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Abstract. Energy e�cient scheduling and allocation in multicore envi-
ronments is a well-known NP -hard problem. Nevertheless approximated
solutions can be e�ciently found by heuristic algorithms, such as evo-
lutionary algorithms (EAs). However, these algorithms have some draw-
backs that hinder their applicability: typically they are very slow, and
if the space of the feasible solutions is too restricted, they often fail to
provide a viable solution. In this paper we propose an approach that
overcomes these issues. The approach is based on a custom EA that is
fed with predicted information provided by an existing static analysis
about the energy consumed by tasks. This solves the time ine�ciency
problem. In addition, when this algorithm fails to produce a feasible so-
lution, we resort to a modi�cation of the well-known YDS algorithm that
we have performed, well adapted to the multicore environment and to
the situations when the static power becomes the predominant part. This
way, we propose a combined approach that produces an energy e�cient
scheduling in reasonable time, and always �nds a viable solution. The
approach has been tested on multicore XMOS chips, but it can easily be
adapted to other multicore environments as well. In the tested scenarios
the modi�ed YDS can improve the original one up to 20%, while our EA
can save 55− 90% more energy on average than the modi�ed YDS.

Keywords: Scheduling, energy e�ciency, multicore systems, evolution-
ary algorithms, YDS.

1 Introduction

Energy e�cient scheduling has gained a lot of interest in the recent past. A great
number of publications, e.g., [6], try to present it as a mixed integer linear opti-
misation problem, which can be solved using mixed integer linear programming,
or using a heuristic approach. However, these algorithms become impractical or
fail to deliver a solution as the problem size grows. There is a signi�cant group of



publications on using EAs for the problem of optimal scheduling and allocation
in multiprocessor systems that allow Dynamic Voltage and Frequency Scaling
(DVFS), e.g., the approach presented in [11] aims to minimize both energy and
makespan as a bi-objective problem.

Energy e�cient scheduling and allocation in multicore environments with
enabled DVFS is a well-known NP -hard problem. Nevertheless approximated
solutions can be e�ciently found by heuristic algorithms, such as evolutionary
algorithms (EAs). An example is our previous EA-based algorithm [3]. In our
setting, we want to solve the general scheduling problem where the tasks have
arbitrary release times and deadlines, and where preemption and migration of
tasks are allowed, but the problem still remains NP -hard for arbitrary release
times and deadlines of the tasks which are not agreeable,1 as it was proven in [1].
Our algorithm has been adapted for its application to multicore XMOS chips,
but it could easily be adapted to any multicore environment, ranging from small
scale embedded systems up to large scale systems, such as data centers. Its �rst
practical implementation relied on an existing analytical model for calculating
the energy consumption for programs running on these chips [8]. The energy
model is limited to the cases when all the cores belong to the same chip, thus
they must run at the same voltage and frequency level at each moment. For this
reason, in this work we solve the problem of the so-called global DVFS, when all
the cores always have the same voltage and frequency.

In our �rst EA implementation, each individual in each generation is evalu-
ated by using the above mentioned program energy model, which requires the
execution traces of the programs. Given that the traces can be huge, even for
small programs, such evaluation introduces a huge amount of overhead. In order
to overcome this issue, in this paper we use an existing static analysis which,
at compile time, without the need of executing the programs, and in a few sec-
onds, gives a safe estimation of the energy consumed by programs. As energy
consumption often depends on (the size of) input data, which is not known at
compile time, the static analysis provides the energy as a function of the input
parameters, which is calculated once such input values are known at runtime. The
energy consumption estimated by using the static analysis for a given scheduling
is computed as the sum of the energies of the tasks running on di�erent cores.
This gives a safe upper bound on the total energy consumption, although it may
be less precise than the estimations computed with the program energy model
mentioned previously. This may reduce possible energy savings, nevertheless, the
information it provides is still good enough to decide which scheduling is better,
and the gain in speed of the algorithm is huge: the simulation time is reduced
from a few hours to a few minutes.

However, the EAs can have trouble in �nding a viable solution, in the sense
that not all task deadlines are met, if the task deadlines are too tight. In order
to overcome this problem, we have adapted the standard YDS 2 algorithm [15]
(explained in Section 2) to multicore environments. As we will see later, our

1 Two tasks are agreeable if the task with later release time also has a later deadline.
2 The name is created using the �rst letter of the authors' last names.



Fig. 1. Overview of our scheduling approach.

experimental results show that if the EA �nds a viable solution, it is better than
the one obtained by our modi�ed YDS algorithm in terms of energy savings.

For these reasons, the approach we propose (depicted in Figure 1) consists
of the following steps:

1. Perform the static analysis of the input tasks to estimate the energy con-
sumed by each of them.

2. Execute the EA using such estimations.
� If the EA provides a viable solution, i.e., all the task deadlines are met,
this is the �nal solution.

� Otherwise, execute our modi�ed YDS algorithm and take its output as
the �nal solution.

We can distinguish two energy models in Figure 1:

� Instruction-level energy model: gives an estimation of the energy consumed
by the execution of a single instruction, which in general depends on its
inputs, context, etc. However, for simplicity, the model assigns a constant
value to each instruction. It is used by an abstract-interpretation based static
analysis to infer the energy consumed by a program.

� Program-level energy model: a formula that gives the energy consumption of
the entire program, as presented in [8], which is used by our modi�ed YDS
algorithm.

In summary, in this paper we propose a time e�cient scheduling approach,
which always provides a viable energy e�cient solution, and scales well as the
input size grows. The main original contributions of our approach are:

1. The combination of an EA algorithm that resorts to a modi�ed YDS algo-
rithm, which always provides a viable solution.

2. Use of static analysis for energy estimation at compile time to guide the
EA process, which results in signi�cant speed-up in solving the scheduling
problem, and hence the practicability of our approach, while still providing
a solution with signi�cant energy savings.



3. An improvement of the YDS algorithm, which e�ciently solves the static
power issue in the situations the chip cannot be switched o� (explained in
Section 2).

The rest of the paper is organised as follows. Section 2 gives more details
about our proposed approach. Section 3 presents an experimental evaluation of
the approach. Finally, some conclusions are drawn in Section 4.

2 Our Proposed Approach

Evolutionary Algorithm The approach we propose is based on the NSGA-
II [4] multiobjective evolutionary algorithm with two objectives: the execution
time and the total energy consumption, where both should be minimised. The
objectives are clearly in con�ict, since the application of DVFS reduces energy,
but increases execution time. This justi�es the usage of a multiobjective algo-
rithm. NSGA-II has been proven in the literature to perform good when the
number of objectives is small [3], and in our case we have only two.

Since the output of the multiobjective approach is a set of solutions which
form the (approximated) Pareto front, we can choose the solution that meets
some given energy and/or time requirements. Usually we pick the solution with
the minimal energy consumption among those that meet the given time bound
(if applicable).

Individual Representation The problem that we are solving is the optimal
(in terms of energy or time, possibly under some requirements involving them)
allocation and scheduling of a set of tasks, where each task is de�ned by its:

� Unique ID.
� Release time, i.e., the moment when the task becomes available.
� Deadline, i.e., the latest moment when the task has to �nish.
� Number of clock cycles, as a good approximation of the execution time.

Thus, the solution to this problem has to contain the following information:

� The core(s) where each task will be executed. Since we allow task migration,
a task can be allocated to more than one core.

� The current voltage and clock frequency (V, f) state to exploit DVFS.
� The time periods when the tasks are executed.
� The number of clock cycles each task will execute in the di�erent periods
marked by the preemption and migration of that task. This allows to express
the number of cycles a task will execute before it is preempted, as well as
the number of cycles it will execute after it is resumed in the same or in a
di�erent core, etc.

Having in mind these requirements, we have designed the solution represen-
tation as shown in Figure 2, which does not introduce signi�cant overhead when
executing the EA. Any given task has a positive (unique) number as its ID.



Each gene representing a task ID is followed by a gene representing the number
of cycles of the task that will be executed without any preemption. The order of
task IDs represents the order of their temporal execution. We also use negative
two digit numbers to encode the spatial allocation of the tasks. The �rst digit
represents the core where the tasks are being executed and the second one an
encoding of the (V, f) state of that core. As it will be explained in Section 3,
Table 1, the number of di�erent cores and states is �nite, as well as the number
of their combinations. The tasks following the allocation code are executed on
that coded location. For instance, on Figure 2 we read: on core 1 in state 2, 48
cycles of task 1 will be executed, and 77 cycles of task 5, in this exact order, etc.

Our approach allows a random order of allocation codes, in order to solve the
most general problem. However, if two consecutive allocation codes have di�erent
(V, f) states, this means that the tasks allocated to the cores they represent will
not be executed in parallel, since all of the cores have to run at the same (V, f)
at any moment, and thus the (V, f) state has to be changed before the second
group of tasks is executed. For example, in Figure 2 the allocation code following
−12 is −24, which means that the chip will be �rst in the (V, f) state 2 and all
tasks allocated to core 1 will be executed sequentially on that core. After they
�nish their execution, the core will change its (V, f) state from 2 to 4, and the
tasks allocated to core 2 will be executed sequentially on core 2. If the second
allocation code were −22 instead of −24, then the (V, f) state would not change,
and the tasks allocated on cores 1 and 2 would be executed in parallel.

Fig. 2. An example of (part of) a solution (i.e., individual) representation.

Population Initialisation Individuals in the initial population are created by
randomly assigning tasks to random cores in random (V, f) settings with equal
probability. However, in order to provide a load balanced solution (as much as
possible), the probability of choosing a core decreases as its load increases, which
is given by the following formula:

Prob =
1

NumberOfCores
− CurrentCoreLoad

TotalLoad
(1)

where CurrentCoreLoad stands for the current load of the core expressed as
the number of cycles, while TotalLoad stands for the total number of cycles
of all the tasks on all cores. According to the formula, at the beginning of the
initialisation process, all cores have the same probability of being chosen, while
this probability decreases as the core becomes loaded, and is close to 0 when the



load reaches the state where it is equally distributed in all cores. If during the
initialisation process a newly calculated probability value of a core is below 0,
the value is rounded to 0, and no new load will be assigned to that core. These
random solutions do not always have to provide a viable solution, i.e., some of
the tasks might miss their deadlines. For this reason, the mutation operator and
the objectives are designed to deal with this problem.

Solution Perturbations Given the unique nature of the individual represen-
tation, we have designed new crossover and mutation operators. The individuals
that participate in the crossover are selected by using the standard tournament
selection process.

The Crossover Operator Since our solution allows task migration, a given
task ID can appear more than once, so we cannot apply any of the existing
permutation-based crossover operators. Thus, we have designed our own oper-
ator, where each child will preserves the order of genes representing the task
allocation and scheduling from one parent, and only the genes representing the
number of cycles can be taken from the other parent. In this way, the produced
o�spring is a combination of both parents, and is at the same time a viable
solution to the problem. The process is depicted in Figure 3 for the most simple
case of 2 cores, 2 tasks and 2 states, with one possible output. We can observe
that the �rst child, C1 takes the scheduling and allocation from the �rst parent,
P1, and the cycle distribution from the second parent, P2, while the second, C2,
takes the scheduling and allocation from P2 and the cycle distribution from P1.

Fig. 3. An example of a crossover operation.

The Mutation Operator The mutation operator can perform di�erent actions
involving one or two tasks. Consider two tasks i and t. When choosing the �rst
one we give higher probability to the tasks which miss their deadlines, in order
to achieve a viable solution as soon as possible. In each generation we perform



either one of the following operations with the same probability (depicted in
Fig. 4):

� Swapping: i and t, together with their corresponding number of cycles, ex-
change their positions in the solution. However, in order to avoid creating
solutions which are not viable, i and t have to belong to the cores that are
executed in parallel (de�ned with consecutive allocation codes that are in the
same (V, f) state). In Fig. 4 we can observe that tasks 1 and 2 are swapped
between cores 1 and 2, and both cores are in state 1.

� Moving : move i to a random position j. For the same reason as before, the
position j has to belong to a core being executed in parallel as i's. In Fig. 4
we can observe that the �rst part of task 1 (40 cycles) is moved to core 2,
before task 2.

� Changing the number of cycles: assigns a di�erent number of cycles to all
the appearances of task i, in a way the total number of cycles of that task
remains the same. In Fig. 4 we can observe that task 1 after the change
executes 25 cycles on core 1 in state 1 and 45 cycles on core 2 in state 2.

Fig. 4. Examples of mutation operations.

Objective Functions

Execution Time One objective of our optimisation problem is to minimize the
total execution time of the schedule, which is the time spent since the �rst task
starts its execution until the last task �nishes its execution. However, since the
initial population is randomly created, it is possible that some of the tasks miss
their deadlines, making the solution unviable. Assuming that these solutions
can provide some quality genetic material, we do not want to discard them com-
pletely, but we penalize them by adding the amount of time the tasks have missed
their deadlines to the objective function. Thus, the time objective function for
n cores and k di�erent tasks is the following:

T̂ = T +
∑

1≤i≤n

(
∑

1≤j≤k

xi,j · yj · (si,j + τi,j − deadlinej)) (2)



where T is the total execution time, given by:

T = max
1≤i≤n
1≤j≤k

(xi,j · (si,j + τi,j))− min
1≤i≤n
1≤j≤k

(xi,j · si,j) (3)

where si,j ≥ 0 is the moment when task j is scheduled on core i (si,j = 0 if the
task j is not scheduled on core i), τi,j is the execution time of task j on core
i, xi,j is a binary value, that represents whether the task j is executed on core
i (xi,j = 1) or not (xi,j = 0). The second part of formula (2) represents the
penalisation, where yj is another binary value that expresses whether the task
j has missed its deadline, deadlinej , (yj = 1) or not (yj = 0).

Energy Consumption This objective represents the total energy consumption
of the given schedule. In the most general case it is given by the following formula:

E =
∑

1≤i≤n

(Pst,i · T +
∑

1≤j≤k

(xi,j · pi,j · τi,j)) (4)

where Pst,i is the static power of core i, T is the same as in formula (3), pi,j
is the dynamic power of task j when executed on core i, and xi,j and τi,j are
the same as in formula (2). In this work we use static analysis to estimate the
energy of single tasks, which will be explained in more detail in Section 2, while
the energy is the sum of the energies of all the tasks, as given in formula (4).

TheModi�ed YDS AlgorithmYDS [15] is a well known algorithm for energy-
e�cient scheduling for single core DVFS-enabled environments. We have chosen
it because it always �nds a feasible (and optimal) solution that minimises the
total energy consumption, it is simple and fast. However, it does not take into
account the static power, which nowadays forms an important part of the total
power. YDS reduces the frequency and voltage in order to minimise the dynamic
power in a way that the execution time of tasks are extended to their deadlines.
However, this also results in an increase of the static energy. Thus, there is
a critical point from which further reduction of voltage and frequency actually
starts increasing the energy consumption. Attempts to reducing the static energy
when applying DVFS have mainly tried to group the inactive periods by moving
task executions towards their deadline or its release point, and turning o� the
chip during such periods [7]. However, this is not always possible since chip wake
up can take more time than available. Our alternative proposal does not turn o�
the chip, but instead, �nds the critical (V, f) point below which further decrease
is not bene�cial. Thus, our modi�cation of YDS consists of the following steps:

1. In order to decide if it is bene�cial to further decrease the frequency, and
in this way avoid the problem when the increase in energy consumed by the
static power leads to the total energy increase, we use the simple slope-based
method presented in [12].

2. In order to support the multicore system, we propose two di�erent heuristics
for allocating the tasks to di�erent cores: the load balanced solution and the
solution where a task allocation leads to the minimal frequency increase.
After the allocation, the YDS algorithm is applied to each core.



3. In order to adapt the algorithm so that it assigns only the frequencies sup-
ported by the system, we propose to divide the computational load into two
parts and execute them on two supported frequencies in a way the total
execution time remains (almost) the same.

A Solution to the Static Power Issue of YDS As mentioned before, we
use the simple slope-based method presented in [12]. The only requirement for
its application is the availability of a power model where the static and dynamic
power are separated. The main idea of the method is the following. If we �x the
voltage, the power is a linear function of the frequency, and after applying some
simple numeric transformations (explained in [12] in detail), it can be expressed
in this way:

Pf = Pfmin +m · (f − fmin) (5)

where Pf denotes that the power depends on frequency f , and fmin is the min-
imal possible frequency, assumed to be the one which permits the execution of
tasks to �nish at their deadlines, and m is called the slope of the power function.
If we can compare energies at di�erent frequencies, we will know if it is energy
e�cient to decrease the frequency. Since power is a function of m, the same ap-
plies to energy, and thus it determines the decision of decreasing the frequency.
In theory, there should exist a slope at which energy is equal for all frequencies.
This slope is called the critical power slope:

mcritical =
Pfmin − Pidle

fmin
(6)

If the actual slope m (calculated from Eq. 5) is greater than the critical one
then we can decrease the frequency in order to save energy. However, if the slope
is lower than the critical one, then the frequency should be increased in order to
save the energy. Since the voltage can also change, the slope should be calculated
for each (Vx, fx) point for each frequency fx:

mfx
critical =

Pfx − Pidle

fx
(7)

This value is then compared with the actual slope mfx at each (Vx, fx) point

with frequency fx. Again, if m
fx > mfx

critical, we should decrease the frequency

in order to save the energy. However, if mfx < mfx
critical, the frequency should

be increased in order to save the energy.

Optimal Task-Core Allocation Other aspects of adapting YDS to a multicore
environment consist of �nding an optimal number of cores, and allocation, i.e.,
assignments of tasks to cores. In this work we do not deal with the �rst part of
the problem, we just show that an optimal number of cores exists and it is not
necessarily equal to the maximal possible number of cores. Regarding the second
part, we have tested two possibilities:

1. Assign tasks to the cores so that the load is equally distributed between
them.



2. Assign tasks in the way its addition assumes minimal change in frequency: a
task t is assigned to the core with minimal activity, measured as the number
of clock cycles in its active period (t_release_time, t_deadline).

Assigning Frequencies Supported by the System If the frequency f cal-
culated by YDS is not supported by the system, the total number of cycles ωi is
divided in two parts, ωi1 and ωi2, which are executed on two frequencies f1 and
f2 (f1 ≤ f ≤ f2) supported by the underlying system. The values of ωi1 and ωi2

are calculated by solving the following system of equations:

ωi

f
≈ ωi1

f1
+
ωi2

f2

ωi = ωi1 + ωi12

(8)

Energy Static Analysis as Input In order to estimate the energy consumed
by programs without actually running them we use an existing static analysis.
It is a specialisation of the generic resource analysis presented in [13] for pro-
grams written in a high-level C-based programming language, XC [14], running
on the XMOS XS1-L architecture, that uses the instruction-level energy cost
models described in [10]. The analysis is general enough to be applied to other
programming languages and architectures (see [10, 9] for details). It enables a
programmer to symbolically bound the energy consumption of a program P on
input data x̄ without actually running P (x̄). It is based on setting up a sys-
tem of recursive cost equations over a program P that capture its cost (energy
consumption) as a function of the sizes of its input arguments x̄. Consider for
example the following program written in XC:

i n t f a c t ( i n t N) {
i f (N <= 0) return 1 ;
re turn N ∗ f a c t (N − 1 ) ;

}

The transformation based analysis framework of [10, 9] would transform the
assembly (or LLVM IR) representation of the program into an intermediate
semantic program representation (HC IR), that the analysis operates on, which
is a series of connected code blocks, represented as Horn Clauses. The analyser
deals with this HC IR always in the same way, independent of where it originates
from, setting up cost equations for all code blocks (predicates).

facte(N) = fact_ife(0 ≤ N,N) + centsp + cstw + cldw + cldc + clss + cbf

fact_ife(B,N) =

facte(N − 1) + cbu + 2 cldw + csub +
+ cbl + cmul + cretsp if B is true

cmkmsk + cretsp if B is false

The cost of the function fact is captured by the equation facte which in
turn depends on the equation fact_ife, that captures the cost of the two clauses
representing the two branches of the if statement, and a sequence of low-level



Table 1. Viable (V, f) pairs for XMOS chips.

V oltage(V ) 0.95 0.87 0.8 0.8 0.75 0.7
frequency(MHz) 500 400 300 150 100 50

instructions. The cost of low-level instructions, which constitute an energy cost
model, is represented by ci where i ∈ {entsp, stw, ldw, ...} is an assembly in-
struction. Such costs are supplied by means of assertions that associate basic
cost functions with elementary operations.

If we assume (for simplicity of exposition) that each instruction has unitary
cost in terms of energy consumption, i.e., ci = 1 for all i, we obtain the energy
consumed by fact as a function of its input data size (N): facte(N) = 13 N+8.

The functions inferred by the static analysis are arithmetic functions (poly-
nomial, exponential, logarithmic, etc.) that depend on input data sizes (natural
numbers). We use them in our scheduling and allocation algorithm to estimate
the energy consumed by the di�erent tasks involved. Such estimation can be
computed very e�ciently once the input data sizes of the tasks are known, since
all the basic arithmetic functions involved can be evaluated in little bounded
time.

3 Experimental Evaluation

XMOS Chips In this work we target the XS1-L architecture of the XMOS chips
as a proof of concept. Although these chips are multicore and multithreaded, in
this work we assume a single core architecture with 8 threads, which is the
architecture for which we have an available energy model. In this case, we can
use the algorithm and representation of individuals described in Section 2 by
considering that a thread in our experiments is conceptually equivalent to a core
executing tasks sequentially, as described previously. We refer the reader to [3]
for a description of a representation of individuals whose allocation codes include
three digits, representing: a core, a thread running in parallel on that core, and
a (V, f) state.

In the XS1-L architecture, the threads enter a 4-stage pipeline, meaning
that only one instruction from a di�erent thread is executed at each pipeline
stage. If the pipeline is not full, the empty stages are �lled with NOPs (no
operation). E�ectively, this means that we can assume that the threads are
running in parallel, with frequency F/N , where F is the frequency of the chip,
and N = max(4, numberOfThreads). DVFS is implemented at the chip level,
which means that all the cores have the same voltage and frequency at the
same time. In order to apply DVFS, we need a list of Voltage-Frequency (V, f)
pairs or ranges that provide a correct chip functioning. We have experimentally
concluded that the XMOS chips can function properly with the voltage and
frequency levels given in Table 1.



Task Set In order to test our proposed approach, we use two di�erent groups
of task sets. The �rst group is made up of small tasks, where the EA train-
ing with the program-level energy model takes around one day to complete.
This group is used to show the di�erence between the results obtained with
the EA trained with the program-level energy model and the EA trained with
the energy estimations obtained by the static analysis. In this group, we use
four di�erent arithmetic programs: fact(N), for calculating the factorial of N,
fibonacci(N) for calculating the Nth Fibonacci number, sqr(N) for computing
N2 and power_of_two(N) for computing 2N . In total, we have created a set of 22
tasks to be scheduled, corresponding to the execution of the previous programs
with di�erent inputs N .

In the second group we use real world programs, where the EA training based
on the program-level energy model is not practical: fir(N), i.e., Finite Impulse
Response (FIR) �lter, which in essence computes the inner-product of two vec-
tors of dimension N, a vector of input samples, and a vector of coe�cients, and
biquad(N), which is a part of an equaliser implementation, based on a cascade
of Biquad �lters, whose consumed energy depends on the number of banks N.
We have used four di�erent FIR implementations, with di�erent number of co-
e�cients: 85, 97, 109 and 121. Furthermore, we have used four implementations
of the biquad benchmark, with di�erent number of banks: 5, 7, 10 and 14. We
have tested our approach in scenarios of 16 and 32 tasks, each one corresponding
to such implementations. The tasks corresponding to the same implementation
have di�erent release times and deadlines.

The energy consumed by the programs is inferred at compile time by the
static analysis described in Section 2. Such energy is expressed as a function
of a parameter N , the size of the input, which is only known at runtime. Such
functions are given in Table 2 for 3 of the 6 di�erent voltage and frequency levels
used in this work (for conciseness, as the functions for each program have the
same complexity order, but di�erent coe�cients). The static analysis assumes
that a single program (task) is running on one thread on the XMOS chip, while
all other threads are inactive. In this implementation, the EA algorithm approx-
imates the total energy of a schedule by adding the energies of all the tasks.
Although in this way we loose precision, the estimation still provides precise
enough information for the EA to decide which schedule is better.

Testing Scenarios In our current implementation, we assume no dependency
between the tasks since it is not supported by the available energy models. The
release times and deadlines of the di�erent tasks are set in di�erent scenarios
in order to experimentally show the bene�ts of DVFS and optimal scheduling,
where all the tasks have di�erent release times and deadlines, with tighter dead-
lines; and that it is important to take into account the static power, especially
in the case of loose deadlines.

Scenario 1: Tasks with Loose Deadlines In this scenario the release time of
a task k, denoted T k

rel is a random moment between 0 and the total execution
time at the maximal frequency of all the tasks executed sequentially on a single
core. Also, the deadline of a task is a random moment between T k

rel +10×T k
maxf



Table 2. Energy functions inferred by static analysis for 3 di�erent pairs of voltage
(V)/frequency (MHz).

V = 0.70 V = 0.75 V = 0.80

F = 50 F = 100 F = 150

fact(N) 60.5 N + 46 35 N + 26.7 27 N + 20.5

fib(N) 87.19× 1.62N+ 50.32× 1.62N+ 38.68× 1.62N+
26.7× (−0.62)N − 74.7 15.44× (−0.62)N − 43 11.85× (−0.62)N − 33.2

sqr(N) 21.3 N2 + 121 N 12.3 N2 + 69.8 N 9.48 N2 + 53.7 N
+39.1 +22.5 +17.3

powerOf2(N) 55.1× 2N − 39 63.7× 2N − 39 24.49× 2N − 30

fir(N) 74.93 N + 124.5 43.36 N + 71.9 33.41 N + 55.2

biquad(N) 386 N + 128 223.6 N + 74.2 172.5 N + 57.2

and T k
rel + 20 × T k

maxf , where T
k
maxf denotes the execution time of the task at

maximum frequency. This way we achieve a scenario with loose deadlines even
at a smaller frequency.

Scenario 2: Tasks with Tight Deadlines Here, the release time is the same
as in Scenario 1. However, the deadline of a task is a random moment between
T k
rel + 5 × T k

maxf and T k
rel + 7 × T k

maxf . This way we get tighter deadlines, but
also provide a set of tasks which are schedulable on the given platform. Note
that the deadlines become even tighter as the frequency decreases.

Results: The Improved YDS Table 3 shows the savings of our improved YDS
algorithm presented in Section 2 compared to the original YDS, for di�erent
number of cores and for two di�erent ways of task allocation: Alloc. 1, where the
load is evenly distributed between the cores, and Alloc. 2, where the addition of
a task implies a minimal increase in the frequency. The energy saving resulting
from a particular scheduling is calculated using the following formula:

Y DS_original − Y DS_modified
Y DS_original

· 100 (9)

In Table 3, energy savings are achieved in all, but in two cases with tight dead-
lines. A possible reason could be the fact that all the threads need to have the
same frequency always, which means that the maximal necessary frequency is
assigned, which is not necessarily be optimal for all the threads. However, in the
case of loose deadlines, the savings are much more signi�cant, since the static
power plays a more important role.

Results: EA vs. improved YDS Both EA and YDS are implemented in C++.
EA extends the MOGAlib library [5] for multiobjective genetic algorithms. In
the EA, the population of 200 individuals is evolved for 150 generations. The
probability of both crossover and mutation is 0.9. The mutation is assigned
higher probability than usual due to its important role for reaching a viable
solution. Since the result of the optimisation process is a set of possible solutions



Table 3. Energy savings obtained by the modi�ed YDS vs. the original YDS (%).

Tight deadlines Loose deadlines

#Cores Alloc. 1 Alloc. 2 Alloc. 1 Alloc. 2

1 4.18 4.18 6.21 6.21
2 1.5 4.26 14.67 14.67
3 -5.26 3.17 14.67 14.67
4 2.22 2.77 8.8 8.8
5 -3.28 3.47 11.18 11.18
6 0.95 4.34 11.82 11.82
7 4.8 3.03 10.9 10.9
8 19.36 5.61 10.56 10.56

which form the approximated Pareto front, we take the solution with minimal
energy consumption where all task deadlines are met.

Table 4 presents results comparing the EA trained with the energy estima-
tions provided by static analysis, versus the improved YDS algorithm presented
in Section 2. In the �rst column, the energy of the �nal solution calculated by
using the program-level energy model is given (EAs). The second column gives
the energy of the �nal scheduling obtained by the modi�ed YDS algorithm (re-
ferred as Y DSm) using the program-level energy model, while the third column
gives the energy saving of the EA trained with static analysis compared to YDS.
Finally, the last column shows the energy saving obtained with the EA trained
with the program-level energy model(EAm) [2], which is only applicable in the
scenarios with a small number of numeric tasks. Each row shows statistics for
each scenario taken from 10-20 runs of the algorithm for the same scenario,
where CI0.01 and CI0.05 represent 99% and 95% con�dence intervals, meaning
that we can claim with 99(95)% certainty that the �nal result will fall in these
intervals.

In order to perform the comparison between the EA and Y DSm, in the
case of EA and tight deadlines, we present the results when the EA can �nd
a viable solution. However, the EA does not always provide a viable solution
in all the scenarios with tight deadlines created as explained previously. As we
can see in Table 4, if the EA �nds a viable solution, it always performs better
than the Y DSm. We can also observe that the EA trained with the program-
level energy model achieves better results. However, the EA trained with the
energy estimations by static analysis still achieves very good results, but with
the training process that lasts around 10 minutes, compared to around 24 hours
of training the EA with the program-level energy model, which makes it much
more practical.

4 Conclusions and Future Work

In this work we propose a holistic approach for optimal scheduling, allocation and
voltage(V ) and frequency(f) assignment in multicore environments, adapted for



Table 4. EA vs. improved YDS in di�erent scenarios.

EAs(µJ) Y DSm(µJ) (Y DSm−EAs)
Y DSm

(%) (Y DSm−EAm)
Y DSm

(%)

A scenario with 22 small numeric tasks and loose deadlines

Mean 14.3 33.1 56.8 76.57
CI 0.01 11.6 - 17 NA 48.64 - 64.95 67.87-85.27
CI 0.05 12.2 - 16.4 NA 50.45 - 63.14 70.05- 83.09

A scenario with 22 small numeric tasks and tight deadlines

Mean 14.6 34.8 60.92 69.83
CI 0.01 11.5-17.7 NA 49.14 - 66.95 57.18-57.18
CI 0.05 12.2 - 17 NA 51.15 - 64.94 60.34-60.34

A scenario with 16 tasks made of Biquad and FIR �lters and loose deadlines

Mean 4.38 35.3 87.59 NA
CI 0.01 3.4 - 5.3 NA 85 - 90.37 NA
CI 0.05 3.7 - 5.1 NA 85.55 - 89.52 NA

A scenario with 16 tasks made of Biquad and FIR and tight deadlines

Mean 14.5 35.4 59.04 NA
CI 0.01 9.4- 19.6 NA 44.63 - 73.45 NA
CI 0.05 10.6 - 18.4 NA 48.02 - 70.06 NA

A scenario with 32 tasks made of Biquad and FIR �lters and loose deadlines

Mean 17.85 68.16 73.81 NA
CI 0.01 10.8 - 25 NA 63.32 - 84.15 NA
CI 0.05 12.5 - 23.3 NA 65.82 - 81.66 NA

A scenario with 32 tasks made of Biquad and FIR �lters and tight deadlines

Mean 29.43 68.16 56.82 NA
CI 0.01 0.72 - 51.6 NA 24.3 - 89.44 NA
CI 0.05 12.5 - 46.3 NA 32.07 - 81.66 NA

multicore XMOS chips. The main part of our approach is based on our custom
developed EA-algorithm, which relies on static analysis to e�ciently estimate
the energy of input tasks. The use of such static analysis improves signi�cantly
the speed of the EA training process, thus allowing its real world applicability.
Furthermore, since in the case of very tight task deadlines the EA can fail in
providing a feasible solution, we add one more stage based on the YDS algorithm,
which has been adapted for multicore environments and improved in a way it
takes into account the static power. In this way, we have developed an e�cient
approach which is capable of providing energy savings in each possible scenario.

However, although the use of static analysis based estimations still provides
energy savings, we have seen that better results can be achieved with more
precise energy estimations. For this reason, we plan to use a static analysis
of the energy consumed by concurrent programs, which is expected to provide
additional savings. As a future work, we also plan to study the e�ect of di�erent
versions of the crossover and mutation operators in di�erent situations, which
could enable adding a heuristic for choosing the optimal version for each possible
scenario.
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