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Editing Training Sets from Imbalanced Data
Using Fuzzy-Rough Sets

Do Van Nguyen?, Keisuke Ogawa, Kazunori Matsumoto, and
Masayuki Hashimoto

KDDI Labs, 2-1-15 Ohara, Fujimino, Saitama, 356-8502 Japan

Abstract. In this research, we study several instance selection methods
based on rough set theory and propose an approach able to deal with in-
consistency caused by noise and imbalanced data. Recent attention has
focused on the significant results obtained in selecting instances from
noisy data using fuzzy-rough sets. For imbalanced data, fuzzy-rough sets
approach is also applied before and after using balancing methods in or-
der to improve classification performance. In this study, we propose an
approach that uses different criteria for minority and majority classes in
fuzzy-rough instance selection. It thus eliminates the step of using bal-
ancing techniques employed in controversial approach. We also carry out
some experiments, measure classification performance and make com-
parisons with other methods.

Keywords: Rough Set theory · fuzzy-rough sets · classification perfor-
mance · instance selection · imbalanced data

1 Introduction

Rough set model is a machine learning technique for acquiring knowledge from
datasets. Rough set theory was first introduced by Pawlak [19,20] in the early
1980s. It is a mathematical approach designed to deal with the ambiguity, vague-
ness and uncertainty that exist in a database. In knowledge discovery, rough set
theory constitutes a sound basis by offering mathematical tools to discover pat-
terns hidden in data. It can, according to [25], be used for feature selection, data
reduction, decision rule generation, and pattern extraction.

Recently, rough sets have been implemented for instance selection [3,12,27].
The main ideas of these approaches are extracting fuzzy memberships of positive
regions and choosing the instances which have large membership degrees for
training phases. However, it is believed that these criteria do not overcome all
problems in relation to inconsistency issues.

One issue that may cause an inconsistency problem is imbalanced data [14].
A dataset is imbalanced when the numbers of instances in some classes are much
larger than in others. Such classes are called majority classes. The classes with
small cardinality are referred to as minority classes.
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In fact, some researchers are trying to use the advantages of rough sets to en-
hance classification performance when a balancing method is employed [22,23,28].
In these approaches, fuzzy-rough sets are first used to remove low quality in-
stances. Then, a well-known balancing technique called “Synthetic Minority
Oversampling Technique (SMOTE)” [4] is employed to form a candidate set.
Finally fuzzy-rough sets are used again to select quality instances from the can-
didate sets. Obviously, such methods need considerable computation time to edit
and select instances.

This research will introduce an approach that uses fuzzy-rough sets to bal-
ance and select quality instances from imbalanced datasets. In this work, dif-
ferent thresholds for majority and minority classes are used, thus, more items
from minority classes can be selected. The experiment results show considerable
improvement in classification performance and the advantage with respect to
other methods in the literature.

The paper is structured as follows: Section 2 reviews the original rough set
theory and an extension called fuzzy-rough set. In section 3, some rough set
approaches for dealing with inconsistency are discussed along with their issues.
The new algorithms and experiments are introduced in Section 4. Finally, we
present our conclusions in Section 5.

2 Theoretical Background

2.1 Information Systems and Equivalence Relation

An information system is represented as a data table. Each row of this table
represents an instance of an object such as people, things, etc. Information about
every object is described by object attribute (feature) values.

An information system in the rough sets study is formally defined as a pair
I = (U,A), where U is a non-empty finite set of objects called the universe
and A is a non-empty finite set of attributes such that fa : U → Va for every
a ∈ A [19,20]. The non-empty discrete value set Va is called the domain of a.
The original rough set theory deals with complete information systems in which
∀x ∈ U , a ∈ A, fa(x) is a precise value.

Any information system taking the form I = (U,A∪{d}) is called a decision
table where d /∈ A is called a decision (or label) and elements of A are called
conditions. Let Vd = {d1, ..., dk} denote the value set of the decision attribute,
decision d then determines a set of partitions {C1, C2, ..., Ck} of universe U ,
where Ci = {x ∈ U |fd(x) = di}, 1 ≤ i ≤ k. Set Ci is called the i -th decision
class or concept on U . We assume that every object in U has a certain decision
value in Vd.

Formally, in complete information systems, relation EQUP (x, y), P ⊆ A,
denotes a binary relation between objects that are equivalent in terms of values
of attributes in P [19]. The equivalence relation is reflexive, symmetric, and
transitive. Let EP (x) = {y ∈ U |EQUP (y, x)} be the set of all objects that are
equivalent to x by P , which is then called an equivalence class. The family of



3

all equivalence classes (or partitions) on U based on an equivalence relation is
referred to as a category and is denoted by U/EQUP .

From equivalence classes, Pawlak [19,20] defined an approximation space that
contains lower and upper approximations denoted by apprX and apprX, respec-
tively, of set X ⊆ U as follows:

appr
P
X =

⋃
{EP (x)|x ∈ U,EP (x) ⊆ X} = {x ∈ U |EP (x) ⊆ X}, (1)

apprPX =
⋃
{EP (x)|x ∈ U,EP (x) ∩X 6= ∅} = {x ∈ U |EP (x) ∩X 6= ∅}. (2)

In decision table I = (U,A ∪ {d}), the positive region POSP (X) of set X in
terms of attribute set P ⊆ A is defined as:

POSP (X) =
⋃
{appr

P
E{d}(x)|x ∈ X}. (3)

Others region definitions such as negative, boundary and rough set properties
can be obtained from the original rough set theory research [19,20].

Apart from using equivalence relations to define a rough set in complete infor-
mation systems, there are also numerous studies [10,13,16,17,18] that deal with
incomplete or imperfect information systems in which data are not described by
precise and crisp values.

2.2 Fuzzy Rough Set

A classical (crisp) set is normally defined as a collection of elements x ∈ X that
can be finite, countable or over countable. Each single element can either belong
to or not belong to a set X ′ ⊆ X. For a fuzzy set, a characteristic function allows
various degrees of membership for elements of a given set. Then a fuzzy set X
in X is a set of ordered pairs [31]:

X = {(x, µX (x))|x ∈ X}, (4)

where µX (x) ∈ [0, 1] is called the membership function or grade of membership
(also the degree of compatibility or degree of truth) of x in X .

In crisp sets, for two special sets ∅ and U the approximations are simply
defined as µappr

R
U (x) = 1 and µapprR∅(x) = 0. Based on the two equivalent

definitions, lower and upper approximations may be interpreted as follows: An
element x belongs to the lower approximation appr

R
X if all elements equivalent

to x belong to X. In other words, x belongs to the lower approximation of X if
any element not in X is not equivalent to x, namely, µR(x, y) = 0. Likewise, x
belongs to the upper approximation of X if µR(x, y) = 1.

Now the notion of rough sets in crisp sets is extended to included fuzzy
sets. Let µX and µR denote the membership functions of set X and of the set
{(x, y) ∈ U × U |R(x, y)}, respectively. The fuzzy approximation space [21] of
fuzzy set X on X in terms of fuzzy relation R(x, y) can be defined as follows:

µappr
R
X (x) = inf I{µR(x, y), µX (y)}, (5)

µapprRX (x) = sup T {µR(x, y), µX (y)}. (6)
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where I and T are fuzzy implicators 1 and triangular norms (t-norm) 2, respec-
tively.

From the above equations, it is noticed that membership of lower and up-
per approximation for one instance strongly depend on only one other instance
since they are defined by minimum and maximum. To soften this definition, Cor-
nelis et. al. [5] suggest a fuzzy-rough set definition using order weight averaging
(OWA) aggregation [29]. An OWA operator FW is a mapping F : Rn → R using
weight vector W =< w1, ..., wn > such that

FW (a1, · · · , an) =

n∑
i=1

wibi, (7)

where bi is the ith largest of the values in {a1, · · · , an}.
An OWA operator is bounded by the minimum and maximum of vector W .

It thus can soften minimum and maximum operators. Suppose that there are
two vectors Wmin =< wmin

1 , · · · , wmin
n > and Wmax =< wmax

1 , · · · , wmax
n >,

where wmin
1 ≤ · · · ≤ wmin

n and wmax
1 ≥ · · · ≥ wmax

n , we can define OWA fuzzy
rough sets as follows:

µappr
R
X (x) = FWmin(I{µR(x, y), µX (y)}), (8)

µapprRX (x) = FWmax(T {µR(x, y), µX (y)}). (9)

In fact, the definition of a fuzzy relation on an attribute set depends on
individual systems. One example of defining relation methods to deal with in-
complete information systems is shown in [15]. Further investigation of the com-
bination between fuzzy and rough sets can be found in [5,8,9,21,30].

3 Rough Selection and Problem Stated

Significant research on instance selection using rough sets model was introduced
the work of Caballero et al. [3]. For this purpose, the authors calculated approxi-
mations and positive regions for each class in training sets. Instances for training
phases are then selected in two ways. In the first method, they try to delete all
instances in the boundary. The second employs a nearest neighbourhood algo-
rithm to relabel instances in the boundary region. The issues associated with
these approaches were raised in Jensen and Cornelis’ study [12]. Another pos-
sible limitation is that they just deal with crisp sets of attributes in decision
tables.

1 A fuzzy implicator is a function I : [0, 1]× [0, 1]→ [0, 1] which satisfies the following
properties: I(0, 0) = 1; T (1, a) = a; I is decreasing in the first argument; I is
increasing in the second argument.

2 A t-norm is a function T : [0, 1]× [0, 1]→ [0, 1] which satisfies the following proper-
ties: Commutativity: T (a, b) = T (b, a); Monotonicity: T (a, b) ≤ T (c, d) if a ≤ c and
b ≤ d; Associativity: T (a, T (b, c)) = T (T (a, b), c); The number 1 acts as an identity
element: T (a, 1) = a
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To deal with the problems identified in the study of Caballero et al., an ap-
proach called Fuzzy-Rough Instance Selection (FRIS) has been proposed [12].
The notion of this approach is using memberships of positive regions to deter-
mine which instances should be kept and which instances should be discarded for
training. First, the method calculates relations among instances and then mea-
sures quality of each instance by its positive region membership. An instance
will be removed if the membership degree is less than a specified threshold. For
the same purpose, another approach of measuring quality of instances was in-
troduced in [27]. Such approaches will undoubtedly refine the positive regions
with quality instances.

However, one limitation to be considered is that there is only one threshold
used for all classes. In some applications such as medical disease prediction, it
is not uncommon to be interested in some specific groups, disease groups for
example, rather than the others (healthy groups). When only one threshold
is used, once noise is eliminated, valuable instances in interesting classes also
disappear.

Some approaches use the advantage of fuzzy-rough to qualify instance sets
formed by SMOTE [22,23,28]. Therefore, the issues above may be avoided. The
steps of these methodologies can be summarized as follows:

1 Using fuzzy-rough sets to calculate the qualities of every instance and choose
instances having high quality.

2 Using SMOTE to create artificial instances from the first step and add to
datasets

3 Using fuzzy-rough sets to eliminate low quality instances from datasets after
the second step.

There are some differences among these methods. In Ramentol et al.’s study
named SMOTE-RSB∗ [22,23], the first step does not appear. In step 3, the
algorithm removes only low quality instances in the artificial instance sets. In
Verbiest’s research [28], quality measurements are different for step 1 and 3.
The first measures performance for imbalanced data while the last deals with
balanced information. Thus, they call the algorithm FRIPS-SMOTE-FRBPS
(hereinafter referred to as FRPSS in this paper). It is also claimed in [28] that
FRPSS produces better training sets compared with SMOTE-RSB∗.

It appears that FRPSS is an excellent tool for editing training sets. However,
applying three instance selections steps may require considerable computation
time compared with other methods.

4 Multiple Thresholds Fuzzy Rough Instance Selection

As stated in [12], the Fuzzy-Rough Instance Selection (FRIS) algorithm is quite
efficient as it eliminates some instances that might affect the positive region
membership of the remaining objects. It thus refines the dataset by choosing
quality instances for training. However, we also noted some limitations of con-
ventional methods. An example is shown in Figure 1. If we use fuzzy lower ap-
proximation as instance qualities and compare these numbers with the threshold
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Fig. 1. Histogram to show distribution of approximations and average approximations
for a dataset

= 0.7 (FRIS method), numerous positive instances (minority class) will be re-
moved while almost all negative instances will be remained. The same problem
occurs with FRPSS in which an average of approximations is used as a quality
measurement.

Therefore, in this section, using the advantages of fuzzy rough set instance
selection approach, we propose an instance selection method which uses different
thresholds for different classes of decision tables. By means of this strategy,
SMOTE or other balancing techniques may not be necessary.

4.1 MFRIS algorithms

In decision table I = (U,A ∪ {d}), let Ra(x, y) and µRa
(x, y) denote a fuzzy

relation and membership function, respectively, between objects x, y ∈ U on
attribute a ∈ A. Then the membership function of the relation on an attribute
set P ⊆ A is defined as:

µRP
(x, y) = Ta∈PµRa

(x, y),

where T is a t-norm.
In fact, there are many ways to calculate the membership function of a fuzzy

relation between two instances. It is also possible to use distance based similarity
such as the normalization of Euclidean distance. It depends on the characteristics
of each system.
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Data:
Xi, Yj , minority and majority classes;
tX , tY , the selection thresholds for minority and majority classes.
Result: Decision table (S,A ∪ {d})
Calculate membership degree of the relation among objects: µR(x, y);
Calculate membership degree of the approximations for each class;
Calculate the quality measurement of all instances for their classes;
S ← ∅;
for x ∈ Xi do

if µR
Xi

(x) ≥ tX then
S ← S ∪ {x};

end

end
for x ∈ Yj do

if µR
Yi

(x) ≥ tY then
S ← S ∪ {x};

end

end

Fig. 2. MFRIS1 - The first algorithm: Choosing or eliminating instances for both
majority and minority classes

The membership functions of approximation spaces for an object set X ⊆ U
on attribute P ⊆ A can be defined by either equations (5) and (6) or (8) and (9).
In this study, as mentioned in Section 2, we must note that in the decision table
I = (U,A∪{d}) is a single label decision table such that fd(x) is a precise value.
In fuzzy sets, for a single label decision table, µCi

(x) > 0 if fd(x) = di and
µCi

(x) = 0, otherwise.
In selecting learning instances, we first define a function to measure the

quality of an instance for each class X in terms of relation R:

µRX (x) : αµappr
R
X (x) + (1− α)µapprRX (x), (10)

where α ∈ [0, 1], X is the fuzzy set on X. In the above equation, note that x
may or may not belong to X. This is where this approach differs from other
approaches. When comparing µRX (x) for x ∈ X, we can assume that α = 1 as
in the study of Jensen et al. [12] and α = 0.5 as in the approach of Verbiest et
al. [28].

Now, let tX and tY be the selection thresholds for minority and majority
classes, Xi and Yj be the fuzzy sets on minority class Xi and majority classes Yj ,
respectively, R denotes the fuzzy relation on the universal. The set of instances
selected for the training phase can be defined as:

S =
[
∪i{x ∈ Xi|µRXi

(x) ≥ tX}
]
∪
[
∪j{x ∈ Yj |µRYi

(x) ≥ tY }
]
. (11)

Then, the algorithm to select instances can be described as shown in Figure 2.
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In the first algorithm, depending on labels of instances, the quality measure-
ment of every instance on their classes will be compared with the threshold for
minority or majority thresholds. This means that an instance will be deleted
from a training set if it is low quality even it is in minority classes. The different
thresholds may help us to keep more instance in minority classes if necessary.

In addition, we also propose the second algorithm to select instances. The
notion of this method is keeping all instances in minority classes while removing
or relabelling some instances in majority classes. To describe the algorithm, we
first introduce some definitions.

Let X,Y be the family of minority and majority classes respectively. Let
Xi,Yj denote fuzzy sets on Xi, Yj , respectively. Thresholds for minority and
majority classes are tX and tY , respectively. The set of instances for which
labels could be changed can be defined as

SY→X =
⋃
i

{x ∈ Yi|µRYi
(x) < tY ∧ sup

j
{µRXj

(x)− tX} ≥ 0}. (12)

From the above definition, there are some instances in majority classes whose
labels could be changed to a minority class label. The possible minority class set
can be determined as follows:

Z(x) =
⋃
i

{Xi|µRXi
(x) ≥ tX , x ∈ SY→X}. (13)

Then we can re-calculate the class membership functions of an instance x ∈
SY→X ∩ Yn as µXm(x) = µYn(x);µYn(x) = 0, where m is defined to satisfy:
Xm ∈ Z(x);µRXm

(x) ≥ µRXi
(x), ∀i,Xi ∈ Z(x).

Finally, the selected instances for the training phase can be defined as:

S = (
⋃
i

Xi) ∪ (
⋃
i

{x ∈ Yi|µRYi
(x) ≥ tY }) ∪ SY→X . (14)

The algorithm is then described as shown in Figure 3.

4.2 Experiment

Experiments were conducted on datasets from KEEL dataset repository [1] and
UCI Machine Learning Repository [2] and our lifestyle-diseases dataset. The
dataset lifestyle-diseases is raw data of collected health factors such as age, BMI,
and waist circumference,... and the outcomes are related to lifestyle diseases.
Datasets and their properties are shown in Table 1. In this table, “IR” shows
imbalance rates for the number of instances between majority and minority
classes.

Each dataset is divided into three parts for both minority and majority
classes. For each train-test, we used two parts to form training data and the
rest were used as testing instances.
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Data:
X,Y , the family set of minority and majority classes
tX , tY , the selection thresholds for minority and majority classes
Result: Decision table (S,A ∪ {d})
Calculate membership degree of the relation among objects: µR(x, y);
Calculate membership degree of the approximations for each class;
Calculate quality measurement of all instances in the majority classes for all
classes;
SY ← ∅;
SY →X ← ∅;
for x ∈ Yi do

if µR
Yi

(x) ≥ tY ) then
SY ← S ∪ {x};

else
Z(x)←

⋃
j{Xj |µR

Xj
(x) ≥ tX};

if Z(x) 6= ∅ then
Find Xm ∈ X satisfy µR

Xm
(x) = maxj{µR

Xj
(x)|Xj ∈ Z(x)};

if a pair occurs then choose the first Xm;
µXm(x)← µYi(x);
µYi(x)← 0;
SY →X ← SY →X ∪ {x};

end

end

end
S ←

⋃
i{Xi ∈ X} ∪ SY ∪ SY →X ;

Fig. 3. MFRIS2 - The second algorithm: Choosing, removing or relabelling instances
for majority classes

Experiments were conducted using R programming3 running on RStudio4.

Training data are first cleaned by instance selection algorithms. For rough
set based instance selection methods, we measure fuzzy tolerance relations on

an attribute by membership function µRa(x, y) = 1 − |fa(x)−fa(y)|l(a) , where l(a)

is the range of value domain on a. In this study, we do not deal with missing
values. However, it is possible to define µRa(x, y) for incomplete information by
following the study in [16].

The fuzzy tolerance relation on a set of attributes can be calculated by a
combination of the relation on each attribute by Lukasiewicz’s t-norm T =
max(x2 + x1 − 1, 0). For those which use OWA fuzzy rough sets, the OWA
operators are set as follows:

Wmin =< wmin
i >= wmin

n+1−i = 23−i

23−1 for i = 1, 2, 3 and 0 for i = 4, ..., n,

Wmax =< wmax
i >= wmax

i = 23−i

23−1 for i = 1, 2, 3 and 0 for i = 4, ..., n,

where n is number of instances in datasets.

3 http://www.r-project.org/
4 http://www.rstudio.com/
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Table 1. Datasets for experiments

Datasets Inst... Feat... IR Datasets Inst... Feat... IR

pima 768 8 1.87 shuttle-c0-vs-c4 1829 9 13.87
haberman 305 3 2.77 page-blocks-1-3 vs 4 472 10 15.86
liver man 439 9 2.78 yeast4 1484 8 28.10
vehicle1 846 18 2.90 winequality-red-4 1599 11 29.17
blood transfusion 748 4 3.20 ozone one hr 1848 72 31.42
life-style-diseases 4819 13 4.04 yeast5 1484 8 32.73
segment0 2308 19 6.02 ecoli-0-1-3-7 vs 2-6 280 7 39.00
page-blocks0 5472 10 8.79 yeast6 1484 8 41.40
yeast-2 vs 4 514 8 9.08 mammography 11183 6 42.01
vowel0 988 13 9.98 winequality-red-8 vs 6-7 855 11 46.50
glass2 214 9 11.59 winequality-white-3-9 vs 5 1482 11 58.28
ozone eight hr 1847 72 13.43 winequality-red-3 vs 5 691 11 68.10

Table 2. Confusion matrix for a two-class problem

Positive prediction Negative prediction

Positive class True Positive (TP) False Negative (FN)
Negative class False Positive (FP) True Negative (TN)

For our approach, we also use OWA fuzzy rough set with above operators and
set α = 0.5 to calculate µRX . That is the same as instances quality measurement
in FRIPS-SMOTE-FRBPS in terms of distinguishing instances quality.

Next, selected data are used for training using several classification tech-
niques including k-Nearest Neighbours [7], Support Vector Machine [6], naive
Bayes [24] and Decision Trees [26]. It should be noticed that these data classifi-
cation toolboxes are available within R data mining packages.

To evaluate classification performance in different cases where classifier tech-
niques are used as well as instance selection methods, we use the confusion
matrix (Table 2) to calculate the Area Under the ROC Curver(AUC) [11]. AUC
provides a single measure for comparing classification on average.

AUC =
1

2

(
TP

TP + FN
+

TN

TN + FP

)
. (15)

For comparison, we try to obtain the best performance for each instance
selection algorithm. FRPSS suggests its own method of threshold optimization.
For FRIS and MFRISs, instance measurements are quantized into a set of a
limited number of elements. We then use this set as threshold candidates in
order to find out if there is a significant increase in performance.

In general, from the average AUC shown in Table 3, we can see that af-
ter using the modification of rough set instances selection (both MFRIS1 and
MRIS2), the classification performance increases noticeably in almost datasets.
It seems that the use of multiple thresholds is more effective with the increase
of IR value. Although the original fuzzy rough instance selection approach does
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Table 3. Average AUC archived by the different classifiers for each instance selection
method (bold numbers show the highest)

Datasets NONE FRIS FRPSS MFRIS1 MFRIS2

pima 0.7031 0.7099 0.6967 0.7462 0.7303
haberman 0.5559 0.5795 0.6292 0.6565 0.6195
liver man 0.5673 0.5903 0.6665 0.7078 0.6991
vehicle1 0.6478 0.6545 0.6931 0.7357 0.7387
blood transfusion 0.5802 0.6084 0.6290 0.6845 0.6765
life-style-diseases 0.5537 0.5794 0.5729 0.6055 0.5629
segment0 0.8645 0.8769 0.8638 0.9466 0.9058
page-blocks0 0.8177 0.8433 0.8650 0.8963 0.8870
yeast-2 vs 4 0.7892 0.7958 0.7678 0.9102 0.8856
vowel0 0.8996 0.8443 0.9482 0.9556 0.9498
glass2 0.5305 0.5489 0.6082 0.7291 0.6918
ozone eight hr 0.5738 0.5738 0.7325 0.5738 0.5738
shuttle-c0-vs-c4 0.9947 0.6166 0.9947 0.9987 0.9983
page-blocks-1-3 vs 4 0.7996 0.8048 0.8059 0.9187 0.9046
yeast4 0.5710 0.6020 0.8069 0.8416 0.7924
winequality-red-4 0.5090 0.5094 0.6232 0.6621 0.6785
ozone one hr 0.5659 0.5659 0.7485 0.5659 0.5659
yeast5 0.8081 0.8081 0.8736 0.9759 0.9421
ecoli-0-1-3-7 vs 2-6 0.6487 0.6519 0.5625 0.7766 0.8593
yeast6 0.6634 0.6879 0.8019 0.8996 0.8587
mammography 0.7559 0.7735 0.7790 0.8771 0.7587
winequality-red-8 vs 6-7 0.5085 0.5102 0.5896 0.6661 0.7278
winequality-white-3-9 vs 5 0.5310 0.5318 0.5715 0.7111 0.7464
winequality-red-3 vs 5 0.5252 0.5128 0.5385 0.6481 0.8376

not deal with imbalanced data, the increase in performance of MFRISs proves
that it is possible to use fuzzy rough sets based instance selection with some
criteria to overcome the imbalance issue.

Although less consuming time may be an advantage, besides high perfor-
mance archived, we do not show the time measurements in this version. This is
due to the different criteria in choosing thresholds. FRISS, as stated before, has
its own method to optimize thresholds. It considers the unique set of all instance
measurements as the threshold candidates. This means that the algorithm has
to train and test numerous times (nearly as many as the cardinality of training
sets). In FRIS and MFRISs, on the other hand, we tried in limited times.

To a comparison of the two algorithms using our approach, MFRIS1 archives
better performance for most datasets even though MFRIS2 still improves per-
formance. In the second algorithm, all instances in minority classes are chosen. If
such instances do not have sufficient quality, an edited training set from MFRIS2
cannot be better than that from MFRIS1.

When comparing the classifiers, in general, we can see the differences among
them in terms of performance evaluation when there is no instance selection
method employed (Figure 4, transparency color bars). SVM seems to be sensitive
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Fig. 4. Comparing average of AUC (on all datasets) and increase on average of AUC
using MFRISs for different classifiers

Table 4. Comparing the thresholds for MFRIS1 that give the highest improvement of
each classifier on mammography dataset (the first number is for minority)

Training sets kNN SVM nBayes DecisionTree

fold2 3 0.5090 0.5966 0.5300 0.6483 0.5000 0.5966 0.5090 0.5966
fold1 3 0.5020 0.5841 0.5220 0.6322 0.4540 0.5841 0.5090 0.6322
fold1 2 0.5100 0.5911 0.5280 0.6517 0.4040 0.5911 0.5210 0.6517

to imbalance issues, while Bayes provides better performance. This means that
for a different type of dataset with respect to imbalance issues, a different choice
of classifier may be required.

Figure 4 also illustrates the difference in performance increase (dark color
bars). SVM does not show a good result for imbalanced data, nevertheless, its
performance improves to a greater extent than the rest. In other words, naive
Bayes receives less support from instance selection methods. However, the per-
formance of all classifiers generally improves.

Obviously, optimized thresholds are various among classifiers and among
datasets. Table 4 shows that SVM needs to remove more instances by using
smaller thresholds in comparing with other classifiers. In addition, Table 5 sug-
gests that for some datasets, it is necessary to edit majority classes by discarding
many instances (high majority thresholds) while moving some instances to mi-
nority classes.
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Table 5. Comparing the thresholds for MFRIS2 that the highest improvement of each
classifiers on winequality-red-8 vs 6-7 dataset (the first number is for minority)

Training sets kNN SVM nBayes DecisionTree

fold2 3 0.2560 0.9075 0.2560 0.9602 0.1250 0.9360 0.2140 0.9602
fold1 3 0.2130 0.9085 0.2130 0.8758 0.1600 0.9085 0.1840 0.8758
fold1 2 0.0000 0.7619 0.1690 0.9575 0.0000 0.9082 0.1440 0.9082

5 Conclusion and future work

In this paper, we presented a modification of fuzzy-rough instance selection using
multiple thresholds. Retaining the advantages of fuzzy-rough sets when selecting
instances, it can measure the quality of instances for training phase in order to
select valuable instances. It also deals with imbalanced data by using different
thresholds between minority and majority classes.

Some experiments show that these approaches can improve performance con-
siderably. They can also be competitive with state-of-the-art methods. Further-
more, this notion can potentially applied to modify current rough set based
learning methods in order to eliminate the instance selection step.

This paper mainly proves the robustness of using multiple thresholds in fuzzy-
rough sets based instance selection approach. No algorithm for selecting valu-
able thresholds is suggested. Therefore, in further research we intend to study a
method of optimizing thresholds and will endeavour to discover a better instance
quality measurement function.
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