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Abstract. This chapter presents a technique for reducing energy con-
sumed by hybrid caches that have both SRAM and STT-RAM (Spin-
Transfer Torque RAM) in multi-core architecture. It is based on dy-
namic way partitioning of the SRAM cache as well as the STT-RAM
cache. Each core is allocated with a specific number of ways consisting
of SRAM ways and STT-RAM ways. Then a cache miss fills the corre-
sponding block in the SRAM or STT-RAM region based on an existing
technique called read-write aware region-based hybrid cache architecture.
Thus, when a store operation from a core causes an L2 cache miss (store
miss), the block is assigned to the SRAM cache. When a load operation
from a core causes an L2 cache miss (load miss) and thus causes a block
fill, the block is assigned to the STT-RAM cache. However, if all the al-
located ways are already placed in the SRAM, then the block fill is done
into the SRAM regardless of store or load miss. The partitioning decision
is updated periodically. We further improve our technique by adopting
the so called allocation switching technique to avoid too much unbalanced
use of SRAM or STT-RAM. Simulation results show that the proposed
technique improves the performance of the multi-core architecture and
significantly reduces energy consumption in the hybrid caches compared
to the state-of-the-art migration-based hybrid cache management.

Keywords: Spin-Transfer Torque RAM (STT-RAM), hybrid caches,
cache partitioning

1 Introduction

Non-volatile memories such as Spin-Transfer Torque RAM (STT-RAM) have
been researched as alternatives to SRAMs due to their low static power con-
sumption and high density. Among such memories, STT-RAM has a relatively
high endurance compared to other memories and thus it is regarded as the best
candidate for substituting SRAM used in last-level shared caches in modern chip
multi-processors. [2]

However, STT-RAM has asymmetric characteristics of read and write. Writ-
ing into STT-RAM consumes significantly larger energy and takes more time
than reading. Such characteristics can significantly increase energy consumption
and degrade performance of the system if the program running on the processor



cores need frequent writes into the shared cache. To mitigate the adverse effect of
the characteristics of STT-RAM, many methods are proposed [1, 3, 7, 9, 18, 17]
on hybrid caches, where a small SRAM cache is combined with a large STT-RAM
cache. In the hybrid caches, a block that is expected to be written frequently is
placed in the SRAM cache, which has much lower write overhead compared to
STT-RAM. So, in the hybrid cache approaches, where to place a block between
SRAM and STT-RAM is one of the most important issues in reducing energy
consumption and enhancing performance.

Fig.1. shows that block fill on a read miss is one major source of write op-
erations into a cache. So reducing the number of block fills is another method
of lowering dynamic energy consumption of hybrid caches. A cache partitioning
technique is developed to increase the performance of chip multi-processors by
dynamically partitioning ways of the cache such that the number of misses is
minimized and consequently the number of block fills is reduced. So the appli-
cation of cache partitioning has great potential of reducing the dynamic energy
consumption of the hybrid caches. However, conventional cache way partitioning
techniques cannot be applied to hybrid caches directly, because ways in the hy-
brid caches are separated into SRAM and STT-SRAM and thus ways assigned
to a core as a result of partitioning also should be divided into SRAM and STT-
RAM. Properly dividing the ways of a partition into the two caches and placing
a block into a more efficient cache are new challenging issues when applying a
partitioning technique to hybrid caches.
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Fig. 1. Breakdown of write-inducing events in the L2 cache.

This chapter proposes a technique that adopts the cache partitioning scheme
in a hybrid cache for reducing the energy consumption. We assume that the hy-
brid cache is a last-level shared cache in multi-core architecture. A conventional
partitioning technique called utility-based partitioning is used to determine the



sizes of the partitions, one for each core, such that the number of misses is min-
imized. To incorporate the technique into hybrid caches, the replacement policy
should be redesigned. When a store operation of a core causes a miss in the
shared cache, the corresponding new block is placed in SRAM. If all the allo-
cated ways in the SRAM are already in use, a victim is selected among them. In
the case of a load miss, the block is placed in STT-RAM if there is an unused
way among those allocated to the core. If all the allocated ways in the STT-
RAM are full, a victim block is selected. However, if all the ways allocated to
the core have already been assigned to SRAM, a victim is selected among these
blocks in SRAM. So, within a partition, the ratio between SRAM ways and STT-
RAM ways can be adjusted and the ratio can be adjusted differently for different
sets. Simulation results show that our techniques improve the performance of a
quad-core system by 4.9%, reduce the energy consumption of hybrid caches by
10.0%, and decrease the DRAM energy by 5.9% compared to the state-of-the-art
migration based hybrid cache management technique.

In the above scheme, it is possible that cache accesses are concentrated to
either SRAM or STT-RAM so that the partitioning decision does not fully apply
to hybrid caches. We resolve this situation by switching an allocation policy of
load and store miss with small constant probability. Thus, within the small
constant probability, the block allocation on a load miss is done as if it were
a store miss and vice versa. This switching technique, which we call allocation
switching technique, further improves the performance of a multi-core system
by 1.8% (6.7% in total), and reduces the energy consumption by 6.6% (16.6% in
total), and DRAM energy by 1.6% (7.5% in total).

This chapter is organized as follows. Section 2 explains the background of
STT-RAM technology, hybrid caches, and partitioning techniques. Section 3
describes the details of our proposed technique that exploits partitioning scheme
for hybrid caches. Section 4 shows the evaluation methodology and Section 5
discusses the results of evaluation. Section 6 summarizes the survey of the related
work and Section 7 concludes this chapter.

2 Background

2.1 STT-RAM Technology

Spin-Transfer Torque RAM (STT-RAM) is an emerging memory technology,
which uses a Magnetic Tunnel Junction (MTJ) as an information carrier. The
MTJ consists of two ferromagnetic layers and one tunnel barrier between them as
shown in Fig. 2. The reference layer has a fixed direction of magnetic flow and the
free layer can change its magnetic direction when a spin-polarized current flows
through the MTJ with intensity above a threshold. If the directions of the two
layers are in parallel, the MTJ has resistance lower than that of anti-parallel case.
Thus, by measuring the voltage difference across the MTJ with a small current
flow, the state of MTJ can be detected. Because of its non-volatility, STT-RAM
has a very low leakage current. For read operations, it requires energy and latency
comparable to SRAM, but in case of write operations, it consumes much higher



energy and takes much longer than SRAM. Other noticeable properties of STT-
RAM are its high endurance compared to other non-volatile memories such as
Phase Change RAM (PRAM) or Resistive RAM (ReRAM) and its high density
compared to SRAM.
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Fig. 2. Magnetic tunnel junction of STT-RAM.

2.2 Hybrid Approach for Last-Level Caches

Unlike other emerging non-volatile memories targeting off-chip storage, STT-
RAM is expected to replace SRAM used for current last-level caches (LLCs)
in chip multi-processors mainly due to its fast read latency close to that of
SRAM and high endurance. But its high overhead of write operation obstructs
the use of pure STT-RAM LLCs. To mitigate the shortcoming, there have been
researches on hybrid caches that combine a small sized SRAM cache with a
large sized STT-RAM cache, which lowers the write overhead of STT-RAM
significantly. These two different caches are usually combined by a region-based
manner. The two memories are placed at a same level of cache hierarchy and
share tags of the caches. Ways are divided into the SRAM and the STT-RAM
region and consequently, block placement becomes an important issue. it will be
more efficient to place blocks that will be frequently written in SRAM and place
others in STT-RAM.

One of the state-of-the-art techniques is the read-write aware hybrid cache
architecture [17], in which a block fill caused by a store miss is made to a write-
efficient SRAM region and a block fill caused by a load miss is made to a read-
efficient STT-RAM region based on the assumption that a block filled by a store
miss is prone to frequent write and a block filled by a load miss is prone to
frequent read. If there are consecutive hits on a block in a way opposite to the
initial assumption, the block is migrated to the other region.



2.3 Cache Partitioning Technique

The utility-based cache partitioning technique is proposed to improve the perfor-
mance of chip multiprocessors by minimizing the number of misses on a shared
cache [12]. It has the same number of Utility-MONitors (UMONs) and CPU
cores. A UMON consists of an Auxiliary Tag Directory (ATD) and counters
for measuring the number of hits for each position of LRU stack by observing
the access of sampled sets in a cache. The algorithm periodically calculates the
partition size of each core to maximize the number of hits in the cache. Bits
are added to cache tags to identify the core that owns the block. The replace-
ment policy gradually adjusts the size (number of ways) of each partition to
the calculated size. The partitioning technique is especially efficient when cache
insensitive (e.g., low hit rate) applications and cache sensitive ones are running
at the same time on a multi-core processor. It tends to restrict the cache usage
of the low hit-rate applications, while increasing the performance of other cache
sensitive ones.

3 Partitioning technique for hybrid caches

This section explains the details of our technique proposed in [6], which exploits
the partitioning technique to reduce the energy consumption of hybrid caches
in a multi-core processor. It also describes the extended work on the allocation
switching technique to mitigate too much concentration on SRAM or STT-RAM.

3.1 Motivation

Read access of the last-level shared cache comes from a load or store miss of
the upper level cache. In the case of store miss, a block written into the upper
level cache becomes dirty, and so it eventually causes a write-back to the shared
cache. Write access of the last-level cache can be classified into a write-back from
the upper-level cache and a block-fill on a read miss. A read-write aware hybrid
cache [17] utilizes the property of read access. If a read miss on the shared cache
is caused by a store miss of the upper level cache (store miss), the new block is
placed in SRAM so that a write-back to that block occurs in the write-efficient
region. In case of a read miss caused by a load miss of the upper level cache (load
miss), the block is placed in STT-RAM where read operations are efficient. If
the decision is wrong, migration from one cache to the other occurs to remedy
the situation. However, this technique does not consider the block-fill caused by
a read miss in the shared cache and a write-back to a block (in the shared cache)
that was originally loaded by a load miss of the upper level cache.

We propose a technique for hybrid caches that handles these cases by ex-
ploiting the advantage of a dynamic cache partitioning technique. The dynamic
partitioning scheme adjusts the sizes of partitions such that the total number
of misses in the shared cache is minimized. Thus it helps reduce the number of
block-fills caused by read misses. In case that the number of SRAM ways used



by a core is already greater than1 or equal to that allocated to the core, a new
block loaded into the LLC due to a miss is placed in the SRAM even if the miss
is a load miss. The rationale is that utilizing the already allocated SRAM ways
helps reducing energy and latency since subsequent write-backs to the block can
be done in SRAM.

3.2 Architecture

Fig. 3 shows a structure to implement our technique. Basically, it combines a
cache partitioning architecture with hybrid caches. For a dynamic cache parti-
tioning technique, it has a set of UMONs that sample cache accesses to desig-
nated sets of the cache and count the number of hits on each position of an LRU
stack. It periodically calculates the partition size of the cache for each of the
multiple cores such that the total number of misses in the cache is minimized. It
is done by using the values of hit counters collected by the UMONs during the
previous period. In the cache tags, bits are added per block to identify the core
that owns the block.

The last-level shared cache consists of SRAM and STT-RAM. Thus the data
array is a hybrid of the two memories, but the tags are made of SRAM only.
Ways of a set are divided unevenly; SRAM contains a smaller number of ways
and STT-RAM covers the rest. When a new block needs to be placed in hybrid
caches, the result of the partitioning technique is used to decide the type of
caches for allocation and select a victim block in the resulting type of cache as
explained in the following section.

For simplicity, we assume that an independent application runs on each core
in a multi-core architecture, so a UMON is attached to each core. However, the
technique can also be applied in a per-application manner. In that case, the
UMONs are required as many times as the number of applications running on
the architecture.

3.3 Replacement Policy

To maximize the effect of applying a partitioning technique to hybrid caches,
where to insert a new block should be carefully decided. If a core performs a store
operation and eventually causes a miss in the shared cache, SRAM in the shared
cache is selected as a location to place a new block because the block allocated
in the upper level cache will become dirty, and thus there will be a write-back
into the LLC. The victim selection policy within the SRAM is changed from
the traditional LRU policy to a more complicated one that involves partitioning
decision.

Let us define several notations as follows.

1 Since we perform dynamic partitioning, the number of cache ways allocated to a core
can be reduced after repartitioning. Thus NS(i, j) can temporarily exceed NUT (i)
set by the new partitioning. The excess ways can be claimed later by other cores
and thus NS(i, j) will be reduced to the new value of NUT (i).
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Fig. 3. Structure of hybrid cache partitioning.

– NS(i, j): the number of SRAM blocks currently in use by core i in set j.

– NM (i, j): the number of STT-RAM blocks currently in use by core i in set j.

– NUT (i): the total number of ways allocated to core i by the partitioning.

– NUM (i, j) = NUT (i) - NS(i, j): the maximum number of ways that can be
allocated to core i in set j of STT-RAM.

If NS(i, j) ≥ NUT (i), then the LRU among these blocks is chosen as a victim.
If NS(i, j) < NUT (i), the LRU among all blocks in SRAM is selected as a victim.
This modification is to better utilize SRAM ways which is relatively smaller than
STT-RAM ways.

If a miss in the shared cache is caused by a load miss in the upper level
cache, the new block can be placed either in SRAM or in STT-RAM. If NS(i, j)
≥ NUT (i), the LRU among them is chosen as a victim. This decision procedure is
exactly the same as that of the store miss case. It allows using already allocated
SRAM ways and avoids unnecessary overhead of allocating a new way in STT-
RAM. And by placing the block into the SRAM, the block-fill due to the read
miss is done in the write-efficient region, reducing the dynamic energy of caches
without performance degradation of multi-core processors.

If NS(i, j) < NUT (i), the new block is placed in STT-RAM. The total number
of blocks in a set of both caches is maintained not to exceed NUT (i), and thus
NM (i, j) is maintained not to exceed NUM (i, j). Therefore, NM (i, j) is adjusted
dynamically according to the change of NS(i, j) and/or NT (i). For example, if
NM (i, j) becomes larger than NUM (i, j) due to a new partitioning, the LRU



among the STT-RAM blocks owned by core i is selected to be replaced by a
new block of another core. If NM (i, j) < NUM (i, j), the LRU of blocks owned by
other cores is chosen as a victim. Contrary to the utility-based partitioning, our
approach allows a zero value for NUM (i, j), and thus we allow to select the LRU
of blocks allocated by other cores in the STT-RAM is chosen as a victim when
there is no existing block in the STT-RAM owned by the core that requests the
new block.

In this replacement policy, new blocks introduced by store misses can be
placed only in SRAM, but new blocks introduced by load misses can be placed
either in SRAM or in STT-RAM so that the utilization of the SRAM region
can be maintained relatively high. The ratio between NS(i, j) and NM (i, j) can
be adjusted freely under the constraint given by NS(i, j) + NM (i, j) ≤ NUT (i),
which results in a decrease of the total misses in hybrid caches.

3.4 Allocation switching technique

In the above replacement policy, it is possible that too many block-fills are guided
into either SRAM or STT-RAM, in which case, the partitioning decision cannot
be properly applied to hybrid caches. For example, if there is an application
that has a large number of load misses and no store miss, then a cache block
of this application cannot be allocated to the SRAM. Similarly, if there is an
application that has plenty of store misses and rare load misses, then a cache
block of this application cannot be allocated to STT-RAM. If such applications
are cache-size sensitive, then the partitioning decision of the applications cannot
be applied to hybrid caches properly.

To resolve this situation, we devise an allocation switching technique where
a block allocation on a load miss is done as if there were a store miss and vice
versa within a small constant probability. By applying this switching technique,
the concentration on either SRAM or STT-RAM can be relaxed.

The allocation switching technique works as follows. Consider the case where
most of the misses occurring during the execution of an application are load
misses. Then the application will put most of its blocks in the STT-RAM region
even if some extra ways allocated to the application (or core) are in SRAM,
making the STT-RAM crowded. It may not be able to move the extra ways
in the SRAM to the STT-RAM side since other cores are already taking the
STT-RAM space. In that case, it will be beneficial to place new blocks into the
extra SRAM ways. Thus, sometimes on a load miss, placing the corresponding
block into the SRAM region instead of the STT-RAM region helps alleviating
the congestion in the STT-RAM region.

We set the probability of such allocation switching to a small constant value
obtained empirically. But there is still room for further research on adjusting
the probability value dynamically to achieve even higher performance because
the characteristics of applications are very different.



4 Evaluation methodology

This section describes the experimental setup and methodology used to evaluate
our hybrid cache partitioning technique.

4.1 Simulator

We evaluate our cache partitioning technique using a cycle accurate simulator
MARSSx86 [11]. For off-chip memory model, we use DRAMSim2 simulator [13],
which is integrated into MARSSx86. The details of our system configuration
are listed in Table 1. The system has a 3.0 GHz, quad-core out-of-order pro-
cessor based on x86 ISA. The cache hierarchy is configured with 32KB, 4-way
set-associative L1 instruction/data caches and 4MB, 16-way set-associative L2
shared caches. We implement the shared L2 hybrid cache with a bank contention
model. The L2 cache is a 16-way set associative cache consisting of 4 ways of
SRAM and 12 ways of STT-RAM with asymmetric read/write latency. The off-
chip DRAM is configured as a DDR3-1333 in which CL, tRCD, tRP timings are
10, 10, and 10, respectively.

The parameters of the hybrid cache model are calculated using NVSim [4]
and CACTI 6.0 [10] under 45 nm technology. A tag of 16-way 4MB SRAM is
borrowed for hybrid caches. 4-way 1MB SRAM and 4-way 1MB STT-RAM is
configured for the data array. By combining one SRAM bank and three banks
of STT-RAM, 16-way 4-bank data array is designed for the hybrid cache. Table
2 lists the energy consumption of the L2 cache.

Table 1. System configuration

Parameters Configuration

Processor 3.0 GHz, 4-core CMP, 4-wide, out-of-order, 128-entry ROB, 48-entry
LSQ.

L1 Caches I-cache: 32kB, 64B lines, 4-way, 2-cycle latency
D-cache: 32kB, 64B lines, 4-way, 2-cycle latency

L2 Cache Unified, 4MB, 64B lines, 16-way (4-way SRAM and 12-way STT-RAM),
10 cycle latency for SRAM, 10 cycle (read) and 38 cycle (write) latency
for STT-RAM

DRAM DDR3-1333 (10-10-10), 1 channel, 8 banks, 32-entry queue, open-page
policy, FR-FCFS policy

4.2 Workloads

We use SPEC 2006 [5] with reference input as workloads for the evaluation. For
more precise analysis, the simulation method is changed from the work in [6]



Table 2. Energy Consumption of the L2 Cache

Read Energy Write Energy Static Power

SRAM Region 0.217 nJ 0.217 nJ 14.682 mW
STT-RAM Region 0.097 nJ 0.670 nJ 3.438 mW

where 10 billion instructions were fast-forwarded per core to skip the initializa-
tion phase of code and multi-core workloads were mixed with high and low-MPKI
applications. In the simulation of this chapter, we annotate a synchronization
point in the program source code after some initialization code part. As a result,
a multi-core simulation always starts at the same points of benchmarks in the
MARSSx86 simulator. Because of this modification, the simulation region of a
benchmark can be different from that in [6].

Workloads have also been selected differently; in this chapter, cache sensitiv-
ity of benchmarks is considered. We analyze the cache sensitivity of benchmarks
by simulating benchmarks on a 16-way 4MB L2 cache and on a 2-way 512kB L2
cache. If the number of L2 misses per kilo instructions (MPKI) of a benchmark
on the 16-way 4MB L2 cache is greater by more than 10% compared to that on
the 2-way 512kB L2 cache, then we classify this benchmark as cache-sensitive.
Otherwise, we classify it as cache-insensitive. The benchmarks are listed in Table
3.

Now we randomly assemble 20 quad-core workloads considering cache sensi-
tivity. Workloads are categorized into five groups, four workloads in each group.
For each quad-core workload, we mix four benchmarks. There is no cache-
insensitive benchmark in the workloads in group1, one in each workload in
group2, two in group3, three in group4, and group5 has only cache-insensitive
benchmarks. Workloads are listed in Table 4.

After 5 million cycles cache warm up, 2 billion instructions are simulated for
multi-programmed workloads on quad-core processors. For the partitioning tech-
nique, we use a 5 million cycle period for monitoring and partitioning decisions
as was done in [12]. We use a 2% probability value for an allocation switching
technique which is obtained empirically (the performance is not sensitive to the
value around 2%).

5 Results

This section discusses the results of simulation. We compared our techniques with
and without the allocation switching technique to the state-of-the-art migration-
based hybrid cache management technique, called read-write aware hybrid cache
architecture (RWHCA) [17].

5.1 Performance

A weighted speedup is used as a performance metric, which is the sum of per-
application speedups in IPC compared to the baseline (RWHCA running a single



Table 3. Benchmark analysis of SPEC CPU2006

L2 MPKI -Diff (%) Type

Benchmark 512kB 4MB

quantum 24.7 24.7 0.0

milc 24.3 24.3 0.1

sjeng 56.2 56.1 0.1 Insensitive

gobmk 11.9 11.6 3.0

lbm 35.2 33.5 4.8

namd 0.8 0.8 7.0

soplex 31.9 27.2 14.9

mcf 78.8 66.3 15.9

h264 0.3 0.1 65.6

gromacs 2.1 0.5 73.3

hmm 2.5 0.5 78.7

deal2 0.3 0.1 80.3 Sensitive

perl 0.5 0.1 80.8

astar 15.8 2.3 85.5

povray 1.2 0.2 85.8

gcc 1.6 0.2 87.5

bzip 4.7 0.1 97.4

omnetpp 102.3 2.6 97.5



Table 4. Workloads from SPEC CPU2006

Set Workloads

1 soplex perl gcc omnetpp

group1 2 soplex povray bzip hmm

3 gcc h264 hmm soplex

4 perl povray h264 hmm

5 bzip omnetpp hmm quantum

group2 6 omnetpp gromacs soplex gobmk

7 soplex mcf gromacs quantum

8 milc monetpp h264 deal2

9 omnetpp quantum soplex sjeng

group3 10 omnetpp h264 namd quantum

11 sjeng milc deal2 bzip

12 quantum sjeng gromacs bzip

13 milc omnetpp sjeng quantum

group4 14 omnetpp quantum sjeng gobmk

15 quantum milc lbm omnetpp

16 soplex quantum milc gobmk

17 milc namd gobmk lbm

group5 18 lbm milc sjeng gobmk

19 quantum sjeng gobmk milc

20 sjeng quantum gobmk lbm



application is used as the baseline). Fig. 4 shows the weighted speedups normal-
ized to those of RWHCA (the weighted speedups of RWHCA are also obtained
by using the same baseline). The left bar in each workload set represents the
speedup of the proposed approach without the switching technique and the right
bar represents that with the switching technique.

In the hybrid caches partitioning technique without switching, the perfor-
mance improvement is 4.9% in geometric mean over the total of 20 workloads.
For the workloads in group3, where two cache-sensitive and two cache-insensitive
benchmarks are mixed, the performance improvement is 8.7% on average; the
useless preemption of cache ways by cache-insensitive benchmarks can degrade
the performance of the cache-sensitive applications, and thus the partitioning
technique can be very effective in this group. In the case of group5 where four
cache-insensitive benchmarks are mixed, the partitioning scheme can improve
cache utilization by assigning an optimal number of ways to each application,
but the improvement is not as significant as group3.

The hybrid caches partitioning technique with allocation switching improves
the performance by 6.7% in geometric mean over the total of 20 workloads. Some
workloads show drastic performance improvement such as set1 and set10. These
improvements come from some benchmarks that have little store access. So the
SRAM is underutilized in these workloads. If both SRAM and STT-RAM caches
are fully utilized, then an allocation switching scheme can harm the performance
improvement of cache partitioning as shown in set5, but its degradation is not
significant.
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Fig. 4. Normalized weighted speedup.



5.2 Miss Rates

Fig. 5 reports the difference in L2 miss rates between the RWHCA and our
techniques with and without allocation switching. Left bars are the results of the
proposed technique without allocation switching, and right bars are the results
with switching. The former case reduces the miss rate by 4.8% on average for the
20 workloads. The miss rate increases for set3, but the difference is ignorable.
Among the five groups, group3 shows the highest reduction of miss rates (9.2%
on average), which is similar to the trend of performance.

In the technique with switching, the miss rate reduction is 6.7% on average
compared to the reference technique, which is 1.8% more reduction compared to
the technique without switching. The miss rate is reduced by 13.3% for group2
compared to the reference technique.
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Fig. 5. Difference in miss rates.

5.3 Cache Energy Consumption

Fig. 6 compares the L2 energy consumption of our techniques with and without
a switching scheme against the reference. In the technique without switching, the
reduction of energy consumption is 10.0% on average for a total 20 of workloads
and 11.7%, 10.4%, 11.0%, 12.0%, and 4.4%, respectively, for group1 to group 5.
Workloads in group5 show little energy reduction compared to those of RWHCA
because the partitioning technique is not efficient in these workloads.

The technique with switching reduces energy consumption by 16.6% on av-
erage over the total of 20 workloads, which corresponds to 6.6% more reduction
compared to the technique without switching. All groups except group5 show
more reduction of energy consumption. Compared to the reference technique,
energy reductions by groups are 12.1%, 22.3%, 22.9%, 20.7%, and 3.2%.
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Fig. 6. Energy consumption of RWHCA (left), our architecture without allocation
switching (middle), and our architecture with allocation switching (right).

5.4 DRAM Energy Consumption

Fig. 7 shows the DRAM energy consumption during the simulation. The results
of our techniques with and without the switching scheme are normalized to
that of RWHCA. In the technique without switching, the decrease of energy
consumption is 5.9% on average for the 20 workloads. Group3 shows the highest
energy saving of 9.6% on average and group5 shows the lowest of 3.4%.

The technique with allocation switching decreases DRAM energy consump-
tion by 7.5% on average over the 20 workloads, which corresponds to 1.6% more
reduction compared to the technique without the switching scheme.

5.5 Area Overhead

An area overhead of our technique comes from a partitioning scheme. For cache
usage monitoring, every 32nd cache set is sampled, so one UMON has 16 of
4B counters and an ATD of 128 sets for a 4MB 16-way set-associative cache.
One ATD consists of 16 entries, each has one valid bit, 24-bit tag and 4-bit
LRU information. So the total overhead of one UMON is 7.3KB and the total
overhead of cache usage monitoring for a quad-core processor is 29.25KB. In
a tag of the cache, 2-bit is added to identify the core that owns each block,
the sum of the overheads for the cache is 16KB. So the total overhead of the
partitioning scheme for 4MB 16-way set-associative cache is 45.25KB, which is
negligible compared to the size of the last-level cache.
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Fig. 7. Normalized energy consumption of DRAM.

6 Related work

6.1 Reducing Write Overhead of STT-RAM

A write intensity predictor [1] is proposed to find a write intensive block and
allocate the block to SRAM. This approach achieves high energy reduction of
hybrid caches, but does not consider cache partitioning, and thus it may in-
crease miss rates of the cache in some workloads, worsening the DRAM energy
efficiency. Obstruction-aware cache management technique (OAP) [16] increases
the efficiency of a last-level STT-RAM cache by bypassing some application that
has no merits of using the last-level cache. The technique collects information
on latency, number of accesses, and miss rates of the applications in a period
and exploits the data for the detection of bypassing applications. But the target
of this technique is a pure STT-RAM cache, so it can not be applied directly to
hybrid caches.

A lot of researches [3, 9, 8, 14, 18, 17] utilize a migration technique for adapt-
ing block placements, but in our proposed partitioning technique, a conventional
migration scheme [17] can reduce the energy efficiency of hybrid caches by break-
ing the partitioning decision.

6.2 Cache Partitioning for Energy Saving

Cooperative partitioning technique [15] is proposed to save energy consumption
of a shared cache. In this technique, a partition is aligned physically and unused
ways are disabled to reduce static power consumption. But this technique does
not consider hybrid caches, and thus the block placement problem should be
solved to apply this technique to hybrid caches. Writeback-aware partitioning
[19] assumes an off-chip memory of phase change RAM (PRAM) and reduces



the number of write operations in PRAM by dynamic partitioning of a shared
cache to decrease the energy consumption of the write-inefficient memory.

7 Conclusion

We address the potential of the dynamic cache partitioning technique for re-
ducing energy consumption of hybrid caches. We propose an energy-efficient
partitioning technique for hybrid caches in which the number of blocks installed
by a core is adaptively balanced between SRAM and STT-RAM while satisfying
a partitioning decision. If a miss is caused by a store miss in the upper-level
cache, the corresponding block is placed in SRAM. If the miss is originated
from a load miss in the upper-level cache, a new block can be placed in either
SRAM or STT-RAM according to the number of blocks installed by the core
in SRAM. In addition, we apply the allocation switching technique to avoid
too much unbalanced use of SRAM or STT-RAM. The simulation results show
that our partitioning technique improves the performance of the multi-core sys-
tem by 6.7% on average, saves the energy consumption of the hybrid cache by
16.6%, and reduces the DRAM energy by 7.5% compared to the state-of-the-art
migration-based hybrid cache management technique.
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