An Efficient and Robust Social Network De-anonymization Attack

Gábor György Gulyás 1 Benedek Simon 2 Sándor Imre 2
1 PRIVATICS - Privacy Models, Architectures and Tools for the Information Society
Inria Grenoble - Rhône-Alpes, CITI - CITI Centre of Innovation in Telecommunications and Integration of services
Abstract : Releasing connection data from social networking services can pose a significant threat to user privacy. In our work, we consider structural social network de-anonymization attacks , which are used when a malicious party uses connections in a public or other identified network to re-identify users in an anonymized social network release that he obtained previously. In this paper we design and evaluate a novel social de-anonymization attack. In particular, we argue that the similarity function used to re-identify nodes is a key component of such attacks, and we design a novel measure tailored for social networks. We incorporate this measure in an attack called Bumblebee. We evaluate Bumblebee in depth, and show that it significantly outperforms the state-of-the-art, for example it has higher re-identification rates with high precision, robustness against noise, and also has better error control.
Type de document :
Communication dans un congrès
Workshop on Privacy in the Electronic Society, Oct 2016, Vienna, Austria. 〈10.1145/2994620.2994632〉
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01380768
Contributeur : Gabor Gyorgy Gulyas <>
Soumis le : jeudi 13 octobre 2016 - 15:59:18
Dernière modification le : mercredi 11 avril 2018 - 01:53:47
Document(s) archivé(s) le : samedi 4 février 2017 - 21:37:48

Fichier

wpes16_final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Gábor György Gulyás, Benedek Simon, Sándor Imre. An Efficient and Robust Social Network De-anonymization Attack. Workshop on Privacy in the Electronic Society, Oct 2016, Vienna, Austria. 〈10.1145/2994620.2994632〉. 〈hal-01380768〉

Partager

Métriques

Consultations de la notice

197

Téléchargements de fichiers

143