An Efficient Microblog Hot Topic Detection Algorithm Based on Two Stage Clustering

Abstract : Microblog has the characteristic of short length, complex structure and words deformation. In this paper, a two stage clustering algorithm based on probabilistic latent semantic analysis (pLSA) and K-means clustering (K-means) is proposed. Besides, this paper also presents the definition of popularity and mechanism of sorting the topics. Experiments show that our method can effectively cluster topics and be applied to microblog hot topic detection.
Type de document :
Communication dans un congrès
Zhongzhi Shi; Zhaohui Wu; David Leake; Uli Sattler. 8th International Conference on Intelligent Information Processing (IIP), Oct 2014, Hangzhou, China. Springer, IFIP Advances in Information and Communication Technology, AICT-432, pp.90-95, 2014, Intelligent Information Processing VII. 〈10.1007/978-3-662-44980-6_10〉
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01383320
Contributeur : Hal Ifip <>
Soumis le : mardi 18 octobre 2016 - 14:53:33
Dernière modification le : mardi 18 octobre 2016 - 15:08:51

Fichier

978-3-662-44980-6_10_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Yuexin Sun, Huifang Ma, Meihuizi Jia, Wang Peiqing. An Efficient Microblog Hot Topic Detection Algorithm Based on Two Stage Clustering. Zhongzhi Shi; Zhaohui Wu; David Leake; Uli Sattler. 8th International Conference on Intelligent Information Processing (IIP), Oct 2014, Hangzhou, China. Springer, IFIP Advances in Information and Communication Technology, AICT-432, pp.90-95, 2014, Intelligent Information Processing VII. 〈10.1007/978-3-662-44980-6_10〉. 〈hal-01383320〉

Partager

Métriques

Consultations de la notice

75

Téléchargements de fichiers

129