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Abstract. Energy efficiency is one of the most challenging issues in wireless
sensor networks, particularly in the target tracking. The main purpose of these
networks is to preserve the distributed important sites from the targets who in-
tend to destroy the sites in an environment. This paper proposes a distributed
energy-efficient mechanism for sleep scheduling the sensors followed by a dy-
namic cellular clustering algorithm for tracking the targets. Probabilistic positions
of the targets are predicted based on an improved particle filter procedure consec-
utively. A cell, including a subset of sensors, is constructed over time considering
the predicted positions of targets. This cellular algorithm not only decreases the
number of awake sensors, but also increases the tracking quality. Moreover, a
concept named communication base has been proposed for alleviating the com-
munication volume of the sensors. Utilizing communication bases, sensors are
able to exchange information in maximum three hops. The experimental results
demonstrate the capability of the provided algorithms and mechanism in optimiz-
ing the energy of sensors and increasing the tracking quality.

Keywords—Wireless sensor networks, target tracking, energy efficiency.
1 Introduction

A wireless sensor network is a network of spatially-distributed autonomous sensors for
monitoring physical or environmental conditions to cooperatively disseminate their data
through the network. Sensors are generally equipped with the capabilities of sensing,
processing, and communicating. One of the most important issues in wireless sensor
networks is energy consumption of sensors since these networks consist of a large num-
ber of battery-limited sensors which are typically used in the high-risk areas and thus the
battery replacement is practically impossible [1]. The importance of energy efficiency
of sensors is further significant in target tracking, as one of the most important appli-
cations of wireless sensor networks [2]. Target tacking in wireless sensors networks
consists of accumulating information about target movement by sensors and delivering
related information to other sensors or a base station to make an appropriate decision
about the targets. Idle listening is a major source of energy waste for target detection
and measurement [1]. In particular, sleep scheduling is one of the most commonly-used
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mechanisms for reducing the energy consumption during idle listening in order to ex-
tend the network lifetime [3]. The idea of sleep scheduling is to put sensors in the sleep
state for most of the time and only wake them up periodically. In certain cases, the sleep
pattern of sensors may also be explicitly scheduled (i.e. forced to sleep or awaken on de-
mand). Additionally, sensor clustering has been demonstrated to be an energy-efficient
structure in sensor networks since information routing and relaying are only operated
by special sensors namely cluster heads [4]. In each time step, a number of the sensors
create a cluster and a sensor with a specific qualification becomes cluster head. Cluster
heads can aggregate and process the information sent by cluster members, thus reduce
the network load and alleviate the bandwidth.

This paper gives an account for utilizing a multi-objective optimization technique
for localizing the sensors in the environment as a precursor for the main proposed algo-
rithm. The assumed rectangular-shape environment is composed of some entrance gates
and several solid obstacles followed by a set of important sites. Minimizing the num-
ber of sensors while maximizing the network coverage in the environment are the as-
sumed objectives of the used technique which are obviously in conflict with each other.
Furthermore, a distributed energy-efficient algorithm for sleep scheduling the sensors
has been proposed followed by a dynamic cellular clustering procedure for effectively
tracking the targets. In naive clustering approaches, a cluster head is designated to each
cluster which is responsible for gathering the information from sensors and reporting it
to other cluster heads. However, considering the fact that cluster heads must be awake
continuously, their limited energy will not last long. Hence, this paper has substituted
the cluster head with the concept of cell while the role of cluster head has been modified
with constant communication bases. Furthermore, an improved particle filter algorithm
based on the radial basis function networks has been used for predicting the trajectory
of the targets through the time [5]. In each time interval, a cell is created based on
the information gathered by the sensors and probabilistic positions of the targets in the
previous time interval.

The rest of this paper is organized as follows. Section 2 contains a review of the
related work. In Section 3, the comprehensive description of the system model is pre-
sented. The proposed algorithm followed by its required procedures are members of
Section 4. Section 5 demonstrates experimental results. Finally, conclusion and future
work are drawn in Section 6.

2 Related Work

Recent developments in target tracking have heightened the need for effectively maxi-
mizing the target tracking quality [1, 2]. Jiang et al. [1] applied a probability-based pre-
diction mechanism in order to increase the tracking accuracy and reduce the sensors’
active time by predicting the position of each target more precisely. Zhuang et al. [2]
proposed an energy-efficient algorithm to accurately minimize the energy consumption
of sensors in wireless sensor networks taking the probabilistic distance distributions
into account. However, the number of hops needed to track the targets was high.

As one of the sleep scheduling approaches, proactive wake-up has been studied for
awakening sensors pro-actively to prepare for the approaching target [3,4]. Wang et al.
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[3] represented a low-energy communication structure while the energy efficiency of
wireless sensor networks is enhanced by cluster-based dynamic energy management.
However, the role of cluster head was idle in the cluster which resulted in reducing the
energy of cluster head and target loss. Furthermore, the sleeping policy introduced by
Fuemmeler et al. [4] performed well in energy conservation and tracking the location
of the target within the accuracy of the radius of the sensor, but there was a trade-off
between the energy savings and the tracking errors.

Particle filtering for target tracking in wireless sensor networks has already attracted
some attention [6, 7]. Recently, Djuric et al. [6] have proposed a class of interacting par-
ticle filters for multi-target tracking. This class of algorithms relied on splitting the state-
space into lower dimensional sub-spaces in order to become computationally tractable,
but did not guarantee that the particles were assigned proper weights. Additionally, the
velocity of the targets has been assumed to be fixed. In real world, most of the times, the
targets move in the environment with different velocities depending on the situations.
DELTA was the distributed algorithm proposed by Wilchli et al. [7] which tracked the
target solely at constant speed by dynamic clustering and selection of cluster head based
on the light measurement. The advantage of DELTA was that the communication range
of the sensors was higher than their sensing range. However, the main challenge of this
approach was that it could only deal with targets’ constant velocity.

As a result, according to the significant issues mentioned in the related work, fol-
lowings are the main contributions of this paper:

e Proposing a new sensor cluster formation based on a new concept named cell;

e Providing a cellular algorithm for optimizing the energy consumption of sensors;

e Combining a multi-objective evolutionary technique for optimally localizing the
sensors with the proposed energy-efficient target tracking algorithm;

e Employing a set of communication bases for effectively decreasing the communi-
cation volume of sensors by minimizing the hops in information exchange;

3 System Model

In this section, the proposed system model including its elements and running proce-
dures will be described. It is assumed that there is an environment, e.g., airport, city,
etc. The dimension of the environment is M x N, such that M, N € R*. This envi-
ronment has G € N entrance gates and O € N various-shaped planar obstacles in this
environment which it is not possible to access into them. Moreover, there are 7' € N im-
portant sites such as school, hospital, etc. In this paper, individuals or objects, including
minatory purposes, are named as the targets.

Wireless Sensor Networks: The main purpose in this paper is to track and then, de-
stroy the targets which are trying to reach the important sites. Sensors are scattered in
the environment such that targets are tracked with a high accuracy and low loss rate.
In this paper, sensors have been assumed as radar-based ones which invisibly sense the
targets. One sensor begins to sense in its sensing radius and communicate with other
sensors within its communication radius. However, each sensor has a cost and limited



4 Zohreh Alizadeh, Mohsen Afsharchi, Armin Ghasem Azar

amount of energy. Therefore, it is desirable to use the minimum number of sensors.
Here, due to simplicity, the purchasing cost of sensors has not been considered. Equa-
tion (1) refers to the first objective which is reducing the number of sensors.

f(s) = min S. (1)

S € N denotes the number of sensors. Each sensor s;, i € (1,2,...,5), has a
sensing radius Rf € RT and a communication radius RS € RT. This paper assumes
that communication radius of each sensor R € R™ is at least twice its sensing radius
R? € RT. Next, (2) indicates the total overlapping area based on the pairwise overlap
between each two independent sensors.

=g x (|2t - 53] %y (4 RD7) - (- 131
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In this paper, it has been assumed that all sensors have the same sensing and com-
municating radius. L7 is the location of sensor s;. As a result, (3) represents the second
objective in the sensor placement problem, which implies maximizing the covered area.
0; is the obstacle o; in the environment, where |o;] is its area.

+mx (R))”.
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For expressing the function related to the second objective which is increasing the
area covered by sensors, the main challenge is the distance between locations of each
two sensors. Fig. 1 reflects the status of sensors with various possible assumptions. Fig.
1(a) demonstrates the distance between two sensors which is twice the sensing radius.
It is obvious that these two sensors have no intersection with each other. Now, if another
sensor is also placed next to them, a status similar to Fig. 1(b) is obtained. It is clear
that the space between these three sensors is a blind space or non-covered space and
ultimately increases the risk of losing the target. Furthermore, it is assumed that placing
the senors inside/on obstacles and important sites is not allowed. As a result, based
on the experiments done and according to Fig. 1(c), the distance between each two
independent sensors should not be less that 1.5 times the sensing radius.

Since satisfying the mentioned objectives and constraints at the same time is im-
possible, multi-objective optimization techniques have been used [8]. Multi-objective
optimization is an area of multiple criteria decision-making, where mathematical opti-
mization problems involving more than one objective function should be optimized, si-
multaneously. Optimal decisions need to be taken in the presence of trade-offs between
two or more conflicting objectives. Solving a multi-objective optimization problem ne-
cessitates computing all or a representative set of Pareto-optimal solutions. Here, each
Pareto-optimal solution includes locations of a random number of sensors.
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(a) Distance: twice (b) Distance: twice (¢) Distance: 1.5
the sensing radius  the sensing radius  times the sens-
ing radius

Fig. 1: The status of sensors with different distances from each other

Evolutionary algorithms are one of the most well-known meta-heuristic search mech-
anisms utilized for multi-objective optimization problems since their structure is free of
search space and goal capacities [9]. Evolutionary algorithms involve biological mech-
anisms such as reproduction, mutation, recombination, natural selection and survival
of the fittest. The main advantage of evolutionary algorithms, when applied to solve
multi-objective optimization problems, is the fact that they typically generate sets of
solutions, allowing computation of an approximation of the entire Pareto-front. Each
Pareto-front includes a set of Pareto-optimal solutions. Currently, most evolutionary
multi-objective optimization algorithms apply Pareto-based ranking schemes such as
the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [10]. Applying this algo-
rithm, S sensors with the same sensing radius are dispensed in the environment. Fig. 2
presents the arrangement of the sensors obtained from applying the NSGA-II including
four obstacles and two important sites. The difference between Fig. 2(a) and Fig. 2(b)
is the sensing radius and number of sensors. Increasing the sensing radius, the number
of sensors decreases and consequently, the covered area also decreases. However, if the
radius is too high or too low, the total covered area is close to the maximum. Due to
the fact that the implementation and procedure of the NSGA-II is a pre-process for the
main proposed algorithm, its description has been disregarded [10].
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(a) Sensing radius: 35 meters (b) Sensing radius: 70 meters

Fig.2: An example of localizing the sensors through the NSGA-II



6 Zohreh Alizadeh, Mohsen Afsharchi, Armin Ghasem Azar

Energy Consumption of a Sensor: Each sensor is able to do a sort of actions and
consumes some energy for performing each of the actions. Table 1 includes the energy
each sensor consumes for performing the actions. Each sensor is equipped with a battery
which has a limited energy. The reason for using battery-powered sensors instead of
battery-less sensors is their high prices. As the battery goes out of energy, the sensor
will break down and result in network failure and information loss. The actions 1 to 5
outlined in Table 1 are the ordinary actions each sensor performs in the environment.
Two additional actions have been taken into consideration in this paper, namely, waiting
for receiving the messages and delay in doing the actions 1-5.

'@ Type Action Symbol
(=)

1 Sleep (Idle) E!

e 2 Sensing E®

'@ ‘ 3 Sleep to sensing and vice versa ET
‘ 4 Communicating E°

@ 5 Predicting EF

6 Waiting for receiving the messages E"

@ 7 Delay in doing the actions (1-5) EP

Fig.3: The state diagram of en- Table 1: Actions and corresponding energy consumption
ergy variations for each sensor  of the sensors

E' € Rt (mJ/s) denotes the energy the sensor consumes in sleep (Idle) state. Each
sensor spends ES € RT (mJ/s) when sensing the environment. ET € Rt (ml/s) is
the energy the sensors employ for changing their states from sleeping to sensing mode
and vice versa. In addition, each sensor consumes an amount of energy to communicate
with other sensors which corresponds to E¢ € R* (mJ/s). Finally, EF' € Rt (ml/s)
demonstrates the energy that sensors use for predicting the targets’ location, velocity,
and direction. Although doing each action types 1 to 5, mentioned in Table 1, has only
a little delay, however, aggregation of these little delays may cause a tracking gap in the
system. EP € RT (mJ/s) implies the energy each sensor consumes when it has a delay
in performing the mentioned actions. Furthermore, each sensor waits a limited time
for receiving any message from its neighbors regarding the wireless communication
and transmission delays. Sensors apply the EY € R* (ml/s) when they are waiting
for receiving information from their neighbor sensors. The state diagram of energy
variations for each sensor with respect to Table 1 can be seen in Fig. 3.

The loop in E£ states that the sensor may remain in delay state continuously. This
state is also applicable to EZ and Ef The edge between E f and Ef also means that
the sensor can predict the target after sensing the environment. As another instance,
according to the edge between EST and Eg, the sensor begins to communicate with
other neighbor sensors after waking up. As mentioned before, most of the energy of
sensors is consumed for sending messages and communicating between sensors. Since
sensors have a limited sensing and communication radius, therefore, they need to send
the information they have collected via other sensors in the environment. To decrease
this communication volume, a new concept namely communication base is added to the
environment as follows.
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Communication Bases: Sensors are not able to communicate with all other sensors
due to their limited communication radius. In other words, if a sensor needs to com-
municate and send messages to other sensors which are far from it, it has to send the
message through other neighbor sensors that probably results in wasting the energy and
loosing the packets across the path. For this purpose, B € N communication bases is
utilized. The bases are connected in a complete graph. As Fig. 4 illustrates, commu-
nication bases are scattered in the environment as follows: the environment is divided
into K € N equal parts and one communication base is randomly allocated to each part.
Then, it is checked if all the sensors in each part are in communication radius of their
related communication base or not. If not, another communication base is randomly
assigned to that part and this process is repeated until all sensors are connected to the
communication bases.

The next step is to merge the communication bases to have the minimal number.
For each two communication bases, their average Euclidean distance is calculated and
a new communication base is placed on that point. It is checked whether all sensors,
related to two previous communication bases, can be connected to the new one or not.
If so, previous bases are replaced by the new one. This process continues for each two
communication bases in the same part. Afterwards, the merging process will be applied
on the all survived and newly obtained bases in different parts until the minimal num-
ber of bases is obtained. As a result, in each area, depending on the type and number
of obstacles as well as the communication radius of the sensors, a number of sensors
are connected to each communication base. The role of communication bases in en-
ergy conservation is critical. Utilizing the communication bases, messages including
the information of targets can be exchanged among sensors in at most three hops.

(a) Distributed sensors in the (b) Dividing the environment (¢) Randomly distributing
environment into four parts the communication bases

(d) Increasing the communi- (¢) Merging the communica- (f) Removing the unneces-

cation bases until connecting tion bases inside and between sary communication bases

all the sensors to them parts until reaching a minimal
number

Fig. 4: An example of placing the communication bases in the environment
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Unmanned Aerial Vehicles: As mentioned before, there are some entrance gates in the
environment. Targets enter the environment from these gates and attempt to destroy one
or more of the important sites as well in unknown time intervals. The task of wireless
sensors is to predict the location, direction, and velocity of the targets with a probability.
As previously mentioned, the main goal is to have all the sites at full health. Therefore,
the Unmanned Aerial Vehicle (UAV) technology is used to protect them and destroy
the targets [11]. For this purpose, a constant and independent UAV station is considered
which is connected to all communication bases. Suppose the information including the
presence of a target is delivered to the UAV station in time interval ¢. Depending on the
information sent, this station orders to one of UAVs inside to fly over the environment.
Since all the information received by the UAV station is approximate and probabilistic,
the UAV flying will be also probabilistic. The UAV flies with the maximum speed until
it reaches near the target. Reaching near the target, it decreases its velocity and inte-
grates its spatial information with the information sent to the UAV station before and
the new information obtained during the flight. Since the target’s predicted position is
probabilistic and also, there are many sensors around the target, the destruction should
be done with a high accuracy. It is assumed that the probability of destroying the target
after striking the missile is one. This assumption preserves the sensors from the damage.

4 The Distributed Cellular Algorithm

Initializing all the described procedures/elements is known as a pre-process for the main
tracking algorithm. As the main parts of the proposed distributed cellular algorithm, two
novel concepts named boundary sensors and sensors cell have been announced.

4.1 Boundary Sensors

As pictured in Fig. 2(a), a number of sensors are close to the entrance gates. Therefore,
there is a unique set of boundary sensors in front of each entrance gate. The boundary
sensors on the one hand are those which include the relevant gate in their sensing radius.
Apparently, to be able to predict the direction of targets, these boundary sensors should
always be awake and sense the environment, as there is no information of when and
which gate the targets will enter the environment from. On the other hand, keeping
all these boundary sensors awake is time and energy consuming. In this paper, it is
assumed that the boundary sensors wake up periodically in specific time intervals and
start sensing as long as a sensor detects a target. This approach will be a great help to
reduce the energy consumption and eventually increase the reliability level of protecting
the important bases. Fig. 5(a) is an example of boundary sensors in the environment.
To be able to firstly, adapt this periodically sleeping/awaking strategy for boundary
sensors and then, track the targets with maximum efficiency and accuracy, a concept
called sensors’ cell is proposed.

4.2 Sensors’ Cell

In this section, the concept of the cell and its applicability in heightening the target
tracking accuracy is introduced. As an important note, the targets are unaware of the
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(a) Locus of the boundary (b) Complete graph for com- (c) Covex hull of boundary
sensors according to Fig. 2(a) munication of boundary sen- sensors
sors

Fig. 5: Forming the preliminary cell among boundary sensors

location of sensors and the running algorithms. Each target moves into the environment
from one of the gates. Once it appears in the sensing radius of at least one boundary
sensor, this sensor will sense and predict the position, velocity, and direction of the tar-
get. Obviously, the target will continue to move and leave the sensor’s sensing radius.
Therefore, firstly, to predict the position of the target with higher probability, and sec-
ondly, not to lose the target, a preliminary cell among corresponding boundary sensors
is created. Fig. 5 indicates how the sensors’ cell is constructed.

According to Fig. 5(b), sensors, which have a gate in their sensing radius, are con-
nected to each other via their communication radius and they create a complete graph.
This graph is represented by G = (V, E). V includes the set of boundary sensors and £
is the set of edges which exhibits the communications between these sensors. To reduce
the communication volume and have a planar graph, the convex hull of the vertices is
created. The convex hull of a set of points in the plane is the smallest convex polygon
which includes all points within or on the perimeter [12]. Fig. 5(c) depicts the convex
hull of each set of boundary sensors. The target will certainly enter inside one of the
preliminary created cells. Additionally, this target will definitely get closer to one of
the sensors than the others. In other words, as mentioned before, in the first step, all
boundary sensors wake up and sleep periodically until a target is recognized. As soon
as a target is detected, the sensor, which is closest to the target, continues its work (sens-
ing) and the others wait and remain in awake mode. In later steps, the target definitely
continues its way and goes out of the sensor’s sensing radius. As a result, the sensor
sends the collected information to other sensors of the cell, and then, next sensor be-
gins to sense based on the received information, and other sensors stay in awake mode.
The information tables are updated in each time interval and target path is obtained.
Sensors inside the cell utilize the probabilistic direction and inform the other sensors
of the neighborhood cell. These neighbor sensors create the new cell to continue track-
ing in that cell. Next, the procedure of creating the new cells based on the exchanged
information will be described in detail.

Creating the New Cells: Considering the fact that the targets move continuously and
leave the cells consecutively, the preliminary-created boundary cells should be updated
in order that the targets are not lost and the tracking procedure continues. In each time
interval, the active sensor in the current cell broadcasts an alert message to the sensors
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in the same cell and also its neighbor sensors which are not in the same cell. Fig. 6
indicates how to predict and create a new cell. According to target’s estimated position
and direction, sensors update their table and compare the prior position with the new
estimated position and decide on which sensor the target is going to get close to. Utiliz-
ing the target’s estimated direction, the new cell is created and this process is repeated
until the target is tracked and destroyed.

(a) The current cell and the (b) Posterior probablistic di- (¢) Neighbors of sensors of
target inside it rection of the target the curent cell

L e e T

(d) The predicted direction (e) Creation of the (f) The predicted direc-
of the target new cell tion of the target inside
the new cell

Fig. 6: Constructing a new cell based on the predicted trajectory of the target

4.3 Tracking

Efficiently tracking the targets is an indispensable task in the target tracking problem.
To track a target appropriately, it is essential to estimate its position and direction to
create the next cell before the target leaves the current cell. Considering the fact that
the target’s movement is non-linear, it is difficult to estimate its exact position. Hence,
an efficient method, which is able to cope with target’s non-deterministic movement,
should be utilized. Here, the concept of a well-known probabilistic tracking method,
i.e. particle filter (PF), is employed [13]. PF is a sequential Monte Carlo method based
on representing the probability densities. This method uses an online posterior density
estimation algorithm that predicts the posterior density of the state-space by directly
implementing the Bayesian recursion concept. Nonetheless, the pure PF method cannot
overcome the degeneracy of particles and accumulation of estimation errors. Therefore,
an improved version of this algorithm using Radial-Basis Function Network (RBFN)
has been engaged with the proposed distributed cellular algorithm [5].

This improved version of PF employs the RBFN in the sampling step for dynami-
cally constructing the process model from observing and updating the value of each par-
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ticle. With the sampling step in RBFN, the PF can give an accurate proposal distribution
and maintain the convergence of a sensor system. RBFN is a three-layer feed-forward
neural network which is embedded with several radial-basis functions. This network
is characterized by an input layer, a single layer of non-linear processing neurons, and
an output layer. The reason for applying RBFN is to dynamically construct the process
model from observations and update the value of each particle. With the RBFN sam-
pling step, this approach provides an accurate proposal distribution of a sensor. Fig. 7
demonstrates the changes in target tracking accuracy compared to the changes in the
number of particles used in the PF.

—— Invader Main Trajectory
==+Paticle filer estimate

—— Invader Main Trajectory
==+Particle filter estimate

Invader position
Invader position

0 20 30 40 60 70 80 90 100 - W0 20 20 40 60 70 80 9 100

50 50
Time step Time step

(a) 100 particles (b) 1000 particles

Fig. 7: Prediction accuracy versus number of particles

At each step of the algorithm, in which a cell is created and sensing and tracking
operations are done inside that cell, all the information is circulated among communi-
cation bases. The reason is that since only communication bases are in contact with the
UAV station, therefore, it is essential to send all information regarding the direction and
velocity of all the targets to the UAV station. For instance, suppose tracking is being
done in a cell and simultaneously a UAV flying over the environment is tracking the
target. If another target enters the environment at that moment, a new instance of the
tracking algorithm will be created. Hence, the communication bases should send the
new information to UAVs station in order that new UAVs fly or the flying UAVs change
their directions. In this paper, for simplicity, no constraint has been considered on the
number of UAVs. Moreover, considering the communication protocols between all el-
ements of the assumed problem is out of scope of this paper. As a final assumption for
the tracking procedure, the targets are unable to destroy the UAVs.

S Experimental Setup and Analysis

In this section, first, the experimental setup will be described, and subsequently, the
experimental results will be clarified precisely.

5.1 Experimental Setup

The system model and proposed algorithms have been implemented with Matlab R2014b
on a personal computer with an Intel Core i7 2.0 GHz CPU and 6 GB of memory. The
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dimension for the assumed environment has been done in the context of M = 600 m
and N = 400 m. It has been assumed that there are G = 4 entrance gates (one in
each side). Moreover, there are O = 8 two-dimensional planar and solid obstacles, and
T = 10 important sites in the environment. The sensing and communication radius of
all the sensors have been considered as R® = 35 meters and R® = 70 meters, respec-
tively. Considering the communication radius twice the sensing radius represents the
capability of the direct communication for the sensors which have a common sensing
area. As the setting of evolutionary algorithm applied for sensors placement, the tour-
nament selection operator (tournament size=2), linear crossover (probability=80%) and
exchange mutation (probability=20%) have been set. Moreover, the generation and pop-
ulation sizes are equal to 400 and 100, respectively. The selected numbers here are the
average of various tests. Therefore, S = 83 sensors are dispensed in the environment
followed by B = 11 communication bases with respect to the assumed setting.

According to the intended purposes of this paper, the concept and characteristics of
a sensor, namely Intel Imote2 [14] has been utilized. The reason for using this sensor
is its capabilities in facilitating the tracking accuracy and quality. This sensor includes
a CPU, a number of internal memories, and a communication device which uses the
Zigbee radio communication to communicate between each two sensors. In addition,
the sensor has a tiny OS that allows us to mount various algorithms on it. Followings are
the corresponding amounts of energy consumed by each sensor for performing actions
mentioned in Table 1.

— Action 1: 1 ml/s — Action 4: 11.5 mJ/s — Action 7: 0.5 mJ/s
— Action 2: 13.4 mJ/s — Action 5: 16.7 mJ/s
— Action 3: 2.6 mJ/s — Action 6: 9.6 mJ/s

Obviously, the energy consumption of sensors in off mode is zero. The default
amount of energy for each sensor in the environment is equal to 1800 mJ. The amounts
mentioned for Types 6 and 7 are based on the same simulation running for the proposed
algorithm. In this paper, to simplify the model, the energy of communication bases has
been considered infinite. Trying to dispense the communication bases in the environ-
ment, the environment is divided into K = 4 parts. Furthermore, it has been assumed
that the initial places of UAVs are as a point at one corner of the environment and their
energy is infinite. Another point about the UAVs is their velocity. In this study, the ve-
locity for each UAV has been selected from the range [2, 12] m/s. Now, selecting the
proper velocity depends upon the received information including the target’s direction
and velocity. However, in general, UAVs upon receiving the information, make their
attempt to fly as quickly as possible to reach near the target, and then, reduce their
velocity gradually in order to track the target more accurately.

The sensors and UAVs are not aware of when and where the targets enter the en-
vironment from. In other words, the targets know how many they are, in which time
interval they enter the environment, which gate they enter the environment from, and
which important base they will go through. Furthermore, it is assumed that the total
number of targets is 25 in the simulation framework. However, the moving direction
is randomly determined in each time interval. Finally, the targets select their desired
velocity from the range [0.5, 10] m/s.
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5.2 Experimental Results

There are some studies in the field of centralized target tracking in which all sensors
are usually awake and sense the environment [1, 15, 16]. The aim of those studies is
to firstly update the position of targets continuously and then transfer it among all the
sensors. The updating cost in centralized mode depends on the network size involving
sending/receiving many messages within the network. In contrast to this approach, the
proposed distributed algorithm needs to send and receive less messages. There is no
need to exchange the information among all the sensors and even the neighbors since
the targets choose a dynamic path for moving. This issue is also helpful for energy
efficiency of sensors. In other words, since the prediction and tracking in each step is
performed inside a cell, other sensors and even its neighbors are able to go to sleep
mode which will also reduce the energy consumption. Thus, each sensor only needs to
communicate with its neighbors inside the cell or receive information from them.

Suppose a sensor goes out of work for any reason, the algorithm has been designed
in a way that it does not have much effect on tracking quality and associated operations.
In other words, deleting a sensor from the network as well as inside the cell, one of its
neighboring sensors will be replaced and the cell still lasts. Merging two cells, when a
sensor or sensors are lost, imposes a cost consisting O (ny ), where ny is the number
of sensors used in the merge operation. In addition, the network will inflict an extra cost
for updating the tracking information when the target moves (from one cell to another
cell). As a result, the cost equals to the number of cells the targets pass. It is beneficial
to note that the 1000 particles have been used in the simulations.

To assess the efficiency of the proposed algorithm, it has been compared with three
well-known algorithms, VigilNet [17], Forms [18], and iTOA (improved Time Of Ar-
rival measurement model) [19]. VigilNet algorithm has been chosen for the similar
concepts used in this paper, its high speed in tracking operations, and specifications of
the sensors. Forms has been selected due to using an idea close to the one proposed
in this paper. Finally, the reason for choosing iTOA is its similarity of prediction and
tracking parameters used followed by the concept of communication base. The results
obtained are the average of ten experiments done on the whole system. Three param-
eters including total target tracking and destroying time (J7), energy efficiency of the
sensors (E'F), and tracking quality (Q)+) have been utilized in order to evaluate the per-
formance of the proposed algorithm. Regarding the tracking quality, it can be noted that
the purpose is to investigate how successful the system is against all difficulties includ-
ing target tracking error, low detection probability, sensor destruction, and eventually
the obstacles, which exist in the environment.

Hereinafter, the term DEECTA (Distributed Energy-Efficient Cellular Target track-
ing Algorithm) will refer to the proposed algorithm. In the paper, Fig. 8(a) represents
the total target tracking and destroying time compared with other algorithms in terms of
variations in the target tracking velocity. The calculation of [7 will continue since the
simulation has started until all targets are destroyed. The numbers obtained for [ in
Fig. 8(a) are the average times consumed for tracking all targets. As a final note for this
evaluation, in spite of the fact that assigning a greater velocity to the UAV will decrease
the efficiency and even the destruction of target will be harder, however, the proposed
algorithm works better than other algorithms even with a large number of target miss-
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Fig. 8: Evaluations of the algorithm considering the changes in the tracking speed of the UAVs

ing. Fig. 8(b) represents the energy efficiency of sensors after destroying the targets.
In this assessment, the performance of algorithm is evaluated with changes in UAVs
velocity. It can be seen that when the UAVs’ velocity fluctuates between 6 to 12 m/s,
the amount of energy consumed by sensors is reduced. Furthermore, Fig. 8(b) indicates
that the algorithm Forms utilizes more energy than other algorithms. The reason is the
large number of sensors used in its tracking operation. The reason for superiority of the
DEECTA algorithm is that at each step of the algorithm, a few number of sensors, that
is, only one sensor in each cell, is in communication with others.

In Fig. 9(a) , the impact of the sensor density on the performance of the algorithm
in relation to energy consumption has been discussed with different sensing radius. If
the sensing radius is large, then the density will be low. This in turn could increase the
error rate of localization and target tracking since many small number of sensors are
involved in tracking. Now, comparing the impact of density with the amount of energy
consumed, the authors come to this conclusion that when the sensors density increases,
energy consumption declines. The reason is the limited participation of sensors due to
the idea of cell for tracking the targets. However, the proposed algorithm saves large
quantity of sensor energies because of the reduction in the amount of communication.
involved. Finally, Fig. 9(b) represents the tracking quality compared to the different
UAVSs’ speeds. In this case, the number of sensors involved in tracking will be important.
Note that when the number of sensors is too high or low, tracking will be done slower
than if average number of sensors are involved. In addition, changing the sensing radius
of the sensors, as depicted in Fig. 9(a), influences the number of utilized sensors and
consecutively the number of communication bases.

As a final point, the effectiveness of using communication bases on energy effi-
ciency and tracking accuracy will be noted. Using these bases, energy efficiency of
sensors increases by 48% compared to the case in which communication bases are not
used. Also, the communication volume decreases by 79% using these bases. If commu-
nication bases did not exist in the environment, sensors had to communicate more in
order to transmit their information to the UAV base which would also result in delay
in tracking, rapid reduction of sensors’ energy and increase in information loss. As a
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Fig. 9: Energy efficiency of the sensors in a basis of increasing the number of sensors combined
with the tracking quality evaluation

result, in general, the existence of communication bases increases the security of infor-
mation transmitted and makes the detection and destruction of targets faster and easier.
To analyze the computation time required for running the algorithm, the experiments
show that the Matlab uses only 300 megabytes with 35% of the CPU.

6 Conclusion and Future Work

In this paper, the problem of multi-sensor multi-target tracking using dynamic clus-
tering and sleep scheduling in wireless sensor networks is investigated. As the main
contribution, a distributed cellular cluster formation algorithm has been proposed to
tackle with the problem of tracking and destroying the targets to protect the important
sites in the environment. As a pre-process for the proposed algorithm, a multi-objective
evolutionary algorithm has been used for the sensor placement with two conflicting
objectives including minimizing the number of sensors and maximizing the area cov-
erage. Next, a new concept named cell is proposed to minimize the number of awake
sensors participated in tracking targets. Applying this method, only the sensors in the
cell are turned on periodically and there is no need to wake up all sensors. Moreover,
some communication bases have been used in order to decrease the sensors’ amount of
communications and also number of messaging hops. Maximizing the tracking quality
motivates the authors to use an improved version of the particle filter algorithm based on
radial basis function networks. Finally, in order to be able to destroy the targets moving
in the environment, a UAV station including a set of UAVs, has been lodged in the envi-
ronment. The results include reduction in communication volume, energy consumption,
and also improvement of reliability and tracking quality.

As multiple works which can be done in the future, the possibility of applying the
learning approaches for UAVs and sensors, considering a finite energy source for com-
munication bases in order to propose a better and robust cluster formation and tracking
mechanisms, improved target tracking procedure, and sleep scheduling algorithm for
sensors can be mentioned.
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