F. Y. Ahmed, S. M. Shamsuddin, and S. Z. Hashim, Improved SpikeProp for Using Particle Swarm Optimization, Mathematical Problems in Engineering, vol.2, issue.3-4, p.13, 2013.
DOI : 10.1126/science.1071795

W. Gerstner and W. M. Kistler, Spiking neuron models: Single neurons, populations, plasticity, 2002.
DOI : 10.1017/CBO9780511815706

S. Schliebs, Integrated feature and parameter optimization for an evolving spiking neural network: Exploring heterogeneous probabilistic models, Neural Networks, vol.22, issue.5-6, pp.623-632, 2009.
DOI : 10.1016/j.neunet.2009.06.038

. Hamed, Novel Integrated Methods of Evolving Spiking Neural Network and Particle Swarm Optimisation, 2012.

H. A. Abbass, Speeding Up Backpropagation Using Multiobjective Evolutionary Algorithms, Neural Computation, vol.17, issue.3, pp.15-2705, 2003.
DOI : 10.1109/4235.797969

C. Igel, Multi-objective Model Selection for Support Vector Machines, in Evolutionary Multi-Criterion Optimization, pp.534-546, 2005.

Y. Jin, Multi-objective machine learning, 2006.
DOI : 10.1007/3-540-33019-4

Y. Jin, T. Okabe, and B. Sendhoff, Neural network regularization and ensembling using multi-objective evolutionary algorithms. in Evolutionary Computation, Congress on, 2004.

Y. Jin, B. Sendhoff, E. Körner-fieldsend, J. E. , and S. Singh, Evolutionary Multi-objective Optimization for Simultaneous Generation of Signal-Type and Symbol-Type Representations, in Evolutionary Multi-Criterion Optimization, Pareto evolutionary neural networks. Neural Networks, IEEE Transactions on, pp.752-766, 2005.

H. A. Abbass, Pareto neuro-evolution: Constructing ensemble of neural networks using multi-objective optimization. in Evolutionary Computation CEC'03. The 2003 Congress on, IEEE. 12. Chandra, A. and X. Yao, DIVACE: Diverse and accurate ensemble learning algorithm, in Intelligent Data Engineering and Automated Learning?IDEAL, pp.619-625, 2003.

K. C. Tan, T. H. Lee, and E. F. Khor, Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization, IEEE Transactions on Evolutionary Computation, vol.5, issue.6, pp.565-588, 2001.
DOI : 10.1109/4235.974840

Y. Jin, R. Wen, and B. Sendhoff, Evolutionary Multi-objective Optimization of Spiking Neural Networks, Artificial Neural Networks?ICANN 2007, pp.370-379, 2007.
DOI : 10.1007/978-3-540-74690-4_38

A. Y. Saleh, A Novel hybrid algorithm of Differential evolution with Evolving Spiking Neural Network for pre-synaptic neurons Optimization, Int. J. Advance Soft Compu. Appl, vol.6, issue.1, 2014.

S. Wysoski, L. Benuskova, and N. Kasabov, On-Line Learning with Structural Adaptation in a Network of Spiking Neurons for Visual Pattern Recognition, Artificial Neural Networks?ICANN, pp.61-70, 2006.
DOI : 10.1007/11840817_7

N. Kasabov, Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition, Schliebs, S. and N. Kasabov, Evolving spiking neural network?a survey. Evolving Systems, pp.188-201, 2013.
DOI : 10.1016/j.neunet.2012.11.014

N. K. Kasabov, NeuCube: A spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data, Neural Networks, vol.52, pp.62-76, 2014.
DOI : 10.1016/j.neunet.2014.01.006

N. Kasabov, Evolving Spiking Neural Networks and Neurogenetic Systems for Spatio- and Spectro-Temporal Data Modelling and Pattern Recognition, Advances in Computational Intelligence. 2012, pp.234-260
DOI : 10.1007/978-3-642-30687-7_12

N. Kasabov, Evolving spiking neural networks for personalised modelling, classification and prediction of spatio-temporal patterns with a case study on stroke, Neurocomputing, vol.134, pp.269-279, 2014.
DOI : 10.1016/j.neucom.2013.09.049

S. M. Bohte, J. N. Kok, and H. L. Poutre, Error-backpropagation in temporally encoded networks of spiking neurons, Neurocomputing, vol.48, issue.1-4, pp.17-37, 2002.
DOI : 10.1016/S0925-2312(01)00658-0

. Hamed, String Pattern Recognition Using Evolving Spiking Neural Networks and Quantum Inspired Particle Swarm Optimization, pp.611-619, 2009.

S. Thorpe, How can the human visual system process a natural scene in under 150ms? experiments and neural network models, 1997.

R. T. Marler and J. S. Arora, Survey of multi-objective optimization methods for engineering. Structural and multidisciplinary optimization, pp.369-395, 2004.

G. G. Yen and H. Lu, Dynamic multiobjective evolutionary algorithm: adaptive cell-based rank and density estimation, IEEE Transactions on Evolutionary Computation, vol.7, issue.3, pp.253-274, 2003.
DOI : 10.1109/TEVC.2003.810068

J. L. Cohon, Multiobjective programming and planning, 1978. Academic, 2010.

R. Steuer, R. Philipson, and A. Ravindran, Multiple criteria optimization: theory, computation, and application Application of goal programming to machinability data optimization, Journal of Mechanical Design, vol.30, issue.1002, pp.286-291, 1978.

A. Charnes and W. W. Cooper, Management Models and Industrial Applications of Linear Programming, Management Science, vol.4, issue.1, pp.38-91, 1957.
DOI : 10.1287/mnsc.4.1.38

Y. Ijiri, Management goals and accounting for control, 1965.

H. A. Abbass, R. Sarker, and C. Newton, PDE: a Pareto-frontier differential evolution approach for multi-objective optimization problems. in Evolutionary Computation, Proceedings of the 2001 Congress on, 2001.

S. Das and P. N. Suganthan, Differential Evolution: A Survey of the State-of-the-Art, IEEE Transactions on Evolutionary Computation, vol.15, issue.1, pp.4-31, 2011.
DOI : 10.1109/TEVC.2010.2059031

J. D. Schaffer, Multiple Objective Optimization with Vector Evaluated Genetic Algorithms, Proceedings of the 1st International Conference on Genetic Algorithms1985, L. Erlbaum Associates Inc. p, pp.93-100

E. Zitzler, M. Laumanns, and S. Bleuler, A tutorial on evolutionary multiobjective optimization, in Metaheuristics for multiobjective optimisation, pp.3-37, 2004.

K. Deb, Scalable Test Problems for Evolutionary Multiobjective Optimization, 2005.
DOI : 10.1007/1-84628-137-7_6

S. N. Qasem and S. M. Shamsuddin, Memetic Elitist Pareto Differential Evolution algorithm based Radial Basis Function Networks for classification problems, Applied Soft Computing, vol.11, issue.8, pp.5565-5581, 2011.
DOI : 10.1016/j.asoc.2011.05.002

E. Mezura-montes, M. Reyes-sierra, and C. A. Coello, Multi-objective optimization using differential evolution: a survey of the state-of-the-art, in Advances in differential evolution, pp.173-196, 2008.

K. Do and C. Ambroise, Analyzing microarray gene expression data, pp.1080-1087, 2004.

S. García, J. Luengo, and F. Herrera, A Data Mining Software Package Including Data Preparation and Reduction: KEEL, pp.285-313, 2015.
DOI : 10.1007/978-3-319-10247-4_10

J. Derrac, Using KEEL software as a educational tool: A case of study teaching data mining, 2011 7th International Conference on Next Generation Web Services Practices, 2011.
DOI : 10.1109/NWeSP.2011.6088224

J. Alcalá, Keel data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework, Journal of Multiple-Valued Logic and Soft Computing, pp.255-287, 2011.