Second order Boltzmann-Gibbs principle for polynomial functions and applications

Abstract : In this paper we give a new proof of the second order Boltzmann-Gibbs principle. The proof does not impose the knowledge on the spectral gap inequality for the underlying model and it relies on a proper decomposition of the antisymmetric part of the current of the system in terms of polynomial functions. In addition, we fully derive the convergence of the equilibrium fluctuations towards 1) a trivial process in case of supper-diffusive systems, 2) an Ornstein-Uhlenbeck process or the unique energy solution of the stochastic Burgers equation, in case of weakly asymmetric diffusive systems. Examples and applications are presented for weakly and partial asymmetric exclusion processes, weakly asymmetric speed change exclusion processes and hamiltonian systems with exponential interactions.
Type de document :
Article dans une revue
Journal of Statistical Physics, Springer Verlag, 2017, 〈10.1007/s10955-016-1686-6〉
Liste complète des métadonnées

Littérature citée [21 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01381009
Contributeur : Marielle Simon <>
Soumis le : vendredi 14 octobre 2016 - 16:19:50
Dernière modification le : mardi 3 juillet 2018 - 11:25:20

Lien texte intégral

Identifiants

Collections

Citation

Patricia Gonçalves, Milton Jara, Marielle Simon. Second order Boltzmann-Gibbs principle for polynomial functions and applications. Journal of Statistical Physics, Springer Verlag, 2017, 〈10.1007/s10955-016-1686-6〉. 〈hal-01381009〉

Partager

Métriques

Consultations de la notice

246