Skip to Main content Skip to Navigation
New interface
Conference papers

Algebraic estimation of a biased and noisy continuous signal via orthogonal polynomials

Rosane Ushirobira 1 Alban Quadrat 1 
1 NON-A - Non-Asymptotic estimation for online systems
Inria Lille - Nord Europe, CRIStAL - Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189
Abstract : Many important problems in Signal Processing and Control Engineering concern the reconstitution of a noisy biased signal. For this issue, in this paper we consider the signal written as an orthogonal polynomial series expansion and we provide an algebraic estimation of its coefficients. We specialize in Hermite polynomials. On the other hand, the dynamical system described by the noisy biased signal may be given by a differential equation associated with classical orthogonal polynomials. The signal may be recovered through the coefficients identification. As an example, we illustrate our algebraic method on the parameter estimation in the case of Hermite polynomials differential equations.
Document type :
Conference papers
Complete list of metadata

Cited literature [13 references]  Display  Hide  Download
Contributor : Rosane Ushirobira Connect in order to contact the contributor
Submitted on : Wednesday, October 12, 2016 - 6:04:44 PM
Last modification on : Tuesday, December 6, 2022 - 12:42:13 PM
Long-term archiving on: : Saturday, February 4, 2017 - 8:51:56 PM


Files produced by the author(s)


  • HAL Id : hal-01380320, version 1



Rosane Ushirobira, Alban Quadrat. Algebraic estimation of a biased and noisy continuous signal via orthogonal polynomials. CDC 2016 - 55th IEEE Conference on Decision and Control, Dec 2016, Las Vegas, United States. ⟨hal-01380320⟩



Record views


Files downloads