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PSO-Least Squares SVM for Clustering in
Cognitive Radio Sensor Networks

Jerzy Martyna

Institute of Computer Science, Faculty of Mathematics and Computer Science
Jagiellonian University, ul. Prof. S. Lojasiewicza 6, 30-348 Cracow, Poland

Abstract. In this paper, a solution for a cluster formation in cognitive
radio networks is presented. The solution features a network-wide energy
consumption model for these networks. The particle swarm optimisation
(PSO) and least squares support vector machines (LS-SVMs) have been
transformed into our clustering problem. The obtained results show that
the given hybrid AI system provides a good estimate of a cluster forma-
tion. Through extensive simulations, we observed that the PSO-LS-SVM
method can be effectively used under various spectrum characteristics.
Moreover, the formed clusters are reliable and stable in a dynamic fre-
quency environment.
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1 Introduction

Cognitive radio (CR) technology belongs to a key technology that enables the
improvement of the spectrum use in a dynamic manner. The Federal Communi-
cations Commission (FCC) reported that a large portion of the assigned spec-
trum is used sporadically, leading to a significant amount of the unused spectrum
[9].

CR devices allow one to sense the environment (cognitive capability), anal-
yse and study the detected information, and adapt to the environment (recon-
figurable capabilities). Moreover, CR technology can be integrated into wireless
sensor networks [2]. In this integration, nodes can communicate by tuning their
radios to vacant radio channels through a collision-free band instead of through
the heavily crowded unlicensed bands. The cognitive radio sensor networks [1, 16]
(CRSN) allows us to implement multimedia applications with high bandwidth
requirements. Moreover, the CRSN gathers all of the sensed data of observed
phenomena.

A two-tiered CRSN is composed of a two-level hierarchy. The first level con-
sists of ordinary sensors according to the application-specific objectives. All or-
dinary sensors are grouped into clusters. All cluster head sensor nodes that are
responsible for data aggregation and sending it to the base station (BS) belong
to the second level. It is obvious that each clustering technique used in CRSN
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must reduce the number of exchanged messages between the ordinary sensors
and the cluster head nodes, and minimise the distance between the cluster head
nodes to reduce transmission power.

Many solutions for the realisation of clustering in the CRSN have been pro-
posed in the recent literature. Among others, in the paper by Younis et al. [17],
an election clustering method based on nodes residual energy as a primary clus-
tering parameter and node proximity toits neighbours as secondary parameter
was proposed. Unfortunately, it was designed for fixed channel settings and can
not be used in the CRSN. A deterministic clustering scheme was proposed in
the paper by Bradonji and Lazos [3]. In this approach, clusters are realised by
the maximising the summation of idle channels with the number of nodes within
the cluster. According to the authors’ statement, this solution is stable, but is a
NP-hard and violates design constraints for energy and computation. A specific
aware clustering method has been presented in the paper by Zhang et al. [18].
The proposed method demands introducing the k-mean clustering algorithm. In
this method each node is treated as cluster head node and then merges cluster
heads within each iteration until the number of cluster heads reaches an optimal
number that was obtained a priori by the theoretical analysis. Applying artificial
intelligence (AI) can be an alternative approach to solving the clustering prob-
lem in the CRSN. Cognitive radio sensor networks, that deal with the intelligent
assignment and use of the radio spectrum, are the natural study research area
for the use of AI techniques.

Support vector machines (SVMs) have been developed as an alternative that
avoids artificial neural network (ANN) limitations [14], [15]. SVM compute glob-
ally optimal solutions, unlike tend to fall into local minima [4]. Least squares
support vector machines (LS-SVMs), introduced by Suykens et al. [11], [12],
simplify the training process of standard SVM in a great extent by replacing
the inequality constraints with equality ones. A particle swarm optimisation
(PSO) [5] belongs to stochastic optimisation technique influenced by the social
behaviour of bird flocking or fish schooling. The use of a PSO makes it possible
to optimise the performance of the classifier LS-SVM method for clustering in
the CRSN networks. Use of the PSO-LS-SVM methods permit to build a novel
bybrid artificial intelligence (AI) system.

The main goal of this paper is to introduce a new hybrid AI system based
on PSO-LSSVM techniques for clustering in CRSNs. In the proposed method,
the structure of the CRSN is mapped into the network energy consumption
model. Thus, a spectrum-aware clustering process is efficiently realised. We show
that suggested method achieves good performance efficiency: the clusters are
organized in such a way that the total communication power is minimised.

This paper is organised as follows. In Section 2, we present an energy-efficient
spectrum aware consumption model for CRSNs. Section 3 introduces the hybrid
AI system based on the PSO and LS-SVM methods. In Section 4, we evaluate
the effectiveness of the proposed method through intensive simulations. Section
5 concludes the paper.
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2 Model of the network energy consumption

In this section, we present the network energy consumption model. We take into
account data transmission, data signalling and data sensing in the CRSN.

The data transmission involves intracluster and intercluster communications.
In the first case, all CRSN nodes belonging to the cluster send their data to the
cluster heads [18]. Thus, the sum of transmission power of all cluster members
is given by:

Pintra =

K∑
k=1

Nk∑
i=1,i6=j

Pi(n
k
i ) (1)

where Nk is the number of CRSN nodes in the k-th cluster, 1 ≤ k ≤ K.
Pi is the power needed to reading data transmission from the CRSN node to
the cluster head node. The distance between cluster members and their cluster
head are short within the cluster and, assuming a free-space channel model as
an appropriate channel model, we can rewrite the sum transmission power as:

Pintra = C0Pr

K∑
k=1

Nk∑
i=1,i6=j

d2(nki , n
k
j ) (2)

where Pr is the minimal received power required for the cluster head to
correctly decode the transmitted information, C0 is constant loss factor, and
d(nki , n

k
j ) is the Euclidean distance between the i-th and j-th nodes in the k-th

cluster.
As the cluster head node, we can select the number of nodes with maximal

residual energy. As proven by Zhang [19], intracluster energy achieves the upper
bound if each node will have an equal probability of becoming cluster head.
Hence, the sum for intracluster power consumption is given by:

Pintra = C0Pr

K∑
k=1

Nk∑
j=1

1

Nk

Nk∑
i=1,i6=j

d2(nki , n
k
j ) =

2C0Pr

K∑
k=1

Nk∑
i=1

d2(nki , center(k)) (3)

where center(k) = ( 1
Nk

∑Nk

i=1 x
k
i ,

1
Nk

∑Nk

i=1 y
k
i ) is the center of the k-th cluster.

The total network wide energy consumption is formulated as follows:

Enetwork = Psentsen + Psigtsig + (KC0Prd
2
max +

2C0Pr

K∑
k=1

Nk∑
j=1

d2(nki , center(k)))tdata (4)
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where Psen, Psig is the energy devoted to sensing and signalling, tsen, tsig,
tdata are the sensing, signalling, and data transmission times, respectively, dmax
is the transmission range of the CRSN node.

3 Hybrid AI System Based on the PSO and LS-SVM
Methods for Clustering in CRSN System

3.1 Particle Swarm Optimization

The particle swarm optimization (PSO) is a swarm intelligence method that
models social behaviour of organisms such as bird flocking and fish schooling [5]
to guide swarms of particles toward the most promising regions of the search
space. PSO is conceptually similar to the crossover operation used by genetic
algorithms. The main difference of particle swarm optimization method from
the evolutionary computing is that flying potential through hyperspace are ac-
celerating toward ”better” solutions, while in evolutionary computation schemes
operate on potential solutions which are represented as locations in hyperspace
[6].

Each particle represents a candidate position (i.e., solution). A particle is
considered as a point in a D-dimension space, and its status is characterized
according to its position and velocity. Thus, the D-dimensional for the parti-
cle i at the t-th iteration can be represented as xti = {xti1, xti2, . . . , xtiD}. The
velocity (i.e., distance change) for particle i at iteration t can be defined by
vti = {vti1, vti2, . . . , vtiD}. Let pti = {pti1, pti2, . . . , ptiD} be the best solution that
particle i has obtained until iteration t and ptg = {ptg1, ptg2, . . . , ptgD} be the best

solution obtained from pti in the population at iteration t. To search for the op-
timal solution, each particle changes its velocity according to the cognition and
social parts as follows:

V tid = V t−1id + c1r1(P tid − xtid) + c2r2(P tgd − xtid), d = 1, 2, . . . D (5)

where ci indicates the cognition learning factor; c2 indicates the social learn-
ing factor, and r1, r2 are random numbers uniformly distributed in U(0, 1). Each
particcle moves to a new potential solution based on the equation

Xt+1
id = Xt

id + V tid, d = 1, 2, . . . , D (6)

The iteration is terminated if the number of iteration achieves the given of
number of maximum iteration.

3.2 LS-SVM Classifiers

Least squares support vector machines (LS-SVM) [11], [12] are least squares
versions of support vector machines (SVM) [14], [15], which are set of related
supervised learning methods that analyse data and recognize patterns, and which
are used for classification and regression analysis.
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Let {(xi, yi)}Ni=1 be a given training set, with the input data xi ∈ Rn and
output data yi ∈ R with class labels yi ∈ {−1,+1} and the linear classifier

y(x) = sign[wTx+ b] (7)

When the data of the two classes are separable we have the original SVM
classifier [14], [15] that satisfies the following conditions:{

wTφ(xi) + b ≥ +1 if yi = 1
wTφ(xi) + b ≤ −1 if yi = −1

(8)

These two sets of inequalities can be combined into one single set as follows

yi[w
Tφ(xi) + b]− 1 ≥ 0, i = 1, 2. . . . , N (9)

where φ: Rn → Rm is the feature mapping the input space to a usually high
dimensional feature space. The data points are linearly separable by a hyperplane
defined by the pair (w ∈ Rm, b ∈ R). Thus, the classification function is given
by

f(x) = sign{wTφ(x) + b} (10)

Instead of estimating with the help of the feature map we work with a kernel
function in the original space given by

K(xi, xj) = φ(xi)
T · φ(xj) (11)

In order to allow for the violation of Eq.(9), we introduce slack variables ξi
such that

yi[w
Tφ(xi) + b] ≥ 1− ξi, ξi > 0, i = 1, 2, . . . , N (12)

The following minimization problem is accounted for as follows:

min
w,b,ξ

J(w, b, ξ) =
1

2
|| w ||2 +C

N∑
i=1

ξi

subject to yi[w
Tφ(xi) + b] ≥ 1− ξi, ξi > 0,

i = 1, 2, . . . , N, C > 0 (13)

where C is a positive constant parameter used to control the tradeoff between
the training error and the margin.

The dual problem of the system (13), obtained as a result of Karush-Kuhn-
Tucker (KKT) condition [7], leads to a well-known convex quadratic program-
ming (QP). The solution of the QP problem is slow for large vectors and it is
difficult to implement in the on-line adaptive form. Therefore, a modified version
of the SVM called the Least Squares SVM (LS-SVM) was proposed by Suykens
et al [11], [13].
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In the LS-SVM method, the following minimization problem is formulated

min
w,b,e

J(w, b, e) =
1

2
wTw + γ

1

2

W∑
k=1

e2k

subject to yk[wTφ(xk) + b] = 1− ek, k = 1, 2, . . . , N (14)

The corresponding Lagrangian for Eq. (13) is given by

L(w, b, e;α) = J(w, b, e)−
N∑
k=1

αk{yk[wTφ(xk) + b]− 1 + ek} (15)

where the αk are the Langrange multipliers. The optimality condition leads
to the following (N + 1) × (N + 1) linear system

[
0 Y T

Y Ω∗ + γ−1I

] [
b
α

]
=

[
0
1

]
(16)

where
Z = [φ(x1)T y1, . . . , φ(xN )T yN ]
Y = [y1, . . . , yN ]
1 = [1, . . . , 1]
α = [α1, . . . , αN ]

and Ω∗ = ZZT . Due to the application of Mercer’s condition [8] there exists
a mapping and an expansion

Ω∗kl = ykylφ(xk)Tφ(xl) = ykylK(xk, xl) (17)

Thus, the LS-SVM model for the function estimation is given

y(x) =

N∑
k=1

αkyk ·K(x, xk) + b (18)

where parameters αk and b are based on the solution to Eqs. (15) and (16).

3.3 Mixtures of kernels

Each kernel function is characterized by its advantages and disadvantages. For
instance, a radial basis function (RBF) kernel K(x;xi) = exp{− | x−xi |2 /σ2},
where σ is the width of the radial basis function, is a typical local kernel in
which only the data that are close have an influence on the kernel values. The
polynomial kernel (see [14]) such as K(x;xi) = [x ·xi+ 1]q, where q is the kernel
parameter which defines the degree of the polynomial to be used, guarantees the
influence of all the data points that are far away from each other. Therefore,
the mixture of these kernels gives a better performance than any single kernel.
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As was defined by Smits et al. [10], an exemplary mixture of the RBF and
polynomial kernels is given by

Kmix = ρ ·Kpoly + (1− ρ)KRBF (19)

where ρ is the mixing coefficient treated as a constant scalar.

3.4 LS-SVM transformed into a clustering problem in CSRN

The input data are described by a coordinate (r, z) and the output data is the
energy value. For any data block, the input points are in the form {(ro+dr, zo+
dz) : | dr |< m, | dz |< n}. All such sets of points can be translated to the same
set {(dr, dz) :| dr |< m, | dz |< n} by subtracting (ro, zo) from all the vectors,
m and n are the half numbers of the horizontal and vertical pixels of the blocks.
The LS-SVM method can be transformed into a clustering problem by the use
of the same set of input vectors but different sets of labels.

We can transform the Eq. (16) into a system[
0 1T

1 Ω

] [
b
α

]
=

[
0
Y

]
(20)

where Y = [y1; . . . , ; yN ], Ω = K(xi, yi) + γ−1I, 1T = [11; . . . ; 1N ], α =
[α1; . . . ;αN ]. Thus, the Ω is given by

Ω = K(xi, xj) + γ−1I (21)

The solution of Eq. (21) gives the values b = 1TΩ−1Y
1TΩ−11

α = Ω−1(Y − b1)

(22)

By setting A = Ω−1 and B = 1TΩ−1

1TΩ−11
we obtain

{
b = BY
α = A(Y − b1)

(23)

where A and B are precalculated matrixes that depend only on the input
vector (xk) but not on the vector yk.

The sensors are usually correlated due to the high probability that the ad-
jacent pixels will contain the sensors in the cluster. We assume that the sensor
field is two-dimensional and the image energy distribution of the sensor field on
the surface, known as the point spread funcion (PSF), can be approximated by
the Gaussian PSF. On the other hand, the center point of the PSF corresponds
to the measured sensor position.

In our approach based on the mixtures of kernels, we take into consideration
two sets of indexes of the neighbourhood of the sensor image that satisfies the
condition of linearly separable patterns. We recall that the linear separability
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requires that in order to be classified, the patterns must be separated from each
other to ensure that decision surfaces should consist of hyperplans.

The LS-SVM with the RBF and polynomial kernels transformed into a sen-
sor clustering problem has the fitted energy intensity surface function over the
constant vector space as follows

g(r, z) =

N∑
k=1

αk{(ρ[(rrk + zzk) + 1]q + (1− ρ) · e−(|r−rk|
2+|z−zk|2)/σ2

}+ b (24)

where (r, z) are the coordinates of the pixels. The function g(r, z) gives the
corresponding energy intensity value, b and α are obtained as a solution of Eq.
(23).

3.5 A multi-class formulation of the LS-SVM transformed into a
sensor clustering problem

In comparison with the standard SVM method, the LS-SVM has a lower com-
putational complexity and memory requirements. Nevertheless, in certain situa-
tions, such as the classification of several characters, clusters, etc., a multi-class
classifiction is very suitable.

In the multi-class formalism we now use multiple output values yi with i =
1, . . . , ny, where ny defines the number of output values [15]. Thus, in the primal
weight space the multi-class classification system possesses the following binary
classifiers 

y(1)(x) = sign[w(1)Tφ(1)(x) + b(1)]

y(2)(x) = sign[w(2)Tφ(2)(x) + b(2)]
...

...

y(ny)(x) = sign[w(ny)
T
φ(ny)(x) + b(ny)]

(25)

with mappings on a high dimensional feature space φ(i)(.) : Rn → Rnh ,
i = 1, 2, . . . , ny, with dimensions nh1

, nh2
, . . . , nhny

.
By the extension of Eq. (23) to a multi-class problem, we obtain{

b = BY

α = A(Y − b1)
(26)

where matrix Y is given by

Y =


y
(1)
1 , . . . , y

(1)
N

y
(2)
2 , . . . , y

(2)
N

. . .

y
(ny)
1 , . . . , y

(ny)
N

 (27)

and vector bM = [b(1), . . . , b(ny)], where N is the number of pixels in one
processing block.
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Fig. 1. Block diagram of PSO-LS-SVM-based algorithm.

4 Experimental Results

An experiment to verify clustering efficiency of PSO-LS-SVM approach was per-
formed for randomly deployed Pus and CRSN nodes in a 200 m x 200 m square
area. We assumed that each PU randomly operates in four channels in which the
neighbouring Pus are inactive. In the simulation, we supposed that the distance
between a transmitting and receiving radio pair is normally distributed with a
mean of 30 and variance of 15.

We used a link gain of h = hi/d, where d is the distance from transmitter to
receiver. If the distance is was less than 10, we set link gain to one.

The proposed PSO-LS-SVM approach for clustering in CRSN is composed
of two main phases. PSO algorithm was applied as a technique to improve the
setting of the parameter values of LS-SVM. Clustering using LS-SVM method
consists of two phases: training phase and calculate fitness phase. A block dia-
gram of the algorithm is depicted in Fig. 1.

The PSO-LS-SVM algorithm was developed based on Matlab R2014b and
LS-SVMlab 1.8 for the optimization of model. Through training, the parame-
ter values of the PSO and LS-SVM approach were set as follows. The cognition
learning factor c1 and the social learning factor c2 were set to 1.8. The number of
particles and generations were found to be 8 and 150. Since the PSO-LS-SVM ap-
proach has a larger solution space, the number of solution evaluated was raised to
1000. The optimized parameters for LS-SVMs inlude kernel parameters and reg-
ularization parameter. If radial basis function (RBF) or polynomial (Pol) func-
tion is chosen as a kernel function, we used the vector ν = (γ, σ1, σ2, . . . , σNinput

)
and ν = (γ, σ, δ), respectively, where γ is the regularization parameter, δ and
σi(i = 1, 2, . . . , Ninput) are kernel parameters, Ninput is the dimension number
of input patterns.
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Fig. 2. Average sum of the squared errors (SSE) versus size of the CRSN.

To perform the clustering evaluation, six PUs are randomly deployed in our
sensor field. Furthermore, the sum of the squared errors (SSE) of the clustering
results for various numbers of clusters was taken into account for each scenario.
In Fig. 2, we compare the average SSE with respect to CRSNs of different sizes
for all of the studied number of clusters. The experiment shows that the method
for a given CRSN has clustering effectiveness with the minimal average SSE,
when the cluster number is equal to five or six.

Fig. 3 plots the average cluster size versus the number of nodes in the CRSN
and given number of active PUs. As we can see, all PUs behave similarly in terms
of the number of clusters and the cluster size for different numbers of PUs for
various CRSN sizes. However, the small number of PUs gives a greater average
cluster size.

To compare the efficiency of LS-SVM and PSO with various kernels, we
used the Rand index. Rand index measures the percentage of decisions that are
correct, namely

RI =
TP + TN

TP + FP + FN + TN
× 100% (28)

where TP is the number of true positives, TN is the number of true negatives,
FP is the number of false positives, and FN is the number of false negatives.

Table 1 presents the values of Rand index for the PSO-LS-SVM approach
under different circumstances. As can be seen from Table 1, the efficiency of
PSO-LS-SVM with the mixture of kernels is better than other models.
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Fig. 3. Average cluster size versus size of the CRSN.

Table 1. Efficiency comparison between various models obtained by
PSO-LS-SVM.

Model RI (%)

LS-SVMPoly 61.8
LS-SVMRBF 65.4
LS-SVMmix 67.5
PSO-LS-SVMPoly 83.6
PSO-LS-SVMRBF 88.2
PSO-LS-SVMmix 89.3

5 Conclusion

In this paper, a new clustering method for cognitive radio sensor networks is
introduced. The applied methodology used in clustering has been found in the
network energy consumption model for CRSNs. Three parts of this model were
used: multi-task sensing, signalling and data transmission. Using the energy
distribution of the sensor field surface and applying the PSO-LS-SVM system,
we have been able to solve the clustering problem in the CRSN.

The presented hybrid artificial intelligence system is shown to satisfy CRSN
energy constraints through extensive simulation experiments. Our PSO-LS-SVM
method showed that the proposed solution offers several advantages with respect
to classical clustering schemes, such as k-means clustering algorithm, etc. More-
over, this method incorporates the spectrum-sensing capability and spectrum-
aware sensing constraint in the nodes and their localisation in the network. The
presented method achieves comparable effectiveness with the other clustering
method in cognitive radio sensor networks. Future research directions include
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the development of clustering methods for CRSN with energy constraints by
allowing each node to select its role without the need for cooperation between
nodes.
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