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Abstract

PAC-Bayesian learning bounds are of the utmost interest to the learning
community. Their role is to connect the generalization ability of an aggre-
gation distribution ρ to its empirical risk and to its Kullback-Leibler diver-
gence with respect to some prior distribution π. Unfortunately, most of the
available bounds typically rely on heavy assumptions such as boundedness
and independence of the observations. This paper aims at relaxing these
constraints and provides PAC-Bayesian learning bounds that hold for depen-
dent, heavy-tailed observations (hereafter referred to as hostile data). In
these bounds the Kullack-Leibler divergence is replaced with a general ver-
sion of Csiszár’s f -divergence. We prove a general PAC-Bayesian bound, and
show how to use it in various hostile settings.

1 Introduction
Learning theory can be traced back to the late 60s and has attracted a great
attention since. We refer to the monographs Devroye et al. (1996) and Vapnik
(2000) for a survey. Most of the literature addresses the simplified case of i.i.d
observations coupled with bounded loss functions. Many bounds on the excess
risk holding with large probability were provided - these bounds are refered to as
PAC learning bounds since Valiant (1984).1

In the late 90s, the PAC-Bayesian approach was pioneered by Shawe-Taylor and
Williamson (1997) and McAllester (1998, 1999). It consists of producing PAC
bounds for a specific class of Bayesian-flavored estimators. Similar to classical
PAC results, most PAC-Bayesian bounds have been obtained with bounded loss
functions (see Catoni, 2007, for some of the most accurate results). Note that
Catoni (2004) provides bounds for unbouded loss, but still under very strong ex-
ponential moment assumptions. Different types of PAC-Bayesian bounds were
proved in very various models Seeger (2002); Langford and Shawe-Taylor (2002);
Seldin and Tishby (2010); Seldin et al. (2012, 2011); Guedj and Alquier (2013);
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Bégin et al. (2016); Alquier et al. (2016); Oneto et al. (2016) but the bounded-
ness or exponential moment assumptions were essentially not improved in these
papers.

The relaxation of the exponential moment assumption is however a theoretical
challenge, with huge practical implications: in many applications of regression,
there is no reason to believe that the noise is bounded or sub-exponential. Actu-
ally, the belief that the noise is sub-exponential leads to an overconfidence in the
prediction that is actually very harmful in practice, see for example the discus-
sion in Taleb (2007) on finance. Still, thanks to the aforementionned works, the
road to obtain PAC bounds for bounded observations has now become so nice and
comfortable that it might refrain inclination to explore different settings.

Regarding PAC bounds for heavy-tailed random variables, let us mention three
recent approaches.

• Using the so-called small-ball property, Mendelson and several co-authors
developed in a striking series of papers tools to study the Empirical Risk
Minimizer (ERM) and penalized variants without an exponential moment
assumption: we refer to their most recent works (Mendelson, 2015; Lecué
and Mendelson, 2016). Under a quite similar assumption, Grünwald and
Mehta (2016) derived PAC-Bayesian learning bounds (“empirical witness
of badness” assumption). Other assumptions were introduced in order to
derive fast rates for unbounded losses, like the multiscale Bernstein as-
sumption Dinh et al. (2016).

• Another idea consists in using robust loss functions. This leads to bet-
ter confidence bounds than the previous approach, but at the price of re-
placing the ERM by a more complex estimator, usually building on PAC-
Bayesian approaches (Audibert and Catoni, 2011; Catoni, 2012; Oliveira,
2013; Giulini, 2015; Catoni, 2016).

• Finally, Devroye et al. (2015), using median-of-means, provide bounds in
probability for the estimation of the mean without exponential moment
assumption. It is possible to extend this technique to more general learning
problems Minsker (2015); Hsu and Sabato (2016); Lugosi and Mendelson
(2016); Guillaume and Matthieu (2017); Lugosi and Mendelson (2017).

Leaving the well-marked path of bounded variables led the authors to sophis-
ticated and technical mathematics, but in the end they obtained rates of con-
vergence similar to the ones in bounded cases: this is highly valuable for the
statistical and machine learning community.

Regarding dependent observations, like time series or random fields, PAC and/or
PAC-Bayesian bounds were provided in various settings (Modha and Masry, 1998;
Steinwart and Christmann, 2009; Mohri and Rostamizadeh, 2010; Ralaivola et al.,
2010; Seldin et al., 2012; Alquier and Wintenberger, 2012; Alquier and Li, 2012;
Agarwal and Duchi, 2013; Alquier et al., 2013; Kuznetsov and Mohri, 2014; Gi-
raud et al., 2015; Zimin and Lampert, 2015; London et al., 2016). However these
works massively relied on concentration inequalities for or limit theorems for
time series Yu (1994); Doukhan (1994); Rio (2000); Kontorovich et al. (2008), for
which boundedness or exponential moments are crucial.
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This paper shows that a proof scheme of PAC-Bayesian bounds proposed by Bé-
gin et al. (2016) can be extended to a very general setting, without independence
nor exponential moments assumptions. We would like to stress that this ap-
proach is not comparable to the aforementionned work, and in particular it is
technically far less sophisticated. However, while it leads to sub-optimal rates in
many cases, it allows to derive PAC-Bayesian bounds in settings where no PAC
learning bounds were available before: for example heavy-tailed time series.

Given the simplicity of the main result, we state it in the remainder of this sec-
tion. The other sections are devoted to refinements and applications. Let ` de-
note a generic loss function. The observations are denoted (X1,Y1), . . . , (Xn,Yn).
Note that we do not require the observations to be independent, nor indentically
distributed. We assume that a family of predictors ( fθ,θ ∈ Θ) is chosen. Let
`i(θ)= `[ fθ(X i),Yi], and define the (empirical) risk as

rn(θ)= 1
n

n∑
i=1

`i(θ),

R(θ)= E[rn(θ)
]
.

Based on the observations, the objective is to build procedures with a small risk
R. While PAC bounds focus on estimators θ̂n that are obtained as functionals
of the sample, the PAC-Bayesian approach studies an aggregation distribution
ρ̂n that depends on the sample. In this case, the objective is to choose ρ̂n such
that

∫
R(θ)ρ̂n(dθ) is small. In order to do so, a crucial point is to choose a refer-

ence probability measure π, often referred to as the prior. In Catoni (2007), the
role of π is discussed in depth: rather than reflecting a prior knowledge on the
parameter space Θ, it should serve as a tool to measure the complexity of Θ.

Let us now introduce the two following key quantities.

Definition 1. For any function g, let

Mg,n =
∫
E
[
g (|rn(θ)−R(θ)|)]π(dθ).

Definition 2. Let f be a convex function with f (1)= 0. The f -divergence between
two distributions ρ and π is defined by

D f (ρ,π)=
∫

f
(

dρ
dπ

)
dπ

when ρ is absolutely continous with respect to π, and D f (ρ,π)=+∞ otherwise.

Csiszár introduced f -divergences in the 60s, see his recent monograph Csiszár
and Shields (2004, Chapter 4) for a survey.

We use the following notation for recurring functions: φp(x) = xp.Consequently
Mφp ,n = ∫

E (|rn(θ)−R(θ)|p)π(dθ). Thus Mφp ,n is a moment of order p. As for di-
vergences, we denote the Kullback-Leibler divergence by K(ρ,π)= D f (ρ,π) when
f (x)= x log(x), and the chi-square divergence χ2(ρ,π)= Dφ2−1(ρ,π).

Theorem 1. Fix p > 1, put q = p
p−1 and fix δ ∈ (0,1). With probability at least

1−δ we have for any aggregation distribution ρ∣∣∣∣∫ Rdρ−
∫

rndρ
∣∣∣∣≤ (

Mφq ,n

δ

) 1
q (

Dφp−1(ρ,π)+1
) 1

p . (1)
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The main message of Theorem 1 is that we can compare
∫

rndρ (observable) to∫
Rdρ (unknown, the objective) in terms of two quantities: the moment Mφq ,n

(which depends on the distribution of the data) and the divergence Dφp−1(ρ,π)
(which will reveal itself as a measure of the complexity of the set Θ). The most
important practical consequence is that we have, with probability at least 1−δ,
for any probability measure ρ,∫

Rdρ ≤
∫

rndρ+
(
Mφq ,n

δ

) 1
q (

Dφp−1(ρ,π)+1
) 1

p . (2)

This is a strong incitement to define our aggregation distribution ρ̂n as the min-
imizer of the right-hand side of (2). The core of the paper will discuss in details
this strategy and other consequences of Theorem 1.

Proof of Theorem 1. Introduce ∆n(θ) := |rn(θ)−R(θ)|. We follow a scheme of proof
introduced by Bégin et al. (2016) in the bounded setting. We adapt the proof to
the general case:∣∣∣∣∫ Rdρ−

∫
rndρ

∣∣∣∣≤ ∫
∆ndρ =

∫
∆n

dρ
dπ

dπ

≤
(∫
∆

q
ndπ

) 1
q
(∫ (

dρ
dπ

)p
dπ

) 1
p

(Hölder ineq.)

≤
(
E
∫
∆

q
ndπ
δ

) 1
q (∫ (

dρ
dπ

)p
dπ

) 1
p

(Markov ineq., w. prob. 1−δ)

=
(
Mφq ,n

δ

) 1
q (

Dφp−1(ρ,π)+1
) 1

p .

In Section 2 we discuss the divergence term Dφp−1(ρ,π). In particular, we derive
an explicit bound on this term when ρ is chosen in order to concentrate around
the ERM (empirical risk minimizer) θ̂ERM = argminθ∈Θ rn(θ). This is meant to
provide the reader some intuition on the order of magnitude of the divergence
term. In Section 3 we discuss how to control the moment Mφq ,n. We derive ex-
plicit bounds in various examples: bounded and unbounded losses, i.i.d and de-
pendent observations. The most important result of the section is a risk bound for
auto-regression with heavy-tailed time series, something new up to our knowl-
edge. In Section 4 we come back to the general case. We show that it is possible
to explicitely minimize the right-hand side in (2). We then show that Theorem 1
leads to powerful oracle inequalities in the various statistical settings discussed
above, exhibiting explicit rates of convergence.

2 Calculation of the divergence term
The aim of this section is to provide some hints on the order of magnitude of the
divergence term Dφp−1(ρ,π). We start with the example of a finite parameter
space Θ. The following proposition results from straightforward calculations.

Proposition 1. Assume that Card(Θ)= K <∞ and that π is uniform on Θ. Then

Dφp−1(ρ,π)+1= K p−1 ∑
θ∈Θ

ρ(θ)p.
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A special case of interest is when ρ = δθ̂ERM
, the Dirac mass concentrated on the

ERM. Then
Dφp−1(δθ̂ERM

,π)+1= K p−1.

Then (1) in Theorem 1 yields the following result.

Proposition 2. Fix p > 1, q = p
p−1 and δ ∈ (0,1). With probability at least 1−δ

we have

R(θ̂ERM)≤ inf
θ∈Θ

{
rn(θ)

}+K1− 1
p

(
Mφq ,n

δ

) 1
q

.

Remark that Dφp−1(ρ,π) seems to be related to the complexity K of the param-
eter space Θ. This intuition can be extended to an infinite parameter space, for
example using the empirical complexity parameter introduced in Catoni (2007).

Assumption 1. There exists d > 0 such that, for any γ> 0,

π
{
θ ∈Θ :

{
rn(θ)

}≤ inf
θ′∈Θ

rn(θ′)+γ
}
≥ γd .

In many examples, d corresponds to the ambient dimension (see Catoni (2007)
for a thorough discussion). In this case, a sensible choice for ρ, as suggested by
Catoni, is πγ(dθ) ∝ π(dθ)1

[
r(θ)− rn(θ̂ERM)≤ γ]

for γ small enough (in Section 4,
we derive the consequences of Assumption 1 for other aggregation distributions).
We have

Dφp−1(πγ,π)+1≤ γ−d(p−1)

and ∫
rn(θ)dπγ ≤ rn(θ̂ERM)+γ

so Theorem 1 leads to

∫
Rdπγ ≤ rn(θ̂ERM)+γ+γ− d

q

(
Mφq ,n

δ

) 1
q

.

An explicit optimization with respect to γ leads to the choice

γ=
(

d
q

Mφq ,n

δ

) 1
1+ d

q

and consequently to the following result.

Proposition 3. Fix p > 1, q = p
p−1 and δ ∈ (0,1). Under Assumption 1, with

probability at least 1−δ we have,

∫
Rdπγ ≤ inf

θ∈Θ

{
rn(θ)

}
+

(
Mφq ,n

δ

) 1
1+ d

q


(

d
q

) 1
1+ d

q +
(

d
q

) − d
q

1+ d
q

 .

So the bound is in O((Mφq ,n/δ)1/(1+d/q)). In order to understand the order of mag-
nitude of the bound, it is now crucial to understand the moment term Mφq ,n. This
is the object of the next section.
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3 Bounding the moments
In this section, we show how to control Mφq ,n depending on the assumptions on
the data.

3.1 The i.i.d setting
First, let us assume that the observations (X i,Yi) are independent and identi-
cally distributed. In general, when the observations are possibly heavy-tailed,
we recommend to use Theorem 1 with q ≤ 2 (which implies p ≥ 2).

Proposition 4. Assume that

s2 =
∫

Var[`1(θ)]π(dθ)<+∞

then

Mφq ,n ≤
(

s2

n

) q
2

.

As a conclusion for the case q ≤ 2≤ p, (1) in Theorem 1 becomes:∫
Rdρ ≤

∫
rndρ+

(
Dφp−1(ρ,π)+1

) 1
p

δ
1
q

√
s2

n
.

Without further assumptions, this bound can not be improved as a function of n
(as can be seen in the simplest case where card(Θ)= 1, by using the CLT).

Proof of Proposition 4.

Mφq ,n =
∫
E
(
|rn(θ)−E[rn(θ)]|2 q

2

)
π(dθ)

≤
(∫

E
(|rn(θ)−E[rn(θ)]|2)

π(dθ)
) q

2

≤
(∫

1
n

Var[`1(θ)]π(dθ)
) q

2 =
(

s2

n

) q
2

.

As an example, consider the regression setting with quadratic loss, where we use
linear predictors: X i ∈Rk, Θ=Rk and fθ(·)= 〈·,θ〉. Define a prior π on Θ such that

τ :=
∫

‖θ‖4π(dθ)<∞ (3)

and assume that
κ := 8[E(Y 4

i )+τE(‖X i‖4)]<∞. (4)

Then
`i(θ)= (Yi −〈θ, X i〉)2 ≤ 2

[
Y 2

i +‖θ‖2‖X i‖2]
and so

Var(`i(θ))≤ E(`i(θ)2)≤ 8E
[
Y 4

i +‖θ‖4‖X i‖4]
.

Finally,

s2 =
∫

Var(`i(θ))π(dθ)≤ κ<+∞.

We obtain the following corollary of (1) in Theorem 1 with p = q = 2.
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Corollary 1. Fix δ ∈ (0,1). Assume that π is chosen such that (3) holds, and
assume that (4) also holds. With probability at least 1−δ we have for any ρ

∫
Rdρ ≤

∫
rndρ+

√
κ[1+χ2(ρ,π)]

nδ
.

Note that a similar upper bound was proved in Honorio and Jaakkola (2014), yet
only in the case of the 0-1 loss (which is bounded). Also, note that the assumption
on the moments of order 4 is comparable to the one in Audibert and Catoni (2011)
and allow heavy-tailed distributions. Still, in our result, the dependence in δ is
less good than in Audibert and Catoni (2011). So, we end this subsection with
a study of the sub-Gaussian case (wich also includes the bounded case). In this
case, we can use any q ≥ 2 in Theorem 1. The larger q, the better will be the
dependence with respect to δ.

Definition 3. A random variable U is said to be sub-Gaussian with parameter
σ2 if for any λ> 0,

E
{
exp

[
λ(U −E(U))

]}≤ exp
[
λ2σ2

2

]
.

Proposition 5 (Theorem 2.1 page 25 in Boucheron et al. (2013)). When U is
sub-Gaussian with parameter σ2 then for any q ≥ 2,

E
[
(U −E(U))q]≤ 2

( q
2

)
!(2σ2)

q
2 ≤ 2(qσ2)

q
2 .

A straighforward consequence is the following result.

Proposition 6. Assume that, for any θ, `i(θ) is sub-Gaussian with parameter
σ2 (that does not depend on θ), then 1

n
∑n

i=1`i(θ) is sub-Gaussian with parameter
σ2/n and then, for any q ≥ 2,

Mφq ,n ≤ 2
(

qσ2

n

) q
2

.

As an illustration, consider the case of a finite parameter space, that is card(Θ)=
K <+∞. Following Proposition 2 and Proposition 6, we obtain for any q ≥ 2 and
δ ∈ (0,1), with probability at least 1−δ,

R(θ̂ERM)≤ inf
θ∈Θ

{
rn(θ)

}+σ√
q
n

(
2K
δ

) 1
q

.

Optimization with respect to q leads to q = 2log(2K /δ) and consequently

R(θ̂ERM)≤ inf
θ∈Θ

{
rn(θ)

}+
√

2eσ2 log
( 2K
δ

)
n

.

Without any additional assumption on the loss `, the rate on the right-hand side
is optimal. This is for example proven by Audibert (2009) for the absolute loss.
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3.2 Dependent observations
Here we propose to analyze the harder and more realistic case where the ob-
servations (X i,Yi) are possibly dependent. It includes the autoregressive case
where X i = Yi−1 or X i = (Yi−1, . . . ,Yi−p). Note that in this setting, different no-
tions of risks were used in the literature. The risk R(θ) considered in this paper
is the same as the one used in many references given in the introduction, Modha
and Masry (1998); Steinwart and Christmann (2009); Alquier and Wintenberger
(2012); Alquier and Li (2012) among others. Alternative notions of risk were
proposed, for example by Zimin and Lampert (2015).

We remind the following definition.

Definition 4. The α-mixing coefficients between two σ-algebras F and G are de-
fined by

α(F,G)= sup
A∈F,B∈G

∣∣∣P(A∩B)−P(A)P(B)
∣∣.

We refer the reader to Doukhan (1994) and Rio (2000) (among others) for more
details. We still provide a basic interpretation of this definition. First, when
F and G are independent, then for all A ∈ F and B ∈ G, P(A ∩ B) = P(A)P(B)
by definition of independence, and so α(F,G) = 0. On the other hand, when
F = G, as soon as these σ-algebras contain an event A with P(A) = 1/2 then
α(F,G)= |P(A∩A)−P(A)P(A)| = |1/2−1/4| = 1/4. More generally, α(F,G) is a mea-
sure of the dependence of the information provided by F and G, ranging from 0
(independance) to 1/4 (maximal dependence). We provide another interpretation
in terms of covariances.

Proposition 7 (Classical, see Doukhan (1994) for a proof). We have

α(F,G)= sup
{
Cov(U ,V ),0≤U ≤ 1,0≤V ≤ 1,

U is F-measurable, V is G-measurable
}
.

For short, define
α j =α[σ(X0,Y0),σ(X j,Y j)]

where we remind that for any random variable Z, σ(Z) is the σ-algebra generated
by Z. The idea is that, when the future of the series is strongly dependent of the
past, α j will remain constant, or decay very slowly. On the other hand, when the
near future is almost independent of the past, then the α j decay very fast to 0
(examples of both kind can be found in Doukhan (1994); Rio (2000)). And, indeed,
we will see below that when the rate of convergence of the α j ’s to 0 is fast enough
it is possible to derive results rather similar to the ones the independent case.

Let us first consider the bounded case.

Proposition 8. Assume that 0 ≤ ` ≤ 1. Assume that (X i,Yi)i∈Z is a stationary
process, and that it satisfies

∑
j∈Zα j <∞. Then

Mφ2,n ≤ 1
n

∑
j∈Z

α j.
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Examples of processes satisfying this assumption are discussed in Doukhan (1994);
Rio (2000). For example, if the (X i,Yi)’s are actually a geometrically ergodic
Markov chain then there exist some c1, c2 > 0 such that α j ≤ c1e−c2| j|. Thus

Mφ2,n ≤ 1
n

2c1

1−e−c2
.

Proof of Proposition 8. We have:

E

[(
1
n

n∑
i=1

`i(θ)−E[`i(θ)]

)2]
= 1

n2

n∑
i=1

n∑
j=1

Cov[`i(θ),` j(θ)]

≤ 1
n2

n∑
i=1

∑
j∈Z

α j−i =
∑

j∈Zα j

n

that does not depend on θ, and so

Mφ2,n =
∫
E

[(
1
n

n∑
i=1

`i(θ)−R(θ)

)2]
π(dθ)≤

∑
j∈Zα j

n
.

Remark 1. Other assumptions than α-mixing can be used. Actually, we see from
the proof that the only requirement to get a bound on Mφ2,n is to control the covari-
ance Cov[`i(θ),` j(θ)]; α-mixing is very stringent as it imposes that we can control
this for any function `i(θ). In the case of a Lipschitz loss, we could actually con-
sider more general conditions like the weak dependence conditions in Dedecker
et al. (2007); Alquier and Wintenberger (2012).

We now turn to the unbounded case.

Proposition 9. Assume that (X i,Yi)i∈Z is a stationary process. Let r ≥ 1 and
s ≥ 2 be any numbers with 1/r+2/s = 1 and assume that∑

j∈Z
α1/r

j <∞

and ∫ {
E
[
`s

i (θ)
]} 2

s π(dθ)<∞.

Then

Mφ2,n ≤ 1
n

(∫ {
E
[
`s

i (θ)
]} 2

s π(dθ)
)(∑

j∈Z
α

1
r
j

)
.

Proof of Proposition 9. The proof relies on the following property.

Proposition 10 (Doukhan (1994)). For any random variables U and V , resp. F
and G-mesurable, we have

|Cov(U ,V )| ≤ 8α
1
r (F,G)‖U‖s‖V‖t

where 1/r+1/s+1/t = 1.
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We use this with U = `i(θ), V = ` j(θ) and s = t. Then

E

[(
1
n

n∑
i=1

`i(θ)−E[`i(θ)]
)2]

= 1
n2

n∑
i=1

n∑
j=1

Cov[`i(θ),` j(θ)]

≤ 8
n2

n∑
i=1

∑
j∈Z

α
1
r
j−i‖`i(θ)‖s‖` j(θ)‖s

≤
8

{
E
[
`s

i (θ)
]} 2

s
∑

j∈Zα
1
r
j

n
.

As an example, consider auto-regression with quadratic loss, where we use linear
predictors: X i = (1,Yi−1) ∈R2, Θ=R2 and fθ(·)= 〈θ, ·〉. Then

|`i(θ)|3 ≤ 32[Y 6
i +4‖θ‖6(1+Y 6

i−1)]

and so
E
(|`i(θ)|3)≤ 32(1+4‖θ‖6)E

(
Y 6

i
)
.

Taking s = r = 3 in Proposition 9 leads to the following result.

Corollary 2. Fix δ ∈ (0,1). Assume that π is chosen such that∫
‖θ‖6π(dθ)<+∞,

E
(
Y 6

i
)<∞ and

∑
j∈Zα

1
3
j <+∞. Put

ν= 32E
(
Y 6

i
) 2

3
∑
j∈Z

α
1
3
j

(
1+4

∫
‖θ‖6π(dθ)

)
.

With probability at least 1−δ we have for any ρ

∫
Rdρ ≤

∫
rndρ+

√
ν[1+χ2(ρ,π)]

nδ
.

This is, up to our knowledge, the first PAC(-Bayesian) bound in the case of a time
series without any boundedess nor exponential moment assumption.

4 Optimal aggregation distribution and oracle in-
equalities

We have now gone through the way to control the different terms in our PAC-
Bayesian inequality (Theorem 1). We now come back to this result to derive
which predictor minimizes the bound, and which statistical guarantees can be
achieved by this predictor.

We start with a reminder of two consequences of Theorem 1: for p > 1, and q =
p/(p−1), with probability at least 1−δ we have for any ρ

∫
Rdρ ≤

∫
rndρ+

(
Mφq ,n

δ

) 1
q (

Dφp−1(ρ,π)+1
) 1

p (5)

10



and ∫
rndρ ≤

∫
Rdρ+

(
Mφq ,n

δ

) 1
q (

Dφp−1(ρ,π)+1
) 1

p . (6)

In this section we focus on the minimizer ρ̂n of the right-hand side of (5) , and on
its statistical properties.

Definition 5. We define rn = rn(δ, p) as

rn =min
{

u ∈R,
∫

[u− rn(θ)]q
+π(dθ)= Mφq ,n

δ

}
.

Note that such a minimum always exists as the integral is a continuous function
of u, is equal to 0 when u = 0 and →∞ when u →∞. We then define

dρ̂n

dπ
(θ)= [rn − rn(θ)]

1
p−1
+∫

[rn − rn]
1

p−1
+ dπ

. (7)

The following proposition states that ρ̂n is actually the minimizer of the right-
hand side in inequality (5).

Proposition 11. Under the assumptions of Theorem 1, with probability at least
1−δ,

rn =
∫

rndρ̂n +
(
Mφq ,n

δ

) 1
q (

Dφp−1(ρ̂n,π)+1
) 1

p

=min
ρ


∫

rndρ+
(
Mφq ,n

δ

) 1
q (

Dφp−1(ρ,π)+1
) 1

p


where the minimum holds for any probability distribution ρ over Θ.

Proof of Proposition 11. For any ρ we have

rn −
∫

rndρ =
∫

[rn − rn]dρ

=
∫

[rn − rn]+dρ−
∫

[rn − rn]−dρ

≤
∫

[rn − rn]+dρ =
∫

[rn − rn]+
dρ
dπ

dπ

≤
(∫

[rn − rn]q
+dπ

) 1
q
(∫ (

dρ
dπ

)p
dπ

) 1
p

≤
(
Mφq ,n

δ

) 1
q (

Dφp−1(ρ,π)+1
) 1

p

where we used Hölder’s inequality and then the definition of rn in the last line.
Moreover, we can check that the two inequalities above become equalities when
ρ = ρ̂n: from (7),

rn −
∫

rndρ̂n =
∫

[rn − rn]dρ̂n =
∫

[rn − rn]+dρ̂n

11



=
∫

[rn − rn]+ [rn − rn]
1

p−1
+ dπ∫

[rn − rn]
1

p−1
+ dπ

=
∫

[rn − rn]q
+dπ∫

[rn − rn]
1

p−1
+ dπ

=
(∫

[rn − rn]q
+dπ

) 1
p + 1

q∫
[rn − rn]

1
p−1
+ dπ

=
(∫

[rn − rn]q
+dπ

) 1
q

(∫
[rn − rn]

p
p−1
+ dπ

) 1
p

∫
[rn − rn]

1
p−1
+ dπ

=
(
Mφq ,n

δ

) 1
q (∫ (

dρ̂n

dπ

)p
dπ

) 1
p
=

(
Mφq ,n

δ

) 1
q (

Dφp−1(ρ̂n,π)+1
) 1

p .

A direct consequence of (5) and (6) is the following result, which provides theo-
retical guarantees for ρ̂n.

Proposition 12. Under the assumptions of Theorem 1, with probability at least
1−δ, ∫

Rdρ̂n ≤ rn ≤ inf
ρ


∫

Rdρ+2
(
Mφq ,n

δ

) 1
q (

Dφp−1(ρ,π)+1
) 1

p

 . (8)

Proof of Proposition 12. First, (5) brings:

∫
Rdρ̂n ≤

∫
rndρ̂n +

(
Mφq ,n

δ

) 1
q (

Dφp−1(ρ̂n,π)+1
) 1

p

= inf
ρ


∫

rndρ+
(
Mφq ,n

δ

) 1
q (

Dφp−1(ρ,π)+1
) 1

p

 (9)

by definition of ρ̂n, and Proposition 11 shows that the right-hand side is r̄n.
Plug (6) into (9) to get the desired result.

Example 1. As an example of an application of Proposition 12, we come back to
the setting of a possibly heavy-tailed time series. More precisely, we assume that
we are under the assumptions of Corollary 2. In particular, X i = (1,Yi−1) ∈R2 and
fθ(·) = 〈θ, ·〉 and p = q = 2. For the sake of simplicity, assume that the parameter
space is Θ = [−1,1]2. Let us fix π as uniform on [−1,1]2. The empirical bound
stated that, with probability at least 1−δ, for any ρ,

∫
Rdρ ≤

∫
rndρ+

√
ν[1+χ2(ρ,π)]

nδ

where we remind that

ν= 32E
(
Y 6

i
) 2

3
∑
j∈Z

α
1
3
j

(
1+4

∫
‖θ‖6π(dθ)

)
≤ 1056E

(
Y 6

i
) 2

3
∑
j∈Z

α
1
3
j .

In this context the minimizer of the right-hand side is

dρ̂n

dπ
(θ)= [rn − rn(θ)]+∫

[rn − rn]+dπ

12



where
rn =min

{
u ∈R,

∫
[u− rn(θ)]+π(dθ)= ν

nδ

}
.

The application of Proposition 12 leads to, with probability at least 1−δ,

∫
Rdρ̂n ≤ inf

ρ


∫

Rdρ+2

√
ν[1+χ2(ρ,π)]

nδ

 .

Note that it is possible to derive an oracle inequality from this. Let us denote by
θ̄ = (θ̄1, θ̄2) the minimizer of R. Consider the following posteriors, for 1≤ i, j ≤ N:

ρ(i, j),N is uniform on
[
−1+ 2(i−1)

N
,−1+ 2i

N

]
×

[
−1+ 2( j−1)

N
,−1+ 2 j

N

]
.

For N fixed, there is always a pair (i, j) such that θ̄ belongs to the support of
ρ(i, j),N . Elementary calculus shows that, for any θ in the support of ρ(i, j),N then

R(θ)−R(θ̄)≤ 2
N

(
1+4E(|Yi|)+3E(Y 2

i )
)=:

ν′

N
.

Moreover,

1+χ2(ρ(i, j),N ,π)= N2

2
.

So the bound becomes∫
Rdρ̂n ≤ inf

θ∈[−1,1]2
R(θ)+ inf

N∈N∗

{
ν′

N
+N

√
2ν
nδ

}

and in particular, the choice N =
⌈√

ν′
p

nδ/(2ν)
⌉

leads to

∫
Rdρ̂n ≤ inf

θ∈[−1,1]2
R(θ)+3

(
2νν′2

nδ

) 1
4

at least for n large enough to ensure
(

nδ
2ν

) 1
4 ≥p

ν′.

The last example shows that it is possible in some cases to deduce from Propo-
sition 12 an oracle inequality, that is, a comparison to the performance of the
optimal parameter. The end of this section is devoted to a systematic derivation
of such oracle inequalities, using the complexity parameter introduced in Sec-
tion 3, first in its empirical version, and then in its theoretical form.

Theorem 2. Under the assumptions of Theorem 1 together with Assumption 1,
with probability at least 1−δ,

∫
Rdρ̂n ≤ rn ≤ inf

θ∈Θ
{
rn(θ)

}+2
(
Mφq ,n

δ

) 1
q+d

. (10)

Proof of Theorem 2. Put
γ= rn − inf

θ∈Θ
{
rn(θ)

}
.

13



Note that γ≥ 0. Then:(γ
2

)q
π

{
rn(θ)≤ γ

2
+ inf rn

}
≤

∫
[rn − rn]q

+dπ︸ ︷︷ ︸
=Mφq ,n

δ

≤ γqπ
{
rn(θ)≤ γ+ inf rn

}
.

So: (γ
2

)q
π

{
rn(θ)≤ γ

2
+ inf rn

}
≤ Mφq ,n

δ

and, using Assumption 1, (γ
2

)q (γ
2

)d
≤ Mφq ,n

δ

which yields:

γ≤ 2
(
Mφq ,n

δ

) 1
q+d

.

We can also perform an explicit minimization of the oracle-type bound (8), which
leads to a variant of Theorem 2 under a non-empirical complexity assumption.

Definition 6. Put

Rn =min
{

u ∈R :
∫

[u−R(θ)]q
+π(dθ)= 2qMφq

δ

}
.

Assumption 2. There exists d > 0 such that, for any γ> 0,

π
{
θ ∈Θ : R(θ)≤ inf

θ′∈Θ
{
R(θ′)

}+γ}
≥ γd .

Theorem 3. Under the assumptions of Theorem 1 together with Assumption 2,
with probability at least 1−δ,

∫
Rdρ̂n ≤ Rn ≤ inf

θ∈Θ
R(θ)+2

q
q+d

(
Mφq ,n

δ

) 1
q+d

.

The proof is a direct adaptation of the proofs of Proposition 11 and Theorem 2.

5 Discussion and perspectives
We proposed a new type of PAC-Bayesian bounds, which makes use of Csiszár’s
f -divergence to generalize the Kullback-Leibler divergence. This is an extension
of the results in Bégin et al. (2016). In favourable contexts, there exists sophisti-
cated approaches to get better bounds, as discussed in the introduction. However,
the major contribution of our work is that our bounds hold in hostile situations
where no PAC bounds at all were available, such as heavy-tailed time series.
We plan to study the connections between our PAC-Bayesian bounds and afore-
mentionned approaches by Mendelson (2015) and Grünwald and Mehta (2016) in
future works.
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