B. Andreianov, C. Donadello, U. Razafison, and M. D. Rosini, Riemann problems with non--local point constraints and capacity drop, Mathematical Biosciences and Engineering, vol.12, issue.2, pp.259-278, 2015.
DOI : 10.3934/mbe.2015.12.259

URL : https://hal.archives-ouvertes.fr/hal-00959974

B. Andreianov, C. Donadello, and M. D. Rosini, A second-order model for vehicular traffics with local point constraints on the flow, Mathematical Models and Methods in Applied Sciences, vol.26, issue.04, pp.751-802, 2016.
DOI : 10.1142/S0218202516500172

URL : https://hal.archives-ouvertes.fr/hal-01146116

B. Andreianov, P. Goatin, and N. Seguin, Finite volume schemes for locally constrained conservation laws, Numerische Mathematik, vol.73, issue.115, pp.609-645, 2010.
DOI : 10.1007/s00211-009-0286-7

URL : https://hal.archives-ouvertes.fr/hal-00387806

B. Andreianov, K. H. Karlsen, and N. H. Risebro, A Theory of L 1-Dissipative Solvers for Scalar Conservation Laws with Discontinuous Flux, Archive for Rational Mechanics and Analysis, vol.2, issue.2, pp.27-86, 2011.
DOI : 10.1007/s00205-010-0389-4

URL : https://hal.archives-ouvertes.fr/hal-00475840

B. Andreianov, F. Lagoutì-ere, N. Seguin, and T. Takahashi, Well-Posedness for a One-Dimensional Fluid-Particle Interaction Model, SIAM Journal on Mathematical Analysis, vol.46, issue.2, pp.1030-1052, 2014.
DOI : 10.1137/130907963

URL : https://hal.archives-ouvertes.fr/hal-00789315

F. Bouchut and B. Perthame, Kru?kov's estimates for scalar conservation laws revisited, Transactions of the American Mathematical Society, vol.350, issue.07, pp.2847-2870, 1998.
DOI : 10.1090/S0002-9947-98-02204-1

A. Bressan, Hyperbolic systems of conservation laws, of Oxford Lecture Series in Mathematics and its Applications, 2000.
DOI : 10.5209/rev_REMA.1999.v12.n1.17204

A. Bressan and W. Shen, Uniqueness for discontinuous ODE and conservation laws, Nonlinear Analysis: Theory, Methods & Applications, vol.34, issue.5, pp.637-652, 1998.
DOI : 10.1016/S0362-546X(97)00590-7

R. M. Colombo and P. Goatin, A well posed conservation law with a variable unilateral constraint, Journal of Differential Equations, vol.234, issue.2, pp.654-675, 2007.
DOI : 10.1016/j.jde.2006.10.014

R. M. Colombo and A. Marson, A H??lder continuous ODE related to traffic flow, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, vol.133, issue.04, pp.759-772, 2003.
DOI : 10.1017/S0308210500002663

M. L. Delle-monache and P. Goatin, Scalar conservation laws with moving constraints arising in traffic flow modeling: An existence result, Journal of Differential Equations, vol.257, issue.11, pp.4015-4029, 2014.
DOI : 10.1016/j.jde.2014.07.014

URL : https://hal.archives-ouvertes.fr/hal-00976855

M. Garavello and P. Goatin, The Aw???Rascle traffic model with locally constrained flow, Journal of Mathematical Analysis and Applications, vol.378, issue.2, pp.634-648, 2011.
DOI : 10.1016/j.jmaa.2011.01.033

URL : https://hal.archives-ouvertes.fr/hal-00638111

M. Garavello and S. Villa, The Cauchy problem for the Aw-Rascle-Zhang traffic model with locally constrained flow, 2016.

S. N. Kru?kov, FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES, Mathematics of the USSR-Sbornik, vol.10, issue.2, pp.228-255, 1970.
DOI : 10.1070/SM1970v010n02ABEH002156

S. Villa, P. Goatin, and C. Chalons, Moving bottlenecks for the Aw-Rascle-Zhang traffic flow model, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01347925