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Cooperative Decision Algorithm for Time
Critical Assignment without Explicit
Communication

Yulin Zhang, Yang Xu, and Haixiao Hu

School of Computer Science and Engineering,
University of Electronic Science and Technology of China,
xuyangQ@uestc.edu.cn

Abstract. Decentralized time critical assignment is popular in the do-
mains of military and emergency response. Considering the large com-
munication delay, unpredictable environment and constraints, to make
a rational decision in time critical context toward their common goal,
agents have to jointly allocate multiple tasks based on their current sta-
tus. This process can be built as a Markov Decision Model when they can
share their status freely. However, it is computationally infeasible when
explicit communication becomes a severe bottleneck. In this paper, by
modelling the decision process as a Partially Observable Markov Deci-
sion Process for each agent and building heuristic approaches to estimate
the state and reduce the action space, we apply greedy policies in our
heuristic algorithms to quickly respond to time critical requirement.
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1 Introduction

With the progress of research in distributed artificial intelligence, cooperative
agents have been applied in dynamic and complex application domains such as
disaster response|[1], military[2] and business organizations[3] in recent years. In
those domains, task allocation becomes a basic problem that needs to be solved
efficiently [3]. The basic task allocation problem is organized as follows: Given
a set of agents and a set of tasks, where each agent obtains some payoff for
each task, find a one-to-one assignment of agents to tasks to maximize the total
payoff of all agents. This problem can be solved (near) optimally in polynomial
time by centralized algorithms [4, 5], and decentralized algorithms [3, 6]. In all of
these works, it is assumed that communication is available and the environment
is static. However, in real domain, the communication is not available and the
environment including the status of the agents and the tasks may change. For
example, when a group of robots are deployed to carry out time critical tasks
for Urban Search and Rescue (USAR), communication infrastructure is most
likely destroyed in disaster and communication may be restricted for each rescue
robot. Another example, when missiles are launched to attack hostile targets,
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the missiles have to keep silent due to security reasons. In both of these domains,
the environment is dynamically changing and necessary cooperative replanning
or reallocation is required. Therefore, we summarize those scenarios as a group
of time critical agents that they have to cooperate to optimize their common
goals without explicit communication.

More specifically, time critical task assignment without explicit communica-
tion that we study can be stated as follows: Given a set of agents and a set
of tasks, firstly, the capability of each agent is determined by the dynamically
changing environment; Secondly, the state of task and agent may change unex-
pectedly; Thirdly, no explicit communication is allowed; In addition, a payoff
can be obtained from a completed task. We need to find the assignment of a-
gents to tasks within critical response time, such that the sum of payoff from all
agents is maximized. To improve team performance, team states have to be well
maintained from observations. This can be modelled as a Decentralized Partially
Observable Markov Decision Process, which is NEXP-complete [7]. And current
approaches such as [8, 9], try to solve this problem with the help of communica-
tion, which is not allowed in our problem.

In this paper, several efforts were made to solve the task assignment problem
in time critical context. Firstly, since the capabilities of all agents and the sta-
tuses of their tasks are changing with Markovian property, the task assignment
process can be built as a Markov Decision Model. However, when communication
is not available or unacceptable in time critical context, the team state cannot
be accurately observed. In this paper, we model the decision process as a Partial-
ly Observable Markov Decision Process for each agent. Secondly, the objective
function in our task assignment is a step function, which makes it difficult for the
agent to decide whether to jointly assign an uncompleted task to a single agent.
We propose an exponential reward function to fit for it. Finally, without commu-
nication, there is only a small amount of observation, which makes the problem
an open-loop control and toward an NEXP-complete problem [10]. Thus, heuris-
tic approaches are built according to the following observations: 1. Task-related
agents may get the same observation with a high probability. 2. When nothing
can be referred from others, it’s better to assume that their choice stays the
same. With these observations, the search space can be dramatically reduced
and a greedy policy is applied to help operate in time critical context.

2 Problem Statement

In this section, we provide a time critical assignment problem without explicit
communication for cooperative teams.

2.1 Task Assignment Problem

We focus on a cooperative time critical agent team A = {aq,as, ..., a;, ...}, such
as a group of robots or UAVs, coordinating to carry out a set of tasks T =
{t1,t2,....t;,...}. Each task consists of two parts, t; =< x;,@; >. x; is the
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payoff to complete t;, indicating its importance. @; describes t;’s workload,
which represents the total amount of work required to complete ¢;. Before the
task is executed, there is a preparation stage for the agent to prepare for the
execution or heading for the target location. During this preparation stage, the
potential contribution of the agents to their tasks may change, since their states
dynamically change. To obtain the highest payoff with limited agents, we should
dynamically assign all the tasks during this stage.

At time ¢, the potential contribution of a; to ¢; is described as ¢(a;, tj)t, which
is dynamically updated as the situation between a; and t; changes, according to
the domain knowledge. For example, the capability of the rescue robot is related
to its remaining energy, holding resources and even distance to its target location.
When the robot is of low power, its capability to carry out a long-distance task
is very small. If the resource in the robot is going to run out, it is less capable
to carry out a resource-consuming mission. After agent a; is assigned with task
T, (t), all agents assigned with task ¢; is summarized as Ij(¢). Thus, if the total
contribution ;(t) of all assigned agents for task ¢; meets its workload, that is,

ei(t) =Y claity) > &

a; €T5(t)

t; can be completed and Completed(t;) = 1; Otherwise, Completed(t;) = 0.

During the preparation stage, we need to find the best strategy 7* as following
to get the highest payoff.

() = argmaz 5;_r (A1) Z X; - Completed(t;) (1)
tjeT

where Jt_7(A,T,t) is the task allocated for all agents in this team, Jt_7(A, T, t) =

U 7a:(8).

a; €A

2.2 Time Critical Assignment without Explicit Communication

In a time critical system, a tiny delay may lead to disasters. For example, when
a UAV in fast mode finds an obstacle in front, the decision about how to change
its orbit should be made immediately, or it will be destroyed before it changes
its orbit. Therefore, the task assignment should be carried out in a time critical
context and no deliberation model should be allowed. In addition, when the
time critical system is performing a task far away from its base, communication
is extremely unreliable and of long delay. To operate in a time critical context,
no explicit communication could be relied on. Without explicit communication,
due to the limited sensing capabilities, the agents cannot fully observe the team
state but can only get partial observations. Therefore, the agents have to reason
from its partial observations to make rational decisions.
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3 Cooperative Task Assignment Algorithm

In order to obtain the highest payoff, each agent has to dynamically update its
task according to the changing team state, including the capabilities of all agents
and the status of each task. Since the task of each agent is only determined by
the latest team state rather than the historical ones, the task assignment process
can be built as a Markov Decision Model when they can share their status freely.
Unfortunately, in time critical context, the agents cannot share the state through
unreliable communication with large delay. Each agent can only estimate the
team state from the ambient data of its own observation. Due to the limitation
of its observation range, the observation obtained by the agent is incomplete
and team state is uncertain. Therefore, in this paper, a Partially Observable
Markov Decision Process model is built for each agent to reason from its partial
observations. Since small amount of observation makes the POMDP problem
even more difficult, heuristic approaches are proposed to solve this problem.

3.1 Partially Observable Markov Decision Process Model for
Cooperative Task Assignment

The basic decision model for the task assignment process of each agent can be
written as a POMDP < S, Jt_act,T,0,0,U >. S is the state space and its value
at time ¢ is defined as s(t), Jt_act is the action space of all agents, T': Sx A — S,
is the transition function that describes the resulting state s(t + 1) € S when
executing Jt_7(A,T,t) € Jt_act in s(t). © and O are the observations and their
observation function respectively to indicate the possible states under a given
observation. R : S — R defines the reward of being in a specific state. This
model can be applied to each agent.

In this case, the team state s(t) is modelled as the capabilities of all agents
and the assigned agents for each task at time ¢t — 1:

S(t) = Up,er(Ij(t — 1) Ug,ea clai, t;)")

After assigning Jt_7(A,T,t) at state s(t), the capability of each agent is
transited according to the domain knowledge: T : c(a;, t;) X 74, (t) = c(a;, ;).
For example, when a rescue robot changes its task, it will change its direction
to head for its new target location and improve its capability to accomplish this
task in time.

However, each agent cannot fully observe the whole team state but can only
get partial observations 6(t) € O, such as the status of the task, the state of
itself and other agents. For example, when the rescue robot is approaching its
target location, it can sense the topography of the target area and its remaining
energy. From the observation, the belief state b(t) could be derived according
to the observation function: O : © — B. For each state s(t) € b(t), we know
the perceptual distribution Pr(s(t)|6(t)), which describes the likelihood of the
team being in the state of s(¢) under observation 6(t). For example, when a
robot observes that the traffic to the target location becomes extremely tougher,
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which will consumes more energy to reach the target location and indicates a
capability drop of this agent, others with the same task may also observe the
same capability drop with a high probability.

To find the optimal assignment, the key is to maximize the objective function
[1]. However, the objective function is a step function, which generates reward
only when the task is able to be completed and makes it difficult to decide
whether to assign an uncompleted task to a single agent. Hence we propose an
exponential reward function to fit for the objective function. And the exponential
reward function should satisfy the following two properties: Firstly, for each task
t;, with all the potential agents and their contributions, the potential progress
1;(t) of t; is the sum of all contributions from its assigned agents.

i)=Y claity)

a; €I;(t—1)

If 1,(t) equals to zero, which means that there is no potential progress for task
t; and the team obtains no reward from task ¢;. Secondly, when the task receives
enough progress to be completed, the team gets the whole priority of the task
as its reward. Considering these two properties of the objective function, the
exponential reward function is built as follows:

R (1) = = (") = 1)

And the utility of s(¢) is the total reward from all tasks.

In this model, the agents coordinate to find the best strategy 7* to maximize
the expected utility.
(t) = Pr(s(t+1)|0(t+1 U(s(t+1
) =arg w3 Prs(t+ D0+ 1) < Uls+1)

s(t+1)eb(t+1)

Without communication, each agent can only get a small amount of observation,

which makes this problem an open-loop control and toward an NEXP-complete

problem, according to the study of [10].

3.2 Heuristic Approach

In this section, we build heuristic approaches according to the following efforts.
Firstly, we assume that an optimal assignment is initialized for each agent offline.
Secondly, since agents act in the same environment, task-related agents may
obtain the same observation with a high probability. Hence the belief of all task-
related agents may change and their tasks may be reassigned. Finally, when we
cannot infer anything about others, since the state is Markovian, we can assume
that their choice stays the same to keep synchronization of all agents. Thus, the
search space can be dramatically reduced and a greedy policy can be applied for
each agent in a time critical context.
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State estimation. In a decentralized task assignment domain, several agents
may be assigned to the same task. When there is an unexpected accident happen-
ing to the task, all agents assigned to the task tend to get the same observation.
For example, when a group of robots are assigned to carry out the same task t, if
robot « observes that the condition of the task is more difficult than it expected,
its capability ¢(a, t)* will drop and other task-related agents may also observe
the same disturbance, which drives them to reassign their tasks. Thus, the state
can be estimated with all the possible observations from all task-related agents.

g(t) = S(t - 1) Uaien(t—l) E(Cli, t)t

where t is the task that causes the disturbance and ¢(a;,t)! is the estimated
capability from the observations.

Action space reduction. In state estimation, task-related agents in Iy may
get the same observation and their states can be easily estimated. But without
communication, we know nothing about other agents, which do not share the
same task and their states cannot be derived. Hence there are many possible
states for these agents, which make it difficult to reason about their states within
critical response time. When we know nothing about other agents and what they
know, since the state is Markovian, it is reasonable to assume that their state
changes regularly and their choices stay the same. That is, the joint action of
the agents in A — I'y, whose state cannot be derived, is estimated from that of
last assignment.

Jtr(A—T,T,t)=Jtr(A— T, T,t—1)

Thus, only the joint action Jt_7(I,T,t) of the task related agents in Iy has
to be reallocated, which dramatically reduces the action space. With these two
parts, the joint action of the team is approximated:

Jtr(A,T,t) = Jtr(I, T,t) U Jtr(A — I, T, t)

To react in a time critical context, no deliberation model could be used.
Therefore, we use greedy policy to find a good joint action Jt_7 (I, T,t) for the
task-related agents.

Each agent in the team runs algorithm 1. In this algorithm, when the agent
gets an observation (line 2), it triggers a task assignment process. For the agents
that have different tasks (line 4), it assumes that their tasks keep the same (line
5). According to the domain knowledge, their contributions to the tasks can be
updated (line 7). Thus the total potential contribution each task receives could
be summarized (line 8). For the task-related agents (line 10), the contribution to
each task can be updated from the observation (line 11). To obtain the highest
priority and respond within critical time, a greedy policy is conducted to find
the task with max reward for each agent. Considering the task may be over
completed, the reward has to be calculated in two cases (line 14-19 and line
20-26). When the task is not over completed, the reward is the additional utility
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after adding current agent (line 15). If the reward is the maximum one, record the
task and its reward (line 16-17). When the task is over completed after adding
current agent (line 20-21), the reward is the additional utility of the task before
it exceeds its priority (line 21). And the same is done to record the maximum
reward (line 22-23). Finally, find the task with maximum reward and update its
status (line 28).

Algorithm 1 Cooperative Decision Algorithm for Time Critical Assignment
1: for at time step t do
2:  Observation < getObservation;
3 init array 1 (t) with zero;
4 for all o € A —TI}(t) do
5: Ta(t) < Ta(t — 1);
6: task < 7a(t);
7.
8

update c(a, task)® according to domain knowledge;
: Yiask (t) < VYrask (t) + c(a, task)’;
9:  end for

10:  for all « € I'j(¢) do

11: update c(a, )" according to domain knowledge from Observation
12: mazx, < 0;

13: for all task € T do

14: if Yrask(t) + c(oz,task)t < P4k then

15: if R(¢task(t) + c(a, task)t) — R(Ytask(t)) > maz, then
16: maz, < R(Viask(t) + c(a, task)?) — R(Wiask (t));
17: Ta(t) < task;

18: end if

19: else

20: if wtask (t) S étask then

21: if Xtask — R(Ytask(t)) > maz, then

22: mazy < Xtask — B(Vtask(t);

23: Ta(t) < task;

24: end if

25: end if

26: end if

27: end for

28: Vo (1) () = P (1) (1) + (e, Ta (1))

29: end for

30: end for

4 Experiment Setup and Result

In this section, we present the empirical evaluations of our approach in the
cooperative task assignment. In our experiment, a group of agents are deployed
from the same base station to carry out several tasks, which takes the agents
about 40 time steps to reach the target location. Each task is initialized with
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different priorities and workloads. For the sake of simplicity, we initiate agents’
capabilities for all tasks to 1. The objective is to maximize the priorities of all
tasks accomplished by the agent group. Initially, the agents do not have accurate
knowledge about all the tasks and the situation may change. When the agent is
heading for the target location, its capabilities can be found changed since the
situation is different.

In order to investigate the capability of adapting to the dynamics and uncer-
tainties, we compare our approach (dynamic approach) with traditional static
assignment policy (static approach), which initially assigns the optimal policy
to each agent offline. Since the agents are initialized with identical capabilities,
0-1 Integer Programming could be used to find the initial optimal policy.

KK KKK KKK KK KKK KKK KK HH KKK KKK
1004 NEEEE D -u
: — Upper bound
‘ ~=- Dynamic approach
80+ ‘ | 4 Static approach
3 [ EEEEE T
B AAAAAAA |
'E 60
=
=3 [EEEEEE ]
= |
S 404
- : [EREEEE ]
AAAAAAA
E-E-E-E-1
20+
AAAAAAA
0 . . . . . AMpAAAMpAAAA,
0 5 10 15 20 25 30 35 40

Time step

Fig. 1. The experimental results of 20 robots to carry out 20 tasks

To explore the performance of our approach, we initialized 20 agents to car-
ry out 20 tasks with different priorities, and compared our approach with static
approach and the upper bound. During this experiment, 5 tasks change their
resource requirement at different time. Thus, when the agents approach their
target locations, they will find their capabilities changed. According to the ex-
perimental result in Figure 1, both the total priorities of dynamic approach and
static approach drop when there are unexpected disturbances. However, since
dynamic approach reasons from the observations and reassigns its task, there is
less performance loss in dynamic approach than in static approach.

In order to investigate the scalability, we vary the number of agents and
tasks as 20, 50, 100, and 200 in the experiment in Figure 2(a), and also conduct
the experiment with different numbers of disturbances as shown in Figure 2(b).
The performance is presented as the ratio of the obtained priorities to the up-
per bound. From Figure 2(a), when the numbers of agents and tasks scale up,
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(a) Results of different scales (b) Results of different number of distur-
bances

Fig. 2. The experimental results of different scales and disturbances

given number of disturbances can only influence a smaller part of tasks. Thus,
these disturbances have smaller influences on the team performance when the
team and tasks scale up. But dynamic approach always performs better than
static approach. When the number of disturbances increases as shown in Figure
2(b), more tasks are influenced and the team performance drops. Because of the
reassigning capabilities, dynamic approach still outperforms the static one.

5 Conclusion

In this paper, we presented a multi-agent decision algorithm for time critical
assignment without communication. In this context, each agent can only ob-
tain a partial observation of the team state and cannot communicate with each
other. To reason with partial observations, we built a POMDP model for each
agent and proposed heuristic approaches to estimate the state and reduce ac-
tion space. Our experiments show that our algorithm is feasible to dynamically
adjust to disturbances and can be applied in time critical assignment without
communication.
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