like RANSAC has been performed.

2.2 SKB Descriptor Calculation

The SKB descriptor makes use of a set of sixteen 4×4 filter kernels (also called seman-
tic kernels, shown in Figure 9b) which are evaluated at 16 positions within a normalized
support region around an interest point. This leads to 256 values which are binarized
using a certain thresholding scheme. In [26] they propose three different binarization
variants A, B and C where A leads to a 256 bit descriptor and B and C lead to a 512 bit
descriptor. Here we use the fast variant A where the 256 values are binarized by com-
paring them against 0, i.e. only the sign bit is kept. In [26] they also define two different
support regions (type A and B) out of which we use the larger 16×16 region (B), as our
experiments show that it performs slightly better (Figure 3).

The (xi,yi,si) tuples from the interest point detector are used to calculate the coor-
dinates of the support region of that interest point. Bilinear interpolation is then used to
resample the support region such that it fits into the normalized frame of 16×16 pixels
(the normalization factors are given by the ratio of the outer DoB box size of the actual
scale and the smallest scale i.e. (4 ·si+1)/5). Note that we do not perform any rotational
alignment as this is not necessary in the case of stereo matching. In order to facilitate
the resampling step, we precompute an image pyramid by successive down sampling of
the input image by a factor of two. Depending on the scale factor of an interest point
i, the nearest pyramid level is selected as the pixel source (this concept is also known
as mipmapping [3]). This has the advantage that aliasing artifacts are reduced in the
resampled patches and that the accessed image patch is always contiguous.

2.3 Descriptor Matching

Generally speaking, feature matching in this context is the process of finding the optimal
assignment of feature points i ∈ {1,2, . . . , I} extracted from the left stereo image to
feature points j ∈ {1,2, . . . ,J} extracted from the right stereo image. I.e. we have to
solve an assignment problem of the form

S = argmin
S

∑
i, j
(Si j ·Ci j) , (2)

where Ci j are the elements of a I× J matching cost matrix C; and Si j ∈ {0,1} are the
elements of a I× J assignment matrix S, which contains exactly min(I,J) nonzero ele-
ments, and at most one nonzero entry per row and column. As the feature descriptors are
binary vectors in this case, the cost of matching a descriptor di from the left image with
a descriptor d j from the right image can be efficiently calculated using the Hamming
Distance between the two vectors, i.e.,

Ci j =
N

∑
k=1

(
dik xor d jk

)
, (3)

where k is the bit index in the vectors. However, the assignment problem itself is com-
putationally challenging if a globally optimal solution has to be computed. E.g., the
Hungarian Method which is often employed to solve this kind of problems has a com-
plexity of O

(
I3
)
, where I is the expected number of descriptors in the left and right

image. Furthermore, a direct solution of the assignment problem (2) without any fur-
ther constraints may still lead to suboptimal solutions, since the geometrical relationship
between the two images is completely ignored. For example the solution with the least
overall cost could assign a feature point in the top right corner of the left image to a
feature point in the bottom left corner of the right image, which completely violates
the geometry of a rectified stereo setup. It is therefore common to constrain the search
to a small window, based on the knowledge about the camera setup. In our work, we
adopt a greedy nearest-neighbour (NN) search which is computationally efficient and
– as will be seen in the performance evaluation in Section 2.4 – which provides suffi-
cient accuracy. An additional Random Sample Consensus (RANSAC) [10] step could
be performed to eliminate wrong matches, but this is currently not done in our hardware
implementation. The details of the window search are given below.

Windowed Nearest-Neighbour Search In this work, we match points from the left
image to the right, i.e., the list of descriptors from the left image is traversed, and for
each point i we exhaustively search a corresponding point j in a window in the right
image. This window is defined by (∆y,∆x1,∆x2), and the point j has to fulfill the
following set of constraints

{|yi− y j|< ∆y, x j− xi < ∆x1, xi− x j < ∆x2}. (4)

∆y is the maximum y disparity, ∆x1 is the maximum negative- and ∆x2 the maximum
positive disparity. Two different ∆x values are used here, since the positive and negative

disparity ranges in stereo setup are dependent on the alignment of the cameras and are
often not equal. ∆y accounts for disparities in y direction that occur if the image planes
of the two cameras are not completely coplanar3. The current descriptor di from the
left image is compared to all descriptors d j within the matching window (4) using
the hamming distance. The point with descriptor d j with the lowest hamming distance
is deemed the correspondence of the point i if the hamming distance lies below the
matching threshold tmatch (usually ∈ {10, . . . ,30} here). Once a match has been found,
the points j and i are removed from the descriptor lists. This method is greedy, but it
has a complexity of only O (I ·C · log(J)), where C is the average number of points in
the matching window (assuming that the descriptors from the right image have been
sorted according to their position, and that a point lookup has complexity O (log(J))).

2.4 Descriptor Performance

Evaluation Setup We developed a similar framework as K. Mikolajczyk, et al. [15] in
order to compare the descriptor performance of different SKB variants against the im-
plementations of SIFT [15], SURF [5] and BRIEF [8]. The difference to the framework
of K. Mikolajczyk, et al. is that we use the Middlebury stereo test set [11], since we are
interested in the performance on rectified stereo content. In the framework of K. Miko-
lajczyk, et al., the test set comprises images with blur and JPEG distortion artifacts,
different exposures, and camera rotations – which is useful to evaluate descriptors for
applications where a lot of invariance is required (such as image in stitching or object
recognition), but it does not model a stereo-camera setup.

The SIFT, SURF and BRIEF descriptors were all parameterized using the default
configuration. The SIFT and SURF descriptors have dimensions 128 and 64, respec-
tively, and the Euclidean distance is used to calculate their matching cost. The BRIEF
descriptor has dimension 256 and the matching cost is calculated using the Hamming
distance. As explained in Section 2.2, the SKB descriptor comes in different flavors, out
of which the computationally more efficient 256 bit types A and B are evaluated. The
fixed point model of the hardware implementation is included in the evaluation as well
(type B). The descriptors were all evaluated on the same DoB interest points and are
upright, since no orientation information is extracted in the interest point detector. The
descriptor performance is assessed using 1 - precision vs. recall plots. This is a paramet-
ric plot, where the matching threshold tmatch is swept from 0 to the maximum matching
cost. The precision is defined as the percentage of false matches, and the recall is the
ratio of the number of correct matches and the number of existing true matches. The
dataset [11] provides the ground truth in the form of accurate depth maps. We use these
maps in order to transform interest points from one view to the other to check for true
correspondences. In this evaluation, we always used view1 and view5 of the scenes. The
recision-recall curves are averages over the whole test set.

Results and Discussion The evaluation results are shown in Figure 3. In Figure 3a
the Hungarian method has been used to calculate a globally optimal matching, whereas

3 This is also called Keystone distortion.

in Figure 3b a greedy, windowed NN matching has been used. In Figure 3c, the two
different SKB types and our fixed-point implementation are compared (the curve for
BRIEF is shown as a reference, here). We can observe from Figure 3a and b that SKB
outperforms all other descriptors, and has a very steep precision-recall curve, i.e., at
low thresholds, many accurate point correspondences are found. This observation is in
line with the claim of F. Zilly, et al. [26]. When comparing the results from Figure 3a
and Figure 3b we can see that a globally optimal matching performs better – especially
in the region with higher thresholds. There is no ‘bending down’ of the precision-recall
curve, as can be observed in Figure 3b. But we also note that in the low threshold region
there is almost no difference. Since we intend to operate in this region, the greedy NN
matching is a perfectly feasible choice. We can see in Figure 3c that among the SKB
types A and B, the latter performs slightly better, and our fixed-point implementation
of SKB-B shows no performance degradation.

SIFT
SURF
BRIEF
SKB-B

SKB−A
SKB−B
SKB-B-FIX
BRIEF

a) b) c)

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Re
ca

ll

1 − Precision

SIFT

SURF
BRIEF

SKB-B

0 0.2 0.4 0.6 0.8
1 − Precision

0 0.2 0.4 0.6 0.8
1 − Precision

Fig. 3. Matching performance simulation with the stereo test set from [11]. The recall is the ratio
of correct matches and existing correspondences between left and right image, and 1-precision is
the percentage of false matches [15]. a) globally optimal matching, b) greedy NN matching (left
to right), c) comparison of different SKB types and our fixed point implementation

3 Hardware Architecture

The complete feature extraction and matching system given in Figure 1 was developed
in several distinct stages. Initial work concentrated on designing an efficient SKB core
in hardware. The resulting core (described in Section 3.2) was implemented as a custom
ASIC using a relatively mature 180 nm technology from UMC. In the later stages of the
project, the development was moved to the FPGA based prototyping system Terasic
DE4-530 which is based on an Altera Stratix IV FPGA (EP4SGX530KH40C2).

The presented system has been designed to be part of a much larger image process-
ing pipeline currently in development at our institute. The overall system adds some
additional constraints on the feature extraction and matching system presented here.
The first constraint is the need to process stereoscopic images in a top-bottom format.

In order to take advantage of existing video infrastructure, frames of a stereoscopic
video that consist of a left and right image are usually encoded as a single image of an
existing video format. Two widely used formats are side-by-side, which as the name
implies places the two images next to each other, and top-bottom, which places one im-
age on top of the other. The second constraint is the need for a relatively high number
of interest points (and corresponding descriptors) per frame. This is because our target
application multiview synthesis [22] requires many point correspondences in the order
of 5 k. Since the images are processed in scan-line fashion, the system must be able to
cope with clusters of interest points, which demands a throughput which is higher than
the average number of points that is detected per frame. Further, not all interest points
are going to lead to a match – depending on the matching threshold tmatch, this number
is about 60% of the detected interest points.

One of the fundamental decisions in the entire system has been to process stream-
ing video data and to avoid storing entire image frames within the processing core. The
challenge in the design is to balance the amount of storage in the system with the prac-
tical I/O bandwidth limitations.

In the following, we will explain individual components of the feature extraction
and matching system shown in Figure 1. It consists of three main parts: The input
buffering and image pyramid calculation, the detection of interest points and calculation
of the descriptors, and finally the matching unit that performs the matching and sends
the results out via Ethernet for further processing.

3.1 Image Pyramid and Line Buffer

The architecture of the image pyramid calculation and the line buffer is shown in 4a
and b. The incoming 720p video is converted to gray scale and the image pyramid
consisting of a 360p and 180p resolution level is calculated and stored in the off-chip
RAM4. The image pyramid is calculated by averaging four neighboring pixels, which
results in a reduction of two in both dimensions. This averaging is implemented using
two adders and a delay line per reduction step. Since the two views in the input video
arrive sequentially after each other in top-bottom format, only two reduction instances
are required. The calculated pixel streams are then parallelized and buffered such that
long bursts can be written to the off-chip memory. In our system, the external memory
is a PC2-6400 DIMM, and a local memory controller interface provides a 256 bit wide
access at 200 MHz clock rate, resulting in a peak data rate of 1.6 GByte/s. The image
pyramid calculation block itself works with the input pixel clock (72.5 MHz), and the
off-chip bandwidth for 3 pyramid levels and 2 views amounts to 72.6 MByte/s at 30 fps.

The line buffer keeps a sliding window of each of the pyramid levels on-chip, such
that the requests from the SKB cores can be served with low latency and without gen-
erating additional overhead to the off-chip memory. Per view, a DoB feed unit transfers
the lowest level of the image pyramid to the interest point detection stage of the SKB
cores. The corresponding sliding window of the lowest pyramid level comprises 62
rows. Of this total, 48 rows are needed to provide the 1D integral image to the DoB feed

4 Since we use only eight scales in our implementation, three pyramid levels are sufficient.

in column-wise chunks (see Section 3.2). We use the remaining 14 rows for prefetching,
since the cores work on overlapping image stripes of 48 rows height, and these stripes
are spaced 14 pixels apart.

Two descriptor feed units fetch the image patches requested by the descriptor cal-
culation part of the SKB cores from the correct image pyramid level. Out of the eight
scales that are used in the interest point detection, only the scales 2 - 7 can actually have
interest points due to the non-maximum suppression (NMS). Since always the nearest
mipmap is selected, these scales all fall onto the second and third pyramid levels. There-
fore, the descriptor feed units only need access to these two levels. The sliding window
comprises of 56 rows on the first, and 48 on the second level. This is enough to accom-
modate the largest descriptor that is supported (∼30 pixels), plus a margin large enough
such that the requested descriptor patches do not fall outside of the sliding window5.

Image Pyramid Line Bu�er
Level 0 Bu�er
62x1280x8bit

RR gathering

8+1

9

9

Control &
Address

Generation

Parallelize
8 to 256

8 8

256+1

256

32+1
To Memory Controller

From
Video
Interface

Fifo depths:
16x256bit

DoB Feed
(Left)

32

32

32

32

32

32

32

32

32

32

32

32

32

256+1

32+1

8+1

11

1

1

8

1

24+1

4

8+1

1

24+1
4

b)a)

Delayline
(depth: 640)

Delayline
(depth: 320)

>>2

Control &
Address

Generation

From
Memory
Controller

Serialize
256 to 32

Level 1 Bu�er
56x640x8bit

Level 2 Bu�er
48x320x8bit

Level 0 Bu�er
62x1280x8bit

Level 1 Bu�er
56x640x8bit

Level 2 Bu�er
48x320x8bit

To SKB
Core
(Left)

To SKB
Core

(Right)

DoB Feed
(Right)

Descriptor
Feed
(Left)

Descriptor
Feed

(Right)

Parallelize
8 to 256

Parallelize
8 to 256

>>2

Fig. 4. Details of the image pyramid a), and line buffer blocks of the feature matching system b)

3.2 SKB Core

A top-level diagram of the SKB core architecture is shown in Figure 5. It is composed
of two main blocks which perform the interest point detection and the descriptor cal-
culation. The interest point detection unit performs a dense scan over the whole image
and is constantly supplied with image data by the DoB feed unit of the line buffer. The
detected interest points are temporarily stored in a FIFO before they are fetched by
the Descriptor Calculation Units (DCUs). Note that the interest points are distributed
sparsely over the whole image. The DCU has been designed to handle up to 12.5 k
descriptors. Depending on the desired descriptor throughput, several instances can be

5 The descriptor calculation lags behind the interest point detection and thus it can happen that
requested descriptor patches lie outside of the current sliding window if there are not enough
rows in the buffer.

operated in parallel. The FIFO serves to compensate local variations in throughput.
Based on the position and scale of a certain interest point, the DCUs request the cor-
responding image patch from the descriptor feed units in the line buffer. The resulting
descriptors, their position, and their scale are then sent on to the matching unit.

SKB Core

DOB B lock NMS Blo ck

Interest Point Detection

Patch Coord.
Calculation

Transfer
Controller

DCU 2
Output
Transfer

Controller

Non-Maximum
Suppression

2.1 kbit SRAM

1D
 In

te
gr

at
io

n

In
pu

t B
u�

er

1D Int.
Image

Memory

26.2 kbit
SRAM 3.1kbit SRAM

Box
Response

Calc. Filter
Response

Calc.

1.2 kbit Regs

Descriptor Calculation

150 15064 64

25
2

8+2

1

Interest Point FIFO

Depth:
20 (ASIC),
64 (FPGA)

24

Con�g & Test
(ASIC only)

16+1

3

24+1

4

Grayscale
Pixels

(720p)

Mipmap
Image

Data

Con�g
Data

4

Descriptor
Output
Stream

40

40

24

24

DCU 1

62

62
Chann el

Controller Bilinear
Interp.

Ker nel
Response

Calc.

1 kbit Regs

272272

1 kbit Regs

27296

4178

14 13
5

19
0

14
4

Fig. 5. Block diagram of the SKB core with two descriptor calculation units: The SKB core is
supplied with raw 8 bit gray-scale image pixels. In a first step it searches for interest points within
the image. In a second step, the surroundings of these points are described. For this description
step, image patches around the interest points are transferred to the SKB core as well. The final
descriptors are sent back to the matching unit.

Interest Point Detection A total of eight DoB responses have to be evaluated for
each pixel – one for each scale in the scale space. Each DoB filter response can be
decomposed into a linear combination of an inner and an outer box filter response.
These box filter responses are usually calculated with the aid of a 2D integral image,
which allows to compute the sum over an arbitrary rectangular area by accessing only
four values in the integral image [24].

The integral image requires significant amounts of memory. While a conventional
720p image using 8 bit gray values requires 7.4 Mbit, the corresponding integral im-
age requires large 28 bit entries which results in 25.8 Mbit. When the integral image is
stored off-chip, this results in a large bandwidth as eight values have to be accessed per
DoB filter response. For Nmax = 8 scales and an effective image size of xef f × yef f =
1248× 688 pixel this results in a bandwidth of xef f × yef f ×Nmax× 8× 28bit/frame ≈
1.54Gbit/frame. The effective image dimensions are given by xef f = xres−4×Nmax and
yef f = yres−4×Nmax, respectively.

One option to reduce this bandwidth is to transfer and locally store whole blocks
of the integral image in order to leverage the spatial overlap among subsequent filters

Nurettin
Sticky Note
The lettering in figures should not use font sizes smaller than 6 pt (~ 2mm character height).

[18]. In our implementation we use only a one-dimensional local integral image. Our
approach builds on the observation in [9] where they show how a box filter response can
be calculated recursively, provided that a dense scan is performed on the whole image.
When scanning from left to right, a box filter response can be updated by adding the
new pixels the box covers on the right side, and subtracting the pixels that are no longer
covered by the box on the left side (Figure 6a).

+

+

+

+

+

+

+

+

+

+

+

+

+

+

−

−

−

−

−

−

−

−

−

−

−

−

−

−

a)

c

d

a

b

b)

In
te

gr
at

io
n

D
ire

ct
io

n

k = 16

N
m

ax
 =

 8

stripe orientation

x
y x

y

xy

j j-1

j-15

j-17
j-16

Stack index:

c)
stripe orientation

stripe orientation

Fig. 6. Interest point detection details: a) Recursive DoB filter calculation for the green pixel
position. b) 1D integral image box response update. c) NMS evaluation: the most recently added
stack has index j.

However, the number of additions is still linearly dependent on the filter size. In
our architecture, we additionally make use of the observation that the pixel groups that
have to be added or subtracted are always continuous pixel columns. It is therefore
possible to use a one-dimensional integral image which enables the calculation of 1D-
sums of arbitrary length along the columns in constant time (two memory accesses and
one subtraction). This allows us to update a box response by accessing only four corner
values (a, b, c, d) as shown in Figure 6:

Bi = Bi−1− (b−a)+(d− c) = Bi−1 +(a− c)+(d−b). (5)

The terms can be reordered such that only differences between two values in the same
row need to be added. Note that the one-dimensional integral image can be easily con-
structed locally as the integration direction is orthogonal to the scanning direction –
i.e. if the image is processed in stripes of a certain height h, the integration amounts
to the addition of h values, and is completely independent of the width of an image.
This enables a hardware architecture that only needs to store a sliding window of the
original image in a line buffer, and the memory bandwidth can be reduced considerably
compared to a naive implementation using a two-dimensional integral image.

During processing the image is scanned on all scales in parallel, as otherwise several
scanning passes through the same image would be required. The line buffer contains
sliding windows of the input images and supplies the DoB block in the SKB core with
a constant stream of raw image data. The image is processed in overlapping stripes of
height h = 4×Nmax + k, where 4×Nmax = 32 is the minimum neighborhood required

for eight scales, and k is the number of effectively calculated box filter responses within
one column of the stripe. In order to enable non-maximum suppression in a 3× 3× 3
neighborhood, the inner part of evaluated responses of a stripe need to be overlapped
by another two pixels, i.e., subsequent stripes have a relative offset of k− 2 rows. A
larger value of k reduces the overhead due to the overlap among subsequent stripes,
but it also increases the size of the local integral image buffer. In our implementation
we use a value of k = 16. This results in a total bandwidth of (4×Nmax + k)× xres×⌈

1+ yef f−k
k−2

⌉
× 8bit ≈ 24.1Mbit per frame, and the local integral image buffer has to

hold at least (4×Nmax + k)× (4×Nmax +1) = 1584 entries.

A detailed block diagram of the DoB unit is shown in Figure 7. The input is supplied
in column-major format, which enables simple 1D integration along the columns. Note
that with k = 16, it is sufficient to transfer one pixel to the SKB core per cycle to reach
a frame rate above 30 frames per second with a clock frequency of 100 MHz.

When k = 16, the 1D-integration of a column takes 48 cycles, and the downstream
circuitry is designed to calculate all Nmax× k = 128 DoB responses during this time.
Some of the inner and outer boxes of the DoB-filter across different scales coincide,
such that only 12 out of the total 16 boxes have to be effectively evaluated in the case of
eight scales. The 1D integral image memory is organized as a ring buffer and can hold 48
rows each with a width of 34 pixels. The rows of this memory are segmented into nine
dual-port memories to ensure a collision free, parallel access for the box filter response
calculation. Note that, the values are accessed in such a way that the difference of two
values in one row (see previous section) can be immediately calculated at the memory
output, which reduces the multiplexing overhead of the subsequent logic.

Pi
xe

l S
tr

ea
m

8 14
Dual Port
Memory

1D
Integrator

8 Filter Responses
(Stack in

Scale-Space)
+ 14

14 -
15+

M
ux

: 9
 to

 1
2

15 12+

Box Resp.
Memory
48x64 bit

64

M
ux

19

19
18+

x
x

15 13+

15 19+

Dual Port
Memory

14

14 -
15+

Dual Port
Memory

14

14 -
15

208x14 bit
+

18

18

18

18
-Is

18
Os

Input
Bu�er

1D Integral
Image Mem.

Box Response Calculation
(requires 3 cycles for 12 boxes)

Filter Response Calculation
(8 DOB responses in 3 cycles)

The two register banks
(accumulation registers and
shift register chain) can be
swapped for instantaneous
data exchange.

In total 9
memory
chains

In total 12
accumula-
tor chains

In total 3 box- to
�lter response
conversion units

18
18
18
18
18

208x14 bit

208x14 bit

Fig. 7. The DoB filter block receives a dense pixel stream and calculates the DoB responses,
which are output as stacks of 8 values in the scale space (j-th stack in Figure 6c). The constants
In and On are the appropriate normalization factors for the inner and outer boxes of scale n.

The previous box filter responses for the recursive calculation are stored in another
memory block. In one computation cycle, the k = 16 sets of twelve box responses are
sequentially loaded, updated and stored again. For faster loading and storing, as illus-
trated in Figure 7, two interchangeable register banks are used: while one bank is in
accumulator bank configuration, the other bank is organized as a shift register such that
the intermediate values can be shifted to and from the memory. In three cycles, all 12
accumulators update their box response according the method presented in (5). Finally,
the weighted sums among the intermediate box responses are formed to get the DoB
response. For this purpose, three units are used which are able to calculate eight DoB
responses in three cycles.

The detailed block diagram of the NMS (Non Maximum Suppression) unit is given
in Figure 8. It receives the filter responses stack-wise from the DoB unit and per-
forms NMS stack-wise on the local scale space volume. It is important to note that
the 26× (Nmax−2) comparisons for one 3×3× (Nmax−2) stack-neighborhood are not
computed at once, but in a sequential manner as indicated in Figure 6c: the incoming
stack j is compared to the upper left half of its neighborhood which has already been
calculated, and the intermediate comparison results are stored. At the same time, the
stack j− 17 is compared to the lower right half of its neighborhood, and these results
are combined with the corresponding intermediate values in order to get the final result.
Compared to a naive approach where the full neighborhood of a stack is stored in or-
der to perform the NMS comparisons, this sequential approach requires to keep track
of only the last k+1 = 17 scale space stacks, including their intermediate comparison
results. This is about 2× less memory, since the intermediate results amount to only 6
bits per stack (maxima do not occur on the lowest and highest scale). After suppressing
the non-maximum responses, the weak response twk threshold is applied to the remain-
ing interest point candidates. Finally, the coordinates of the points passing this test are
written to the interest point FIFO. We found that a depth of 64 works well in this setting.

Scale-
Space
Stack

Comparisons:

8x18
&

6

8x18

6
C &

8x18

6

C

6
6

&
6

Memory
14x(6+8x18)

bit

&
8x18

6

C

6
6

&
6

6

&
8x18

6

C

6
6

&
6

6

&
8x18

6

C

6
6

6

6

TH

&
6

ThresholdingIntra Stack Next/Previous
Stack

Stacks in Next/Previous Slice

&
Bitwise
AND

C
Compare neigh-
bouring Signals NMS &

Thresholding
Result for
one Stack

6

co
nv

er
t t

o
(x

,y
,s)

 tu
pl

e

24

j j-1 j-15 j-17j-16Stack Index:

NMS

Fig. 8. The NMS block receives a stack of eight DoB responses per pixel position (j-th stack in
Figure 6c), performs the NMS, and applies the weak response threshold. The 8 DoB responses
of a single stack are stored in 8×18 bit wide registers and the intermediate comparison results in
6 bit wide registers. Overall, a local history of the last 17 scale space stacks is stored.

Interest Point Description In contrast to the interest point detection, the descriptor
calculation operates on sparse data. It has to operate fast enough such that – on average
– it is able to process all interest points in an image. Our evaluations have shown that
several thousand interest points per frame are detected when setting the weak response
threshold within a reasonable range of twk ∈ [0.1,1.0]. The interest point description
block is designed to be scalable and consists of several parallel Descriptor Calcula-
tion Units (DCUs) which can process up to 12.5 k descriptors per frame each. If the
application requires a high throughput, this can be easily achieved by instantiating the
appropriate amount of DCUs and adjusting the bandwidth of the image memory ac-
cordingly. The current implementation uses two DCUs which results in an aggregated
throughput of 25 k descriptors per frame.

The interest point description block takes interest points from the FIFO buffer and
assigns each one of them to a DCU, which then acquires the required data from the
nearest mipmap level in the line buffer through the transfer controller. Then the re-
ceived data is interpolated to a normalized 16× 16 image patch which is convolved
with several filter kernels and the responses are binarized using a threshold before the
result is written to the output buffer. These steps are described in more detail below.

SaddlesRidgesCornersEdges

−

−

−

−

−

−
−

−
−

−

−−
−−

−

−

−

−
−

− −−
− −

−−
− −

++
+ +

++
+ +

+ +
++

+ +

+
+ +

+

+
++

+ ++

− −
− −

−

−
+
+ +

++ +

++ +
++ +
++ +

++ +
++ +
++ +

++ +
++ +
++ +

++ +
++ +
++ +

+ +
−−+ +

+

−−+ +
−

−
−
−

−
−
−

−+ +

+ +
+ +
+ +
+ +

+
+

+
+

+

−
−

+
+

−
−

+
+

−
−

−

−
−
−

−
−
−
−

−

−
−

− −
−

−

+
+

+
+

−
−

−−
−

−

− −

− − −

− − −

− − − − −

− − − −

− − − −

−
−
−

−

−
−
−

−

+
+

+ + + +
+ +

− − − −

−
−
− −

−
− − −

+ +
+ +

+ +

−−−−
−− −−

−−

−−

++ ++

++ ++

++

++

Kernel set eval center
Interest pointa) b)

Fig. 9. Descriptor details: a) The descriptor support region is overlaid over an image patch show-
ing the centers around which the set of semantic kernels depicted in b) is evaluated.

The interest points are read from the FIFO and the patch coordinate calculation
block determines the parameters for the bilinear interpolator, the mipmap level and the
coordinates and dimensions of the patch to be fetched from that mipmap level. The
patch coordinate calculation unit then dispatches this information together with the
interest point to an available DCU.

The mipmap is selected according to the scale parameter s of the interest points. A
strategy that always selects the lower mipmap level would ensure that no information is
lost, since then the image patches would always be downscaled. In our implementation,
we use a different strategy that always selects the nearest mipmap (in scale). This has the
benefit that the amount of data to be transferred to the bilinear interpolators is reduced
by around a factor of two when compared to the first strategy. And although some
information is lost since some patches have to be magnified, we found that the matching

performance does not degrade significantly. Moreover, this strategy causes the DCUs to
never access the lowest mipmap level (corresponding to the original image). This does
not imply that the lowest mipmap level does not have to be stored – it is still needed by
the DoB unit – but it does not have to be accessible by the DCUs, and the size of the
sliding window buffer can be set to the minimum size dictated by the DoB unit.

Each DCU has a local pixel buffer that temporarily stores the pixel data used by
the interpolator. This reduces the required throughput of the interface significantly – in
some cases certain pixels are used up to nine times within a few cycles. Whenever there
is enough free space in the buffer, the DCU requests another two lines of the mipmap
image patch from the transfer controller. The transfer controller acknowledges the re-
quests whenever it has the capacity, and passes the request on to the line buffer while
still receiving the response to an earlier request (this overlapping of requests ensures a
high utilization of the interface bandwidth). A detailed block diagram of the datapath of
one DCU is shown in Figure 10. First, the acquired patch from the nearest mipmap is
resampled with a normalization factor in [0.75,1.5) using bilinear interpolation to com-
plete the normalization of the support region. In a second step, the resulting row-wise
stream of single pixels of the resulting 16×16 support region (Figure 9a) is convolved
with the 16 semantic filter kernels shown in Figure 9b). Each DCU is able to process
one interpolated pixel per cycle, which involves the evaluation of 16 kernel updates.
Since the normalized image patch is processed in scan line order, it is necessary to keep
track of four sets of 16 temporary kernel responses. Whenever the convolution of a set
of filters is completed, it is binarized using a threshold, and the resulting part of the
descriptor is written to the output buffer.

8

8

Bilinear Interpolation Kernel Response Calculation

+
×

×
Δx

8

8
+

+

+
×

×
×

×
×2
×1

×(-1)
×(-2)

≥2
≥1

+2
+1

LUT

1-Δx

1-Δx

init Δy

init Δx

s

Pne

Pnw

Psw

Pse

Δx

Δy

Δy 179

9

9

17

164×19
In total 16 kernel
convolution units

pa
rt

ia
l d

es
cr

ip
to

r

o�
se

t c
al

cu
la

tio
n

19

19

1

1

1

0

>0

0

>0

0

>0

00

01

1-

18

+

18

+

18

+

Fig. 10. The descriptor calculation unit (shown without the channel controller) contains a bilinear
interpolator and 16 kernel response units. Note that the weights of the semantic kernels can be
implemented without multipliers.

The raw descriptor calculation throughput of one DCU is one descriptor in 256
cycles which translates into around 12.5 k descriptors per frame (slightly less than 13 k
due to control overhead). However this assumes that image data is always present for the
bilinear interpolation. This is not always the case since the size of the image patches (on
the mipmap levels) that are processed vary up from 16×16 to 25×25 pixels (a factor
of 2.44 in size). The effective throughput may thus be dependent on the speed of this
interface. In our implementation, the interface can deliver 24×100 Mbit/s of pixel data,
which depending on the patch size corresponds to between 15 k and 38 k image patches
in the worst and best case including control overhead. This rate is sufficient to supply
one DCU continuously. However, to cope with feature point clusters, it is important to
have a higher throughput than what the average case suggests. This is necessary to keep
the interest point FIFO size within reasonable limits. If the FIFO is too small, some of
the interest points can be dropped when the density of interest points gets too large. In
our design we use two DCUs which together are able to process at least 15 k descriptors
in the I/O-limited case, and up to 25 k in the computationally limited case.

Output Interface The output interface transmits each interest point together with its
descriptor, i.e., the 24 bit triplet (x,y,s) and the 256 bit descriptor as a data packet over
a 4 bit wide bus6 requiring 71 cycles. A DCU requires at least 256 cycles to calculate
a descriptor. The output interface guarantees that all results can be transmitted within
these 256 cycles. Each DCU contains an output buffer that can store two finished de-
scriptors in order to bridge time periods where the output transfer controller is busy
transmitting a descriptor from a different DCU.

3.3 Descriptor Matching

In this system, we are matching interest points from the left image to the right image
with a variant of the greedy, windowed nearest neighbour search explained earlier in
Section 2.3. Since the matching process is basically an exhaustive search within the
matching window, it is crucial to sort the descriptors from the right image appropriately.
Otherwise the whole memory needs to be scanned for each point from the left image.
In software, this is often done by using a range-tree variant (e.g. k-d tree). Here we use
a different, hardware friendlier approach similar to a direct mapped cache which has a
much simpler data structure management.

Interest Point Sorting and Matching In the worst case our right image will contain
25 k interest points, which is very sparse and corresponds to less than 3% of the number
of pixels for a 720p image. In order to reduce both the memory and the search overhead,
we have decided to use a binning method where we subdivide the entire image into
uniformly sized bins. Each bin is allowed to store a small number of descriptors. In our
implementation, after an exhaustive evaluation, we have decided to use a bin size of
4×32 pixels, with eight descriptor slots per bin. Assuming 25 k uniformly distributed

6 This particular organization is a left-over from the initial part of the project where the SKB
core was implemented in an external ASIC which had I/O constraints.

descriptors per image, the average number of descriptors per bin is around 3.3. We use
more slots per bin since sometimes clusters of interest points occur, and this may lead
to a bin overflow. Our evaluations have shown that when using eight descriptor slots,
the percentage of dropped descriptors is usually low and around 2%.

In order to match a descriptor from the left image, only the bins covered by the
matching window have to be accessed, as illustrated in Figure 11. When determining
the size of the matching window for the nearest neighbour search, the setup of the
stereo video system has to be taken into account. The exact matching window size is
dependent on the geometric setup of the two cameras. Our implementation is able to
handle a maximum window size of (∆y,∆x1,∆x2) = (15,31,255) which works fine
for most stereo setups.

Since the calculated descriptors follow a scan-line pattern from the top-left to the
bottom-right of the image7, it is possible to use a two-dimensional cache of bins. Con-
sidering the interest point detection step-size of 14 pixels and a maximum matching
window height of 30 pixels, the cache should at least span 30+2×14 = 58 pixels in y
dimension (14 pixels to write the descriptors from the current stripe, and 14 pixels for
the stripe being matched). This value is rounded up to 64 rows in our implementation.

Currently matched point from left image
Points in the right image

Bins a�ected by the search window

... ...

...

...∆x1∆x2
∆y

∆y

16
 B

in
s (

sp
an

 6
4

ro
w

s)

40 Bins (span 1280 rows)

up to 8 desc.1 Bin: 4 px

32 px

„s
lid

in
g

w
in

do
w

“ i
n

th
e

im
ag

e

Fig. 11. The image is divided into bins of 4× 32 pixels. Each such bin can hold a maximum of
eight interest points. A sliding search window (in gray) is used to detect a match of an interest
point in the left image (green) to possible candidates in the right image (red).

Matching Block Details A block diagram of the feature matching unit is shown in
Figure 12. The feature matching unit consists of a descriptor FIFO for the left image, a
binning memory for descriptors from the right image, a valid bit memory for the bins,
a compare unit and two control units that control the binning and matching processes.

7 The calculated descriptors do not necessarily follow a strict order due to the parallel DCUs,
and since the interest point detection works column-wise in a narrow strip.

Feature Matching

Descr. Rx
(Right)

4

4

277

277

10+8+1

Ad
dr

es
s

10

21
Invalidation Address

Ctrl + Valid Bits

277

11

11
10 8 8

10 8 8
Population count

(adder tree)
Population count

(adder tree)
Population count

(adder tree)
Population count

(adder tree)
Population count

(adder tree)
Population count

(adder tree)
Population count

(adder tree)

Bitwise XOR

9
256

21

8

Descr.
Coord.

Valid
Bits

3
Index

<

59

Valid

256

21

21

Compare Unit

21

21

1
Score

Right Desc.
Coord.

Left Desc. Coord.

From
SKB

Cores Descr. Rx
(Left)

Write
Control

Matching
Control

Min. Tree

Pop. Count

8 Banks

Bin Mem.
16x40x
277 bit

Valid Bits
25x40x8 bit

Descr. Coord.

Descr. Coord.

Rd
/W

r P
oi

nt
er

s

Addr, Wr
Enable

2+8

FIFO Depth:
4 x 277 bit

FIFO Depth: 2k x 277 bit

Fig. 12. The feature matching unit contains a large descriptor FIFO for the left image, a bin-
ning memory with associated valid bits for the right image, and a compare unit that performs 8
descriptor comparisons in parallel.

The write control unit contains a counter that keeps track of the sliding window
position in the image. The coordinates of the incoming descriptors are checked against
this position, and if the point lies within the sliding window, the write control unit
checks the valid bits of the corresponding bin (there are eight valid bits per bin, one for
each descriptor slot). If there is a free slot, the descriptor is written to that bin. Otherwise
it is discarded. If the descriptor lies below the sliding window, the uppermost row of the
sliding window is invalidated, moved to the bottom, and the row counter is incremented.
This procedure is repeated until the descriptor coordinates lie within the sliding window.

The matching control unit fetches the coordinate from the left-image descriptor
currently present at the output of the FIFO, and based on the sliding window parameters,
it determines which bins have to be accessed. The depth of the descriptor FIFO for
the left image has been set to 2 k which is the expected number of descriptors in a
64×1280 pixel window in the image (assuming 25 k uniformly distributed descriptors).
The required throughput of the feature matching block in terms of comparisons per
second (cps) is given by the expected number of descriptors in the left image and the
expected number of descriptors in the matching window in the right image:

25k×25k× 30× (31+255)
720×1280

×30fps = 1.74Mcps. (6)

Assuming a clock frequency of 100 MHz, this corresponds to a throughput of around
1.74 comparisons per cycle. But since the descriptors can be clustered, it is necessary
to provide enough throughput margin such that the feature matching block does not
start lagging behind. In our implementation, we access one whole bin in parallel and
perform 8 comparisons per cycle in order to stay on the safe side. These descriptors

Nurettin
Sticky Note
The lettering in figures should not use font sizes smaller than 6 pt (~ 2mm character height).

are sent to the compare unit, where the Hamming distances between the left image
descriptor and all right image descriptors is calculated. Next, the index of the descriptor
with the smallest Hamming distance is determined. After all bins have been loaded and
compared, the coordinates of the descriptor pair with the smallest Hamming distance is
output – given that the Hamming distance is below the matching threshold tmatch. The
valid bit corresponding to the right descriptor is then cleared.

4 Results

Fig. 13. Microphotograph of the SANDSTORM chip

4.1 ASIC Implementation of the Core

As mentioned earlier, in the initial phase of the project, the SKB core for one view
has been prototyped on an ASIC which was named SANDSTORM and which has been
fabricated in 180 nm CMOS technology (a die photograph is shown in Figure 13). Table
1 shows the key figures. At 100 MHz, one core is able to process a 720p video stream
at 30 fps with 15 k-25 k descriptors per frame (depending on the distribution of the
descriptor scales). As opposed to the FPGA implementation, the ASIC has a shorter
interest point FIFO (20 instead of 64), does not automatically adjust the weak response
threshold, and it contains an additional configuration block. This block allows to adjust
parameters such as the weak response threshold, and to read out statistical information
on detected and dropped interest points, as well as memory BIST results.

For comparison, Table 1 also lists the specifications of the BRIEF implementation
of J. S. Park, et al. [16]. Note that their work has been designed for an object recogni-
tion application with different throughput requirements (1080p images, 512 descriptors
per frame). Further, their implementation also contains the matching part and a large
descriptor buffer (4096 entries) for testing purposes.

Table 1. Measurement results of the SANDSTORM chip. The results from J. S. Park, et al. [16] are
also listed as a reference. ∗The abbreviations IPD, FE and FM stand for Interest Point Detection,
Feature Extraction and Feature Matching.

Physical Characteristics this work J. S. Park, et al. [16]

Technology UMC 180 nm (1P6M) 130 nm (1P6M)

Core Voltage 1.8 V 1.2 V

Package CQFP 120 ?

pads 82 (I:40, O: 26, PWR: 16) ?

Core Area 3.08 mm2 10.24 mm2

Complexity (with SRAM) 254 kGE (2.4 mm2) 861 kGE

Logic (std. cells) 193 kGE (1.8 mm2) 78.3 kGE

On-chip SRAM 29 kbit 1024 kbit

Operating Frequency 100 MHz 100 MHz

Power Dissipation 146 mW (core), 38 mW (pads) 182 mW

Performance

Functionality IPD + FE∗ IPD + FE + FM∗

Throughput (single frames) 30 fps (720p) 94.3 fps (1080p)

Max. Desc./Frame 15 k-25 k 512

4.2 FPGA Implementation of the System

The synthesis results for an Altera Stratix IV EP4SGX530KH40C2 of our feature ex-
traction and matching system are given in Table 2 (without memory controller, video
and Ethernet interface). On this FPGA, the system runs with up to 142 MHz, delivering
a throughput of 42 fps with 15 k-25 k descriptors per frame (depending on the distribu-
tion of the descriptor scales).

The results of the state-of-the art feature extraction and matching system of J. Wang,
et al. [25] is also shown on Table 2 for comparison. Their system is based on BRIEF, and
also works on 720p images. The difference is that they work on single views at 60 fps,
with 2 k descriptors per frame (the descriptors are matched between subsequent frames).
Their implementation uses about the same amount of DSP slices and on-chip memory
bits, and uses about 2× less logic resources and around 3× less registers. But the fact
that our system has a much higher descriptor extraction and matching throughput puts
this into perspective.

5 Conclusions

First and foremost, we have shown that SKB outperforms all other evaluated descriptors
on stereo content, and is thus a prime choice for efficient hardware accelerators. The
presented system is able to extract and match SKB features from 720p stereo video
in real-time, with 15 k-25 k descriptors per frame. We have used several innovations to

allow on-the-fly computation, and have reduced the amount of intermediate data storage
and necessary I/O bandwidth without compromising the detection quality. Our system
was designed for an application where a large amount of matched interest points will
be needed. The system still remains competitive when compared to other state-of-the-
art implementations, even though it is able to extract and match nearly an order of
magnitude more interest points.

Table 2. Key figures of the FPGA implementation of our feature extraction and matching system
(without memory controller, video and Ethernet interface). ∗This is for the worst case corner
(slow 85C model). The pyramid calculation block runs on the pixel clock of the video interface
(72.5 MHz). The synthesis results from J. Wang, et al. are also listed for comparison.

Physical Characteristics this work J. Wang, et al. [25]

Target FPGA
Altera Stratix IV Xilinx Virtex 5

(EP4SGX530KH40C2) (XC5VLX110T)

Maximum Clock Frequency 142 MHz∗ 159 MHz

LUTs 33.6 k/425 k (7.9%) 17 k/69 k (25%)

Registers 30.7 k/425 k (7.2%) 11.5 k/69 k (17%)

Memory bits 4.15 Mbit/21 Mbit (19.5%) 4.6 Mbit/5.33 Mbit (86%)

DSPs 64/1024 (6.25%) 52/64 (81%)

Performance

Functionality IPD + FE + FM IPD + FE + FM

Throughput (720p) 42 fps (stereo) 60 fps (single)

Desc./Frame 15 k-25 k 2 k

References

1. OpenCV Documentation (2014), http://docs.opencv.org/, Accessed May 2014
2. Agrawal, M., Konolige, K., Blas, M.: CenSurE: Center Surround Extremas for Realtime

Feature Detection and Matching. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) Computer
Vision ECCV 2008, Lecture Notes in Computer Science, vol. 5305, pp. 102–115. Springer
Berlin Heidelberg (2008)

3. Akenine-Möller, T., Haines, E., Hoffman, N.: Real-Time Rendering. AK Peters (2008)
4. Alahi, A., Ortiz, R., Vandergheynst, P.: FREAK: Fast Retina Keypoint. In: IEEE Conference

on Computer Vision and Pattern Recognition. pp. 510–517 (2012)
5. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In: Leonardis,

A., Bischof, H., Pinz, A. (eds.) Computer Vision ECCV 2006, Lecture Notes in Computer
Science, vol. 3951, pp. 404–417. Springer Berlin Heidelberg (2006)

6. Bonato, V., Marques, E., Constantinides, G.: A Parallel Hardware Architecture for Scale and
Rotation Invariant Feature Detection. IEEE Transactions on Circuits and Systems for Video
Technology 18(12), 1703–1712 (2008)

7. Bouris, D., Nikitakis, A., Walters, J.: Fast and Efficient FPGA-Based Feature Detection
Employing the SURF Algorithm. In: IEEE Annual International Symposium on Field-
Programmable Custom Computing Machines. pp. 3–10 (2010)

8. Calonder, M., Lepetit, V., Ozuysal, M., et al.: BRIEF: Computing a Local Binary Descriptor
Very Fast. IEEE Transactions on Pattern Analysis and Machine Intelligence 34(7), 1281–
1298 (2012)

9. Ebrahimi, M., Mayol-Cuevas, W.: SUSurE: Speeded Up Surround Extrema Feature Detector
and Descriptor for Realtime Applications. In: Workshop on Feature Detectors and Descrip-
tors: The State Of The Art and Beyond” as part of IEEE Conference CVPR (June 2009)

10. Hartley, R., Zisserman, A.: Multiple View Geometry. Cambridge University Press, 2nd edn.
(2003), ISBN-13: 978-0-521540-051-3

11. Hirschmüller, H., Scharstein, D.: Evaluation of Cost Functions for Stereo Matching. In: IEEE
Conference on Computer Vision and Pattern Recognition. pp. 1–8 (2007)

12. Jeon, D., Kim, Y., Lee, I., et al.: A 470 mV 2.7 mW Feature Extraction-Accelerator for
Micro-Autonomous Vehicle Navigation in 28 nm CMOS. In: IEEE International Solid-State
Circuits Conference Digest of Technical Papers. pp. 166–167 (2013)

13. Leutenegger, S., Chli, M., Siegwart, R.: BRISK: Binary Robust Invariant Scalable Keypoints.
In: IEEE International Conference on Computer Vision. pp. 2548–2555 (2011)

14. Lowe, D.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal
of Computer Vision 60(2), 91–110 (2004)

15. Mikolajczyk, K., Schmid, C.: A Performance Evaluation of Local Descriptors. IEEE trans-
actions on Pattern Analysis and Machine Intelligence pp. 1615–1630 (2005)

16. Park, J.S., Kim, H.E., Kim, L.S.: A 182 mW 94.3 f/s in Full HD Pattern-Matching Based
Image Recognition Accelerator for an Embedded Vision System in 0.13-CMOS Technology.
IEEE Transactions on Circuits and Systems for Video Technology 23(5), 832–845 (2013)

17. Rosten, E., Porter, R., Drummond, T.: Faster and Better: A Machine Learning Approach to
Corner Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(1),
105–119 (Jan 2010)

18. Schaeferling, M., Kiefer, G.: Object Recognition on a Chip: A Complete SURF-Based Sys-
tem on a Single FPGA. In: International Conference on Reconfigurable Computing and FP-
GAs. pp. 49–54 (2011)

19. Schaffner, M., Hager, P., Cavigelli, L., et al.: A Real-Time 720p Feature Extraction Core
Based on Semantic Kernels Binarized. In: IFIP/IEEE 21st International Conference on Very
Large Scale Integration. pp. 27–32 (Oct 2013)

20. Scharstein, D., Szeliski, R.: High-Accuracy Stereo Depth Maps using Structured Light. In:
IEEE Conference on Computer Vision and Pattern Recognition. vol. 1, pp. I–195 (2003)

21. Sledevic, T., Serackis, A.: SURF Algorithm Implementation on FPGA. In: Biennial Baltic
Electronics Conference. pp. 291–294 (2012)

22. Stefanoski, N., Wang, O., Lang, M., et al.: Automatic View Synthesis by Image-Domain-
Warping. IEEE Transactions on Image Processing 22(9), 3329–3341 (Sept 2013)

23. Svab, J., Krajnik, T., Faigl, J., et al.: FPGA based Speeded Up Robust Features. In: IEEE In-
ternational Conference on Technologies for Practical Robot Applications. pp. 35–41 (2009)

24. Viola, P., Jones, M.: Rapid Object Detection using a Boosted Cascade of Simple Features.
In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition. vol. 1, pp. I–511–I–518 vol.1 (2001)

25. Wang, J., Zhong, S., Yan, L., et al.: An Embedded System-on-Chip Architecture for Real-
time Visual Detection and Matching. IEEE Transactions on Circuits and Systems for Video
Technology 24(3), 525–538 (March 2014)

26. Zilly, F., Riechert, C., Eisert, P., et al.: Semantic Kernels Binarized - A Feature Descriptor
for Fast and Robust Matching. In: Conference for Visual Media Production. pp. 39 –48 (nov
2011)

