H. Gu, W. Wang, Y. Hu, L. Qiao, and F. Zhan, Study on the Intelligent Transport System and Social Economic Development, CICTP 2012, pp.845-855, 2012.
DOI : 10.1061/9780784412442.087

M. E. Ben-akiva, S. Gao, Z. Wei, and Y. Wen, A dynamic traffic assignment model for highly congested urban networks, Transportation Research Part C: Emerging Technologies, vol.24, pp.62-82, 2012.
DOI : 10.1016/j.trc.2012.02.006

A. Hamilton, B. Waterson, T. Cherrett, A. Robinson, and I. Snell, The evolution of urban traffic control: changing policy and technology, Transportation Planning and Technology, vol.13, issue.4, pp.24-43, 2013.
DOI : 10.1016/S0927-0507(06)14011-6

C. F. Daganzo, A behavioral theory of multi-lane traffic flow. Part II: Merges and the onset of congestion, Transportation Research Part B: Methodological, vol.36, issue.2, pp.159-169, 2002.
DOI : 10.1016/S0191-2615(00)00043-6

S. Kamal, J. Imura, T. Hayakawa, A. Ohata, and K. Aihara, Smart Driving of a Vehicle Using Model Predictive Control for Improving Traffic Flow, IEEE Transactions on Intelligent Transportation Systems, vol.15, issue.2, pp.878-888, 2014.
DOI : 10.1109/TITS.2013.2292500

Y. A. Daraghmi, Y. Chih-wei, and C. Tsun-chieh, Negative Binomial Additive Models for Short-Term Traffic Flow Forecasting in Urban Areas, IEEE Transactions on Intelligent Transportation Systems, vol.15, issue.2, pp.784-793, 2014.
DOI : 10.1109/TITS.2013.2287512

H. Lieu, N. Gartner, C. Messer, and A. Rathi, Traffic flow theory, Public Roads, vol.62, pp.45-47, 1999.

H. C. Lieu, Traffic estimation and prediction system, pp.738-6826, 2000.

E. I. Vlahogianni, J. C. Golias, and M. G. Karlaftis, Short?term traffic forecasting: Overview of objectives and methods Transport reviewsA hybrid short-term traffic flow forecasting method based on spectral analysis and statistical volatility model, Transportation Research Part C: Emerging Technologies, vol.24, issue.43, pp.533-557, 2004.

S. Wu, Z. Yang, X. Zhu, and B. Yu, Improved k-nn for Short-Term Traffic Forecasting Using Temporal and Spatial Information, Journal of Transportation Engineering, vol.140, issue.7, 2014.
DOI : 10.1061/(ASCE)TE.1943-5436.0000672

X. Zhang, E. Onieva, A. Perallos, E. Osaba, and V. C. Lee, Hierarchical fuzzy rule-based system optimized with genetic algorithms for short term traffic congestion prediction, Transportation Research Part C: Emerging Technologies, vol.43, pp.127-142, 2014.
DOI : 10.1016/j.trc.2014.02.013

K. Y. Chan, T. Dillon, E. Chang, and J. Singh, Prediction of Short-Term Traffic Variables Using Intelligent Swarm-Based Neural Networks, IEEE Transactions on Control Systems Technology, vol.21, issue.1, pp.263-274, 2013.
DOI : 10.1109/TCST.2011.2180386

C. Chen, J. Hu, Q. Meng, and Y. Zhang, Short-time traffic flow prediction with ARIMA-GARCH modelKnowledge-discounted event detection in sports video, Intelligent Vehicles Symposium (IV) Part A: Systems and Humans, pp.607-612, 2010.

J. Nahar, Y. P. Chen, S. A. Chan, S. Khadem, T. S. Dillon et al., Selection of significant on-road sensor data for short-term traffic flow forecasting using the Taguchi methodTesting and comparing neural network and statistical approaches for predicting transportation time seriesA comparison of the performance of artificial neural networks and support vector machines for the prediction of traffic speedNeural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and Levenberg?Marquardt algorithm, Intelligent Vehicles Symposium 21. S. A. DeLurgio, Forecasting principles and applications, 1998. 22. N. Wanas, G. Auda, M. S. Kamel, and F. Karray, "On the optimal number of hidden nodes in a neural network IEEE Canadian Conference on Electrical and Computer Engineering, pp.17-25, 1998.

T. J. Hastie, R. J. Tibshirani, S. N. Wood, Y. Goude, and S. Shaw, Generalized additive models: an introduction with RGeneralized additive models for large data setsModeling and forecasting vehicular traffic flow as a seasonal ARIMA process: Theoretical basis and empirical results, 27. A. Pankratz, Forecasting with univariate Box-Jenkins models: Concepts and cases, pp.139-155, 1990.

L. Liu, Identification of seasonal arima models using a filtering method, Communications in Statistics - Theory and Methods, vol.18, issue.6, pp.2279-2288, 1989.
DOI : 10.1093/biomet/72.2.299