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Abstract. Description logics offer considerable expressive power for describing 
knowledge about static application domains while reasoning is still decidable. 
The dynamic description logic DDL is a family of dynamic extensions of de-
scription logics for representing and reasoning about knowledge of dynamic 
application domains. In order to provide effective reasoning mechanisms, sys-
tems of DDL investigated in the literatures assume that there is no general con-
cept inclusion(GCI) contained in the knowledge base. In this paper, we build a 
system of dynamic description logic based on the tractable description logic

pr
RDL-Lite , in such a way that all the knowledge described by pr

RDL-Lite  is 
supported by our system. A decision algorithm is provided for our system 

pr
RDDL-Lite .Termination and correctness of the algorithm are proved. 
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1  Introduction 

With the rapid development of the Semantic Web, description logics [1] are playing an 
important role in it, which are recommended by W3C as the basis of Web Ontology 
Language OWL [2]. About static application domains, they provide considerable 
expressive power and decidable reasoning mechanisms [3]. But they can’t directly deal 
with knowledge of dynamic application domains which are characterized by actions.  

For this limitation, Shi et al. [4] put forward a dynamic description logic DDL based 
on a combination of description logic ALC, dynamic logic and action theory. Based on 
DDL, a family of dynamic description logics named DDL(X@)[5] was proposed for 
representing and reasoning about actions, where the minimal change semantics[6] were 
used to define the semantics of atomic action definitions. But all the current decision 
algorithms for dynamic description logics are all restricted to requiring that TBoxes of 
description logics don’t include GCIs any more. The DL-Lite family [7] is a family of 
DLs tailored to capture conceptual modeling constructs while keeping reasoning.  

Based on [5], in this paper, we first of all propose a dynamic description logic
pr
RDDL-Lite and give its syntax and semantics. And we adopt model-based semantics

a⊆L [8] of ABox update to define the semantics of atomic action definitions. Then a 



tableau decision algorithm which supports GCIs for pr
RDDL-Lite  is given. Finally, the 

termination and correctness of the algorithm are proved. 

2 Dynamic Description Logic pr
RDDL-Lite  

pr
RDDL-Lite primitive symbols include a set NC of concept names, a set NR of role 

names, a set NI of individual names and a set NA of action names. With the help of a set 
of constructors, starting from these symbols, roles, concepts, formulas and actions can 
be inductively constructed respectively. 
Definition 1. Roles of pr

RDDL-Lite are formed according to the following syntax rule: 
 R ::= P | P-- where P∈NR. 
Definition 2. Concepts of pr

RDDL-Lite are formed according to the following syntax 
rule: 
 C, C' ::= Ai | ¬ C | ∃R where Ai ∈NC, R is a role. 

The form of C1⊑C2 is called a GCI short for a general concept inclusion assertion, 
where C1 and C2 are any concept. The form of R1⊑R2 is called a role inclusion assertion 
where R1 and R2 are any role.Each finite set T of GCIs and role inclusion assertions is 
called a TBox of pr

RDDL-Lite , where disjointness that involves roles is forbidden.  
Definition 3. Formulas of pr

RDDL-Lite are formed according to the following syntax 
rule: 
ϕ, ϕ’::=C(p)|R(p, q)|<π> ϕ|¬ϕ where p, q∈NI , R∈NR, C is a concept, π is an action. 

Formulas of the form C(p), R(p, q), <π>ϕ and¬ϕ are respectively called concept 
assertion, role assertion, diamond assertion and negation formula. Concept assertions, 
role assertions, negations of concept assertions, and negations of role assertions are all 
called ABox assertions. A finite set of ABox assertions is called an ABox of 

pr
RDDL-Lite . For any ABox A , we use A¬ to denote the set {¬ϕ | ϕ ∈ A }. 

Definition 4. With respect to a TBox T, an atomic action definition of pr
RDDL-Lite  is 

of the form α ≡ (P, E), where,  
(1) α∈NA is an atomic action name;  
(2) P is a finite set of ABox assertions for describing the pre-conditions of the action;  
(3) E is a finite set of ABox assertions for describing the post-conditions. 

For each finite set Ac of atomic action definitions, if no action name occurs on the 
left-hand sides for more than once, then we call Ac an ActBox of pr

RDDL-Lite .        
Definition 5. With respect to a TBox T, an ActBox Ac, actions of pr

RDDL-Lite are 
formed according to the following syntax rule:  
 π, π' ::= α | ϕ? | π∪π' | π; π' | π*  where α is an atomic action, φ is a formula. 

Actions of the form α, ϕ?, π∪π', π; π' and π* are respectively called atomic action, 
test action, choice action, sequential action and iterated action.  
Definition 6. A pr

RDDL-Lite -model is of the form M= (W, T, Δ, I), where, 
1) W is a non-empty finite set composed of states;  
2) T is a function that maps every action name α∈NA to a binary relation T(α)⊆W × W; 
3) Δ is a non-empty set made up of individuals; 
4) I is a function which associates every state w∈W a DL-interpretation I(w)=( Δ, ·I(w)) , 
where the function ·I(w) 



─ maps each concept name Ci∈NC to a set Ci
I(w)⊆Δ, 

─ maps each role name Ri ∈ NR to a binary relation Ri
I(w)⊆Δ × Δ, and 

─ maps each individual name pi∈ NI to an individual pi
I(w)∈Δ, with the constraints 

that pi
I(w)= pi

I(w') for any state w'∈W.  
Definition 7. Let T, Ac be a TBox, an ActBox respectively. M= (W, T, Δ, I) is a model 
of pr

RDDL-Lite . The semantics of roles, concepts, formulas and actions of pr
RDDL-Lite

are defined inductively as follows.  
Firstly, for any state w∈W, each role R is interpreted as a binary relation RI(w)⊆ 

Δ × Δ and each concept C is interpreted as a set CI(w)⊆Δ. The semantics of roles and 
concepts of pr

RDDL-Lite  are defined inductively as follows: 
1. (R—)I(w) ={(y, x)| x∈Δ, y∈Δ and (x, y) ∈ RI(w)}; 
2. (¬C)I(w) =Δ \ CI(w), where “\” is the set difference operator; 
3. (∃R)I(w) = { x∈Δ| there is some y∈Δ such that (x, y)∈RI(w)}. 

Secondly, for any state w∈W, the satisfaction-relation (M, w)⊨φ for any formula 
φ is defined inductively as follows: 
4. (M, w) ⊨C(p) iff pI ∈ CI(w) ; 
5. (M, w) ⊨R(p, q) iff (pI , qI) ∈ RI(w) ; 
6. (M, w) ⊨¬φ iff it is not the case that (M, w) ⊨φ; 
7. (M, w) ⊨<π>φ iff some state w'∈W exists with (w, w')∈T(π) and (M, w') ⊨φ; 
8. (M, w) ⊨[π] φ iff for every state w'∈W: if (w, w')∈T(π) then (M, w') ⊨φ. 

Finally, each action π is interpreted as a binary relation T(π)⊆W × W according to 
the following definitions: 
9. T(φ?) ={(w, w)|(M, w) ⊨φ}; 

10. T(π∪π') = T(π)∪T(π'); 
11. T(π; π') ={(w, w') |there is some state w''∈W such that (w, w'')∈T(π) and (w'', 

w')∈T(π')}; 
12. T(π*) = reflexive transitive closure of T(π) . 

A model M satisfies a TBox T , denoted by M ⊨ T , if and only if for every state 
w∈W, C1

I(w)⊆C2
I(w) for every concept inclusion assertion C1⊑C2∈T and R1

I(w)⊆R2
I(w) 

for every role inclusion assertion R1 ⊑R2∈T. A state w of a model M satisfies an ABox 
A, denoted by (M, w) ⊨ A, if and only if (M, w)⊨φ for every ABox assertion φ∈ A .  

According to Ac, any atomic action α is specified by some atomic action definition  
α≡ (P, E). Then w.r.t. a TBox T, a model M satisfies an atomic action definition α ≡ (P, 
E), in symbols M ⊨T α ≡ (P, E), if and only if M ⊨T  and T(α)={(w, w')|①(M, w)⊨P, 
②(M, w')⊨E, ③for every state w''∈W, if (M, w'') ⊨E, then dista⊆ (I(w), I(w'))⊆ dista⊆
(I(w), I(w''))}. 

The distance function between interpretations is specified in details as follows. 
Firstly, given two interpretations I(w)= (Δ, ·I(w)) and I(w') = (Δ, ·I(w')), the distance 

between them is denoted by dista⊆ (I(w), I(w')). Then dista⊆ (I(w), I(w')) =I(w)Ɵ I(w') 
= ( ) ( ') ( ') ( ) ( ) ( ') ( ') ( )(( ) ( )) (( ) ( ))

C RC N R N

I w I w I w I w I w I w I w I wC C C C R R R R
∈ ∈

− ∪ − ∪ − ∪ −∪ ∪  

where Ɵ is the set symmetric difference operator. Distances under dista⊆ are compared 
by set inclusion. 
Definition 8. A model M satisfies an ActBox Ac w.r.t. a TBox T , in symbols M ⊨T 
Ac , if and only if M ⊨T α ≡ (P, E) for every atomic action definition α ≡ (P, E)∈ Ac .  



Definition 9. A formula φ is satisfiable w.r.t. a TBox T and an ActBox Ac if and only 
if there is a model M = (W, T, Δ, I) and a state w∈W such that M ⊨T, M ⊨T Ac and (M, 
w) ⊨φ. 

3 Tableau Decision Algorithm for pr
RDDL-Lite  

Let T, Ac be a TBox and an ActBox respectively. Let ϕ be a pr
RDDL-Lite -formula which 

is defined w.r.t. Ac. For the convenience of presentation, we firstly transform the for-
mula ϕ into a normal form nf(ϕ) according to the following steps. 

(1) Replace every occurrence of atomic actions with their atomic action defini-
tions.Let φ' be the resulted formula. 

(2) Transform φ' into an equivalent one in negation normal form by pushing 
negations inwards according to the following equivalences: 

¬ (<π>ψ) = [π] ¬ψ        ¬ ([π] ψ) = <π>¬ ψ            ¬ ¬ψ=ψ 
A full closure of an ABox A w.r.t. TBox T, denoted by fclT (A), is the set of all 

ABox assertions f such that A |= T f .  
Next, we introduce some definitions involved in the algorithm as follows. 
Given a TBox T, a prefix σ.μ with a sequential action σ and a set μ of ABox asser-

tions is constructed according to the following syntax rule: 
σ.μ ::= (∅, ∅).∅ | σ; (P, E). (μ\ ( fclT (E))¬)∪E 

where (∅, ∅) and (P, E) are atomic actions, σ;(P, E) is a sequential action. 
We also use σ0.μ0 to denote the prefix (∅, ∅).∅ and call it the initial prefix. A pre-

fixed formula is a pair σ.μ:ϕ, where σ.μ is a prefix and ϕ is a formula.  
A branch B is a union of a set BPF of prefixed formulas and a set BE of eventuality 

records which is of the form X ≡ <π*>ϕ. 
A branch B is completed if and only if it can’t be expanded by any tableau expan-

sion rule. 
An eventuality record X ≡ <π*>ϕ is fulfilled in a branch B if and only if there is a 

prefix σ.μ such that both σ.μ: X∈B , and σ.μ:ϕ∈B .  
A branch B is ignorable if and only if it is completed but contains some eventuality 

record X ≡ <π*>ϕ which is not fulfilled.  
A branch B is contradictory if and only if there is some prefix σ.μ and some for-

mula ϕ such that both σ.μ:ϕ∈B and σ.μ:¬ϕ∈B .  
For any branch B, {ψ|σ0.μ0:ψ∈B and ψ is an ABox assertion } is denoted by IVB . 
Tableau expansion rules on inverse roles, non-atomic actions are the same with [5].  

¬atom< >-rule 
If σ.μ:¬<(P, E)>ϕ ∈B ,{σ.μ:ψ¬ | ψ∈P }∩B =∅, and there is a prefix σ′.μ′  
with both μ′= (μ\(fclT (E))¬)∪E and σ′.μ′:¬ϕ∉B, 
then set either B := B ∪{σ′.μ′:¬ϕ} or B := B ∪{σ.μ:¬ψ} for some ψ∈P. 

atom< >-rule 

If σ.μ:<(P, E)>ϕ ∈B , and if {σ.μ: ψ | ψ∈P} B,or no prefix σ′.μ′ exists  
with both μ′= (μ\(fclT (E))¬)∪E and σ′.μ′:ϕ ∈B , 
then: if there is no prefix σ′.μ′ with μ′= (μ\(fclT (E))¬)∪E , 
     then introduce a prefix σ′′.μ′′ := σ;(P, E).(μ\(fclT (E))¬)∪E and 
     set B := B ∪ {σ.μ: ψ | ψ∈P}∪{σ′′.μ′′:ϕ}∪ {σ′′.μ′′: ϕ | ϕ ∈μ′′}, 
     else find a prefix σ′.μ′ with μ′= (μ\(fclT (E))¬)∪E , and 
     set B := B ∪ {σ.μ: ψ | ψ∈P}∪{σ′.μ′:ϕ}∪ {σ′.μ′: ϕ | ϕ ∈μ′}. 

Fig.1. Tableau expansion rules on atomic actions  



B-rule  
If σ.μ:ϕ∈B, and ϕ is an ABox assertion, 
then : 1. A ={ϕ}; 2. if {σ0.μ0: ϕ | ϕ ∈ A Regress(σ.μ)} B,  
then any ψ∈ A Regress(σ.μ) and σ0.μ0:ψ∉B  set B := B ∪{σ0.μ0: ψ}. 

Fig.2. Tableau expansion rules on ABox assertions 

For B-rule, ABox ARegress(σ.μ) is constructed according to the following Algorithm 1. 
Algorithm 1 Given a regress setting Ƙ=(T , A) and μ¬, given that A and μ¬ w.r.t. T are 
satisfiable respectively, construct an ABox A' by the following steps. 
Step 1. Let A' is an empty set and S is equivalent to fclT(A). 
Step 2. If S is not an empty set, do the following operations: 

1. Choose some ψ of S and at the same time remove ψ from S. 
2. If a union of the two sets {ψ}, fclT(μ¬) is satisfiable, then add ψ to A'. 
3. Repeat Step 2 until the condition is unallowed. 

The construction process ensures the following Lemma 3 and ARegress(σ.μ) is a union 
of A', μ¬. 

Finally, the tableau decision algorithm is described as follows. 
Algorithm 2 The satisfiability of a formula ϕ w.r.t. a TBox T and an ActBox Ac is 
decided according to the following steps:  
Step1. Construct a branch B :={σ0.μ0: nf(ϕ)}. 
Step2. If all the tableau expansion rules are applied to B in random order so that they 
yield a completed branch B′, and B′ is neither contradictory nor ignorable, and IVB′ of 
B′ is consistent w.r.t. T, then the algorithm returns “TRUE”, else returns “FALSE”.  
Theorem 1. Algorithm 2 terminates.  

Firstly, the number of branches which will be investigated by Algorithm 2 is 
finite. Then, for each branch B investigated by Algorithm 2, the number of 
ABox assertions contained in the initial view IVB is also finite. Finally, the con-
sistency of IVB w.r.t. T can be decided with terminable procedures. 

To demonstrate the correctness of Algorithm 2, some notations are introduced 
as follows.  

Firstly, with reference to Algorithm AlignAlg((T, A), N)[8], Algorithm 1 has the 
following properties. 
Lemma 1. Let T, A, N be a TBox, an ABox and an ABox, respectively. A, N w.r.t. T are 
consistent, if AN is an ABox which is constructed according to Algorithm 1 under A and 
the update information N, then we have AN= fclT (A)-(fclT (N))¬∪N. 
Lemma 2. Let T be a TBox, σ.μ is a prefix w.r.t. T, where σ = (∅, ∅); (P1, E1); (P2, 
E2); …; (Pn, En). For any ABox A, if A w.r.t. T is consistent, then there must be 

1 2 nE(( ) )E E …A = Aμ. 
Secondly, we introduce branch-model mappings to act as bridges between 

branches and models. 
Let T, Ac, B and M= (W, T, Δ, I) be a TBox, an ActBox, a branch and a 

model respectively. A branch-model mapping δ w.r.t. T , B and M is a function 
from ∑ of prefixes occurring in B to states of M, satisfying that for each pair of 
prefixes σ.μ and σ′.μ′ occurring in B : if there is an atomic action (P, E), σ′=σ;(P, E) 
and μ′ =(μ\(fclT(E))¬)∪E, then:  
(1) M ⊨T ; (2) (M, δ(σ.μ)) ⊨P; (3) (M, δ(σ′.μ′))⊨E; (4) for any σ''.μ'' ∈∑ , 
if (M, δ(σ''.μ''))⊨E, then dista⊆ (I(δ(σ.μ)), I(δ(σ′.μ′)))⊆ dista⊆ (I(δ(σ.μ)), I(δ(σ''.μ''))). 



By means of a branch-model mapping, we can get the following property. 
Lemma 3. Let A Regress(σ.μ) be a ABox constructed by the regression operator in the 
B-rule. Let M = (W, T, Δ, I) be a model with M |= T .Then, for any branch-model 
mapping δ w.r.t. T , B and M, we have (M, δ(σ.μ)) ⊨A, iff (M, δ(σ0.μ0)) ⊨A Regress(σ.μ). 

Finally, it is easy to prove the correctness of Algorithm 2. 
Theorem 2. Algorithm 2 returns “φ is satisfiable w.r.t. T and Ac ” if and only if φ w.r.t. 
T and Ac is satisfiable. 

4 Conclusion 

Dynamic description logic pr
RDDL-Lite not only inherits the feature of representing and 

reasoning about knowledge of dynamic application domains as the same with the 
existing dynamic description logics, but also at the same time its TBoxes are composed 
of GCIs. We broaden knowledge offered by TBoxes of dynamic description logics and 
provide a reliable algorithm foundation for the practical application of a dynamic 
description logic with GCIs. Further work is to optimize the algorithm and develop a 
corresponding dynamic description logic reasoning machine. 
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