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ABSTRACT
Finding commonalities between descriptions of data or knowl-
edge is a fundamental task in Machine Learning. The formal
notion characterizing precisely such commonalities is known
as least general generalization of descriptions and was intro-
duced by G. Plotkin in the early 70’s, in First Order Logic.

Identifying least general generalizations has a large scope
of database applications ranging from query optimization
(e.g., to share commonalities between queries in view se-
lection or multi-query optimization) to recommendation in
social networks (e.g., to establish connections between users
based on their commonalities between profiles or searches).

To the best of our knowledge, this is the first work that re-
visits the notion of least general generalizations in the entire
Resource Description Framework (RDF) and popular con-
junctive fragment of SPARQL, a.k.a. Basic Graph Pattern
(BGP) queries. Our contributions include the definition and
the computation of least general generalizations in these two
settings, which amounts to finding the largest set of com-
monalities between incomplete databases and conjunctive
queries, under deductive constraints. We also provide an
experimental assessment of our technical contributions.

1. INTRODUCTION
Finding commonalities between descriptions of data and

knowledge is an old problem in Machine Learning. This
was formalized by G. Plotkin in the early 70’s, as comput-
ing least general generalizations (lggs) of First Order Logic
formulae [21, 22].

Interestingly, this problem has a large scope of applica-
tions when transposed in a database setting, i.e., when de-
scriptions are expressed in a given data model or query lan-
guage. In Query Optimization, lggs of subsets of a query
workload W may be used to identify candidate views or po-
tential query sharing, with which W can be efficiently eval-
uated, in the View Selection problem or in the Multi-Query
Optimization problem, respectively. In Recommendation, in
particular in a social context, lggs of sets of user descriptions

(i.e., profiles) may help recommending users other users, or
to form a community, when they share enough interests.
Also, lggs of sets of queries issued by distinct users may
help recommending users to each other, if what they ask for
is enough related. In Exploration, lggs of datasets may be
used to classify/categorize them w.r.t. their common infor-
mation, to identify common social graph patterns between
organizations (e.g., criminal ones), or to help identifying new
potential links between datasets in the Linked Data Cloud.

Contributions. In this work, we revisit the problem of
computing least general generalizations in the RDF data
model and its SPARQL query language, the prominent Se-
mantic Web standards of the W3C. This is a necessary first
step towards using lggs within central database problems.
Our contributions to this problem are:

1. Our technique for computing lggs of RDF graphs is
the first that takes entirely into account the RDF stan-
dard, i.e., we do not restrict RDF graphs or RDF rea-
soning in any way, while the state of the art imposes
significant limitations [10]: RDF graphs are almost-
trees and RDF reasoning is ignored.

2. Our technique for computing lggs of SPARQL queries
is also the first that takes entirely into account the well-
established conjunctive fragment of the SPARQL stan-
dard, a.k.a. Basic Graph Pattern Queries (BGPQs),
while the related work in the literature only considers
unary tree shaped BGPQs [15]. Further, when avail-
able, we devise how to incorporate background knowl-
edge, formalized as ontological constraints modeling
the application domain, in order to compute much
more pregnant lggs.

3. We provide an experimental assessment of the above
results. We shows, in particular, that lggs of BGPQs
endowed with background knowledge are much more
precise than those computed while ignoring such extra
knowledge.

The paper is organized as follows. In Section 2, we intro-
duce the RDF data model and its SPARQL query language.
Then, we study the problem of computing an lgg of RDF
graphs in Section 3, and of BGPQs in Section 4. We report
on the experiments we conducted in Section 5. Finally, we
present related works in Section 6 and we conclude and draw
some perspectives in Section 7.



RDF statement Triple Relational assertion

Class assertion (s, rdf:type, o) o(s)
Property assertion (s, p, o) with p 6= rdf:type p(s, o)

RDFS statement Triple Relational constraint

Subclass (s, rdfs:subClassOf, o) s ⊆ o

Subproperty (s, rdfs:subPropertyOf, o) s ⊆ o

Domain typing (s, rdfs:domain, o) Πdomain(s) ⊆ o

Range typing (s, rdfs:range, o) Πrange(s) ⊆ o

Table 1: RDF (top) & RDFS (bottom) statements.

2. PRELIMINARIES
We introduce the RDF data model in Section 2.1. Then,

in Section 2.2, we present the SPARQL conjunctive queries,
a.k.a. Basic Graph Pattern queries (BGPQs).

2.1 Resource Description Framework (RDF)

2.1.1 RDF graphs
The RDF data model allows specifying RDF graphs. An

RDF graph is a set of triples of the form (s, p, o). A triple
states that its subject s has the property p, the value of which
is the object o. Triples are built using three pairwise disjoint
sets: a set U of uniform resources identifiers (URIs), a set L
of literals (constants), and a set B of blank nodes allowing to
support incomplete information. Blank nodes can be seen
as identifiers for missing values (unknown URIs or literals);
they are the RDF counterparts of labelled nulls or existen-
tial variables in incomplete relational databases [14, 1], as
shown in [12]. Well-formed triples, as per the RDF specifi-
cation [25], belong to (U ∪ B) × U × (U ∪ L ∪ B); we only
consider such triples hereafter.

Notations. We use s, p, o in triples as placeholders. We
note Val(G) the set of values occurring in an RDF graph G,
i.e., the URIs, literals and blank nodes; we note Bl(G) the
set of blank nodes occurring in G. A blank node is written
b possibly with a subscript, and a literal is a string between
quotes. For instance, the triples (b, hasTitle,“LGG in RDF”)
and (b, hasContactAuthor, b1) state that something (b) en-
titled “LGG in RDF” has somebody (b1) as contact author.

A triple models an assertion, either for a class (unary re-
lation) or for a property (binary relation). Table 1 (top)
shows the use of triples to state such assertions, as well
as the relational assertions to which they correspond. The
RDF standard [25] provides built-in classes and properties,
as URIs within the rdf and rdfs pre-defined namespaces,
e.g., rdf:type which can be used to state that the above b is
a conference paper with the triple (b, rdf:type,ConfPaper).

2.1.2 Adding ontological knowledge to RDF graphs
An essential feature of RDF is the possibility to enhance

the descriptions in RDF graphs by declaring ontological con-
straints between the classes and properties they use. This is
achieved with RDF Schema (RDFS) statements, which are
triples using particular buit-in properties. Table 1 (bottom)
lists the allowed constraints, the triples to state them, as well
as the deductive relational constraints to which they corre-
spond; domain and range denote respectively the first and
second attribute of every property. For example, the triple
(ConfPaper, rdfs:subClassOf,Publication) states that con-
ference papers are publications, the triple (hasContactAuthor,
rdfs:subPropertyOf, hasAuthor) states that having a contact
author is having an author, the triple (hasAuthor, rdfs:domain,

b ”LGG in RDF”

ConfPaper hasContactAuthor b1

Publication hasAuthor Researcher

hasTitle

τ

�sc

τ

�sp

↪→r←↩d

↪→r←↩d

hasContactAuthor
hasAuthor

τ

Figure 1: Sample RDF graph G.

Publication) states that only publications have authors while
the triple (hasAuthor, rdfs:range,Researcher) states that only
researchers are authors of something.

Notations. From now, for conciseness, we use the fol-
lowing shorthands for built-in properties: τ for rdf:type,
�sc for rdfs:subClassOf, �sp for rdfs:subPropertyOf, ←↩d
for rdfs:domain, and ↪→r for rdfs:range.

Figure 1 displays the usual representation of the RDF
graph G made of the seven above-mentioned triples, which
are called the explicit triples of G. A triple (s, p, o) corre-
sponds to the p-labeled directed edge from the s node to the
o node. Explicit triples are shown as solid edges, while the
implicit ones, which are derived using ontological constraints
(see below), are shown as dashed edges.

Importantly, the semantics of ontological constraints dif-
fer from the typical relational database setting, where they
are interpreted under the closed world assumption (CWA),
i.e., as integrity constraints. In RDF, they are interpreted
under the open world assumption (OWA), i.e., as deductive
constraints. Under OWA, all the triples that can be deduced
from the constraints, called implicit triples, are assumed to
be part of the RDF graph even though they are not explic-
itly present in it. For instance, consider the RDF graph G
in Figure 1. The ontological constraint (hasContactAuthor,
rdfs:subPropertyOf, hasAuthor) is violated under CWA, as
the triple (b, hasContactAuthor, b1) is explicit in G while
(b, hasAuthor, b1) is not. By contrast, under OWA, the same
constraint allows deriving the “missing” triple (b, hasAuthor,
b1), making it implicit within G. Further, this implicit triple
together with the explicit ontological constraint (hasAuthor,
rdfs:range,Researcher) yields the implicit triple (b1, rdf:type,
Researcher).

2.1.3 Deriving the implicit triples of an RDF graph
The RDF standard defines a set of entailment rules in or-

der to derive automatically all the triples that are implicit
to an RDF graph. Table 2 shows the strict subset of these
rules that we will use to illustrate important notions as well
as our contributions in the next sections; importantly, our
contributions hold for the whole set of entailment rules of
the RDF standard, and any subset of thereof. The rules in
Table 2 concern the derivation of implicit triples using onto-
logical constraints (i.e., RDFS statements). They encode the
propagation of assertions through constraints (rdfs2, rdfs3,
rdfs7, rdfs9), the transitivity of the �sp and �sc constraints
(rdfs5, rdfs11), the complementation of domains or ranges
through �sc (ext1, ext2), and the inheritance of domains
and of ranges through �sp (ext3, ext4).



Rule name [26] Entailment rule

rdfs2 (p,←↩d, o), (s1, p, o1)→ (s1, τ, o)
rdfs3 (p, ↪→r, o), (s1, p, o1)→ (o1, τ, o)
rdfs5 (p1,�sp, p2), (p2,�sp, p3)→ (p1,�sp, p3)
rdfs7 (p1,�sp, p2), (s, p1, o)→ (s, p2, o)
rdfs9 (s,�sc, o), (s1, τ, s)→ (s1, τ, o)
rdfs11 (s,�sc, o), (o,�sc, o1)→ (s,�sc, o1)
ext1 (p,←↩d, o), (o,�sc, o1)→ (p,←↩d, o1)
ext2 (p, ↪→r, o), (o,�sc, o1)→ (p, ↪→r, o1)
ext3 (p,�sp, p1), (p1,←↩d, o)→ (p,←↩d, o)
ext4 (p,�sp, p1), (p1, ↪→r, o)→ (p, ↪→r, o)

Table 2: Sample set of RDF entailment rules.

b b2Publication hasTitleτ

Figure 2: Sample RDF graph G′.

The saturation (a.k.a. closure) of an RDF graph G w.r.t. a
set R of RDF entailment rules, is the RDF graph G∞ ob-
tained by adding to G all the implicit triples that follow
from G and R. Roughly speaking, the saturation G∞ ma-
terializes the semantics of G. It corresponds to the fixed-
point obtained by repeatedly applying the rules in R to G
in a forward-chaining fashion, a.k.a. chasing G with R in the
database parlance. In RDF, the saturation is always finite
and unique (up to blank node renaming), and does not hold
implicit triples.

The saturation of the RDF graph G shown in Figure 1
corresponds to the RDF graph G∞ in which all the G im-
plicit triples have been made explicit. It is worth noting
how, starting from G, applying RDF entailment rules mech-
anizes the construction of G∞. For instance, recall the
reasoning sketched in Section 2.1.2 for deriving the triple
(b1, rdf:type,Researcher). This is automated by the fol-
lowing sequence of applications of RDF entailment rules:
(hasContactAuthor, rdfs:subPropertyOf,hasAuthor) and
(b, hasContactAuthor, b1) trigger the rdfs7 rule which adds
(b, hasAuthor, b1) to the RDF graph. In turn, this new triple
together with (hasAuthor, rdfs:range,Researcher) triggers
the rdfs3 rule which adds (b1, rdf:type,Researcher).

2.1.4 Comparing RDF graphs
The RDF standard defines a generalization/specialization

relationship between two RDF graphs, called entailment be-
tween graphs. Roughly speaking, an RDF graph G is more
specific than another RDF graph G′, or equivalently G′ is
more general than G, whenever there is an embedding of G′
into the saturation of G, i.e., the complete set of triples that
G models.

More formally, given any subset R of RDF entailment
rules, an RDF graph G entails an RDF graph G′, denoted
G |=R G′, iff there exists an homomorphism φ from Bl(G′)
to Val(G∞) such that [G′]φ ⊆ G∞, where [G′]φ is the RDF
graph obtained from G′ by replacing every blank node b by
its image φ(b).

Figure 2 shows an RDF graph G′ that is entailed by the
RDF graph G in Figure 1 w.r.t. the RDF entailment rules
displayed in Table 2. In particular, G |=R G′ holds for
the homomorphism φ such that: φ(b) = b and φ(b2) =
”LGG in RDF”. By contrast, when R is empty, this is not
the case (i.e., G 6|=R G′), as the dashed edges in G are not ma-

terialized by saturation, hence the G′ triple (b, τ,Publication)
cannot have an image in G through some homomorphism.

Notations. When relevant to the discussion, we des-
ignate by G |=φ

R G
′ the fact that the entailment G |=R G′

holds due to the graph homomorphism φ. Also, when RDF
entailment rules are disregarded, i.e., R = ∅, we note the
entailment relation |= (without indicating the rule set un-
der consideration). Observe that, in this particular case, the
entailment between RDF graphs collapses to the database
notion of containment between two incomplete instances,
each stored into a Triple(s, p, o) relation.

Importantly, some remarkable properties follow directly
from the definition of entailment between two RDF graphs:

1. G and G∞ are equivalent, noted G ≡R G∞, since clearly
G |=R G∞ and G∞ |=R G holds,

2. G |=R G′ iff G∞ |= G′ holds.

In particular, the second above property points out how en-
tailment reduces to standard database containment once sat-
uration is computed.

2.2 SPARQL conjunctive queries

2.2.1 Basic graph pattern queries
The well-established conjunctive fragment of SPARQL

queries, a.k.a. basic graph pattern queries (BGPQs), is the
counterpart of the relational select-project-join queries; it
is the most widely used subset of SPARQL queries in real-
world applications [18].

A Basic Graph Pattern (BGP) is a set of triple patterns, or
simply triples by a slight abuse of language. They generalize
RDF triples by allowing the use of variables. Given a set V of
variables, pairwise disjoint with U , L and B, triple patterns
belong to: (V ∪ U ∪ B)× (V ∪ U)× (V ∪ U ∪ L ∪ B).

Notations. We adopt the usual conjunctive query no-
tation q(x̄) ← t1, . . . , tα, where {t1, . . . , tα} is a BGP; the
query head variables x̄ are called answer variables, and form
a subset of the variables occurring in t1, . . . , tα; for boolean
queries, x̄ is empty. The head of q, noted head(q), is q(x̄),
and the body of q, denoted body(q), is the BGP {t1, . . . , tα}.
We use x and y in queries, possibly with subscripts, for an-
swer and non-answer variables respectively. Finally, we de-
note by VarBl(q) the set of variables and blank nodes occur-
ring in the query q; we note Val(q) the set of all its values,
i.e., URIs, blank nodes, literals and variables.

2.2.2 Entailing and answering queries
Two important notions characterize how an RDF graph

contributes to a query.
Query entailment. The weaker notion indicates whether

or not an RDF graph holds some answer(s) to a query. It
generalizes entailment between RDF graphs, to account for
the presence of variables in the query body, for establish-
ing whether a graph entails a query, i.e., whether the query
embeds in that graph.

Formally, given a BGPQ q, an RDF graph G and a set R
of RDF entailment rules, G entails q, denoted G |=R q, iff
G |=R body(q) holds, i.e., there exists a homomorphism φ
from VarBl(q) to Val(G∞) such that [body(q)]φ ⊆ G∞.

The RDF graph G in Figure 1 entails the query q(x1, x2)←
(x1, τ, x2) asking for all the resources and their classes, for in-
stance because of the homomorphism φ such that φ(x1) = b



and φ(x2) = ConfPaper. Observe that this entailment holds
for any subset of RDF entailment rules, since the above φ
already holds for R = ∅, i.e., considering only the explicit
triples in Figure 1.

Notations. Similarly to RDF graph entailment, we de-
note by G |=φ

R q that the entailment G |=R q holds due to
the homomorphism φ.

Query answering. The stronger notion characterizing
how an RDF graph contributes to a query, which builds on
the preceding one, identifies all the query answers that the
graph holds. Formally, assuming the head of a BGPQ q is
q(x̄), the answer set of q against G is:

q(G) = {(x̄)φ | G |=φ
R body(q)}

where we denote by (x̄)φ the tuple of G∞ values obtained by
replacing every answer variable xi ∈ x̄ by its image φ(xi).
Observe that when R is empty, BGPQ query answering co-
incide with standard relational conjunctive query evaluation.

The answer set to the above query q(x1, x2)← (x1, τ, x2)
against the RDF graph G in Figure 1 is:

• {(b,ConfPaper), (b,Publication), (b1,Researcher)} for
R the set of entailment rules shown in Table 2, i.e., con-
sidering the explicit and implicit triples in Figure 1,

• {(b,ConfPaper)} for R = ∅, i.e., considering only the
explicit triples in Figure 1.

Finally, remark that query entailment and query answer-
ing treat the blank nodes in a query exactly as non-answer
variables [27].

2.2.3 Comparing queries
Similarly to RDF graphs, queries can be compared through

the generalization/specialization relationship of entailment
between queries. This relationship is the counterpart of that
query containment in the relational database setting.

Let q, q′ be two BGPQs with same arity, whose heads are
q(x̄) and q′(x̄′), andR the set of RDF entailment rules under

consideration. q entails q′, denoted q |=R q′, iff body(q) |=φ
R

body(q′) with (x̄′)φ = x̄ holds. Here, body(q) |=φ
R body(q′) is

the obvious adaptation of the above-mentioned entailment
relationships between RDF graphs to the fact that the query
bodies may feature variables, i.e., φ is a homomorphism from
VarBl(q′) to Val(q) such that [body(q′)]φ ⊆ body(q)∞.

For instance, the query q1(x):- (x, τ,ConfPaper), (x,
hasContactAuthor, y) entails the query q2(x):- (x, τ, y) with
φ(x) = x, φ(y) = ConfPaper and any entailment rule set.
However, it is worth noting that, counterintuitively, q1 does
not entail the query q3(x):- (x, τ,Publication), (x,hasAuthor,
y). The reason is that query entailment does not consider
extra ontological constraints, which would be needed by
RDF entailment rules to find such elaborate entailment (here,
that conference papers are publications, and that having a
contact author is having an author). Extending standard
entailment between BGPQs to take into account extra on-
tological constraints modeling background knowledge, is one
contribution in this work (Section 4).

3. FINDING COMMONALITIES BETWEEN
RDF GRAPHS

In Section 3.1, we first define the largest set of common-
alities between RDF graphs as a particular RDF graph rep-
resenting their least general generalization (lgg for short).

Then, we devise a technique for computing such a lgg in
Section 3.2.

3.1 Defining the lgg of RDF graphs
A least general generalization of n descriptions d1, . . . , dn

is a most specific description d generalizing every d1≤i≤n for
some generalization/specialization relation between descrip-
tions [21, 22]. In our RDF setting, we use RDF graphs as
descriptions and entailment between RDF graphs as relation
for generalization/specialization:

Definition 1 (lgg of RDF graphs). Let G1, . . . ,Gn
be RDF graphs and R a set of RDF entailment rules.

• A generalization of G1, . . . ,Gn is an RDF graph Gg
such that Gi |=R Gg holds for 1 ≤ i ≤ n.

• A least general generalization (lgg) of G1, . . . ,Gn is
a generalization Glgg of G1, . . . ,Gn such that for any
other generalization Gg of G1, . . . ,Gn, Glgg |=R Gg holds.

Observe that the above definition indicates that an lgg of
RDF graphs is unique up to entailment (since Glgg |=R Gg
holds for any Gg). Indeed, if it were that RDF graphs have
multiple lggs incomparable w.r.t. entailment, say lgg1, . . . ,
lggm, their merge1 lgg1]· · ·]lggm would be a single strictly
more specific lgg, a contradiction.

Figure 3 displays two RDF graphs G1 and G2, as well as
their minimal lgg (with lowest number of triples) when we
consider the RDF entailment rules shown in Table 2: Glgg.
G1 describes a conference paper i1 with title “Disaggrega-
tions in Databases” and author Serge Abiteboul, who is a
researcher; also conference papers are publications. G2 de-
scribes a journal paper i2 with title “Computing with First-
Order Logic”, contact author Serge Abiteboul and author
Victor Vianu, who are researchers; moreover, journal pa-
pers are publications and having a contact author is having
an author. Glgg states that their common information com-
prises the existence of a resource (bi1i2) having some type
(bC(onf)P(aper)J(our)P(aper)), which is a particular case of pub-
lication, with some title (bD(iD)C(wFOL)) and author Serge
Abiteboul, who is a researcher.

Though unique up to entailment (i.e., semantically unique),
an lgg may have many syntactical forms due to redundant
triples. Such triples can be either explicit ones that could
have been left implicit if the set of RDF entailment rules
under consideration allows deriving them from the remain-
ing triples (e.g., materializing the only Glgg implicit triple in
Figure 3 would make it redundant if we consider the RDF en-
tailment rules in Table 2) or triples generalizing others with-
out needing RDF entailment rules, i.e., in a purely relational
fashion (e.g., adding the triple (b, hasAuthor, b′) to Glgg in
Figure 3 would be redundant w.r.t. (bi1i2 , hasAuthor, SA)).
Also, an lgg may have several minimal syntactical variants
obtained by pruning out redundant triples. For example,
think of a minimal lgg comprising the triples (A,�sc, B),
(B,�sc, A) and (b, τ, A), i.e., there exists an instance of the

1The merge of RDF graphs, performed with the RDF spe-
cific merge operator ], is an RDF graph comprising the
union of the input RDF graph after renaming their blank
nodes with fresh ones, so that these RDF graphs do not
share (thus join on) such values. Indeed, blank nodes are
used to characterize the incompleteness of an RDF graph,
hence are local to it (Section 2).
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Figure 3: Sample RDF graphs G1, G2 and Glgg, with Glgg the minimal lgg of G1 and G2.

class A, which is equivalent to class B. Clearly, an equiv-
alent and minimal variant of this lgg is the RDF graph
comprising the triples (A,�sc, B), (B,�sc, A) and (b, τ, B).

Importantly, the above discussion is not specific to lggs of
RDF graphs, since any RDF graph may feature redundancy.
The detection and elimination of RDF graph redundancy
has been studied in the literature, e.g., [16, 19, 20], hence
we focus in this work on finding some lgg of RDF graphs.

The proposition below shows that an lgg of n RDF graphs,
with n ≥ 3, can be defined (hence computed) as a sequence
of n − 1 lggs of two RDF graphs. Intuitively, assuming
that `k≥2 is an operator computing an lgg of k input RDF
graphs, the next proposition establishes that:

`3(G1,G2,G3) ≡R `2(`2(G1,G2),G3)
· · · · · ·
`n(G1, . . . ,Gn)≡R `2(`n−1(G1, . . . ,Gn−1),Gn)

≡R `2(`2(· · · `2(`2(G1,G2),G3) · · · ,Gn−1),Gn)

Proposition 1. Let G1, . . . ,Gn≥3 be n RDF graphs and
R a set of RDF entailment rules. Glgg is an lgg of G1, . . . ,Gn
iff Glgg is an lgg of an lgg of G1, . . . ,Gn−1 and Gn.

Proof. The proof relies on the next lemma.

Lemma 1. Let G1, . . . ,Gn be RDF graphs and R a set of
RDF entailment rules. If G1lgg is an lgg of G1, . . . ,Gk<n and

G2lgg is an lgg of G1, . . . ,Gn, then G1lgg |=R G2lgg holds.

Let us show that the above lemma holds.
Suppose that G1lgg is an lgg of G1, . . . ,Gk<n, i.e., by Def-

inition 1: (i) G1≤i≤k |=R G1lgg holds and (ii) for any RDF

graph G such that G1≤i≤k |=R G holds, G1lgg |=R G holds.

Suppose also that G2lgg is an lgg of G1, . . . ,Gn, i.e., by

Definition 1: (i) G1≤i≤n |=R G2lgg holds and (ii) for any

RDF graph G′ such that G1≤i≤n |=R G′ holds, G2lgg |=R G′
holds.

Clearly, G2lgg is a possible value for G above, because

G1≤i≤n |=R G2lgg implies G1≤i≤k<n |=R G2lgg, hence G1lgg |=R
G2lgg must hold. �

Now, let us prove Proposition 1 using the above lemma.
(⇒) Assume that Glgg is an lgg of G1, . . . ,Gn and let us

show that it is also an lgg of some lgg of G1, . . . ,Gn−1 and
Gn. By Definition 1, because Glgg is an lgg of G1, . . . ,Gn, we
have: (i) G1≤i≤n |=R Glgg holds and (ii) for any RDF graph
G such that G1≤i≤n |=R G holds, Glgg |=R G holds.

Let G′lgg be some lgg of G1, . . . ,Gn−1. From (i) and the
above lemma, (*) G′lgg |=R Glgg and Gn |=R Glgg holds.

Moreover, for any RDF graph G, if it were that G′lgg |=R G
and Gn |=R G and Glgg 6|=R G, then G1≤i≤n |=R G would hold

and contradict the fact that Glgg is an lgg of G1, . . . ,Gn.
Therefore, (**) for any RDF graph G, if G′lgg |=R G and
Gn |=R G holds, then Glgg |=R G holds.

From Definition 1, (*) and (**) we get that Glgg is an lgg

of an lgg of G1, . . . ,Gn−1 and Gn.
(⇐) Assume that Glgg is an lgg of an lgg G′ of G1, . . . ,Gn−1

and Gn, and let us show that it is also an lgg of G1, . . . ,Gn.
By Definition 1, (i) G′ |=R Glgg and Gn |=R Glgg hold,

hence G1≤i≤n−1 |=R Glgg and Gn |=R Glgg hold, i.e., (*’)
G1≤i≤n |=R Glgg holds.

Moreover, (ii) for any RDF graph G such that G′ |=R G
and Gn |=R G hold, Glgg |=R G holds. By Definition 1,
G1≤i≤n−1 |=R G′ holds, therefore we get: (**’) for any RDF
graph G such that G1≤i≤n |=R G holds, Glgg |=R G holds.

From Definition 1, (*’) and (**’) we get that Glgg is an
lgg of G1, . . . ,Gn.

Based on the above result, without loss of generality, we
focus in the next section on the following problem:

Problem 1. Given two RDF graphs G1,G2 and a set R
of RDF entailment rules, we want to compute some lgg of
G1 and G2.

3.2 Computing an lgg of RDF graphs
We first devise the cover graph of two RDF graphs G1

and G2 (to be defined shortly, Definition 2 below), which
is central to our technique for computing an lgg of G1 and
G2. We indeed show (Theorem 1) that this particular RDF
graph corresponds to an lgg of G1 and G2 when consider-
ing their explicit triples only, i.e., ignoring RDF entailment
rules. Then, we show the main result of this section (Theo-
rem 2): an lgg of G1 and G2, for any setR of RDF entailment
rules, is the cover graph of their saturations w.r.t. R. We
also provide the worst-case size of cover graph-based lggs,
as well as the worst-case time to compute them.

Definition 2 (Cover graph). The cover graph G of
two RDF graph G1 and G2 is the RDF graph such that for
every property p in both G1 and G2:

(t1, p, t2) ∈ G1 and (t3, p, t4) ∈ G2 iff (t5, p, t6) ∈ G

with t5 = t1 if t1 = t3 and t1 ∈ U ∪ L, else t5 is the blank
node bt1t3 , and, similarly t6 = t2 if t2 = t4 and t2 ∈ U ∪ L,
else t6 is the blank node bt2t4 .

The cover graph is more general than G1 and G2 as each
of its triple (t5, p, t6) is a least general anti-unifier of a triple
(t1, p, t2) from G1 and a triple (t3, p, t4) from G2. The notion
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Figure 4: Cover graphs of G1 and G2 in Figure 3 (left) and of their saturations w.r.t. the entailment rules in Table 2 (right).
Triples shown in grey are redundant w.r.t. those shown in black.

of least general anti-unifier [21, 22, 24] is dual to the well-
known notion of most general unifier [23, 24]. Observe that
G’s triples result from anti-unifications of G1 and G2 triples
with same property URI. Indeed, anti-unifying triples of the
form (s1, p, o1) and (s2, p

′, o2), with p 6= p′, would lead to
a non-well-formed triples of the form (s, bpp′ , o) (recall that
property values must be URIs in RDF graphs), where bpp′
is the blank node required to generalize the distinct values
p and p′.

Further, the cover graph is an lgg for the explicit triples
in G1 and those in G2 since, intuitively, we capture their com-
mon structures by consistently naming, across all the anti-
unifications begetting G, the blank nodes used to generalize
pairs of distinct subject values or of object values: each time
the distinct values t from G1 and t′ from G2 are generalized
by a blank node while anti-unifying two triples, it is always
by the same blank node bt,t′ in G. This way, we establish
joins between G triples, which reflect the common join struc-
ture on t within G1 and on t′ within G2. For instance in Fig-
ure 3, the explicit triples (i1, τ,ConfPaper), (ConfPaper,�sc,
Publication), (i1, title, ”DiD”) in G1, and (i2, τ, JourPaper),
(JourPaper,�sc,Publication), (i2, title, ”CwFOL”) in G2,
lead to the triples (bi1i2 , τ, bCPJP), (bCPJP,�sc,Publication),
(bi1i2 , title, bDC) in the cover graph of G1 and G2 shown
in Figure 4 (left). The first above-mentioned G triple re-
sults from anti-unifying i1 and i2 into bi1i2 , and, ConfPaper
and JourPaper into bCPJP. The second results from anti-
unifying again ConfPaper and JourPaper into bCPJP, and,
Publication and Publication into Publication (as a constant
is its own least general generalization). Finally, the third
results from anti-unifying again i1 and i2 into bi1i2 , and,
”DiD” and ”CwFOL” into bDC. By reusing consistently
the same blank node name bi1i2 for each anti-unification
of the constants i1 and i2 (resp. bCPJP for ConfPaper and
JourPaper)), the cover graph triples join on bi1i2 (resp. bCPJP)
in order to reflect that, in G1 and in G2, there exists a par-
ticular case of publication (i1 in G1 and i2 in G2) with some
title (”DiD” in G1 and ”CwFOL” in G2).

The next theorem formalizes the above discussion by stat-
ing that the cover graph of two RDF graphs is an lgg of
them, just in case of an empty set of RDF entailment rules.

Theorem 1. The cover graph G of the RDF graphs G1
and G2 is an lgg of them for the empty set R of RDF en-

tailment rules (i.e., R = ∅).

Proof. The proof can be directly derived from that of
the more general Theorem 2 (see below), noting that in the
particular case of Theorem 1 R = ∅ holds, hence G∞1 = G1
and G∞2 = G2 holds.

We provide below worst-case bounds for the time to com-
pute a cover graph and for its size. Clearly, these bounds
are met when all the triples of the two input graphs use the
same property URI.

Proposition 2. The cover graph of two RDF graphs G1
and G2 can be computed in O(|G1|× |G2|); its size is bounded
by |G1| × |G2|.

The main theorem below generalizes Theorem 1 in order
to take into account any set of entailment rules from the
RDF standard. It states that it is sufficient to compute the
cover of the saturations of the input RDF graphs, instead of
the input RDF graphs themselves.

Theorem 2. Let G1 and G2 be two RDF graphs, and R a
set of RDF entailment rules. The cover graph G of G∞1 and
G∞2 is an lgg of G1 and G2.

Proof. We start by showing that G is a generalization
of G1 and G2, i.e., G1 |=R G and that G2 |=R G. Consider
the RDF graph G′ obtained from G by replacing every blank
node bv1v2 by the value v1. Clearly, G′ |=R G and, by con-
struction of G, G′ = G1, i.e., G1 |=R G. Showing G2 |=R G
is done in a similar way. Hence, G is a generalization of G1
and G2.

Let us show now that G is an lgg of G1 and G2. Let Glgg be
any lgg of G1 and G2. To prove our claim, we need to show
that G |=R Glgg holds. Since Glgg is an lgg of G1 and G2,
there exist two homomorphisms φ1 and φ2 from the blank
nodes in Glgg to the values in G∞1 and in G∞2 respectively,
such that [Glgg]φ1 ⊆ G∞1 and [Glgg]φ2 ⊆ G∞2 . Consider the
graph G′lgg obtained from Glgg by replacing every blank node
b by bv1v2 where v1 = φ1(b) and v2 = φ2(b). Clearly, Glgg ≡R
G′lgg holds. Let us show that G |=R G′lgg holds, i.e., there
exists a homomorphism φ from the blank nodes in G′lgg to
the terms in G∞ such that [G′lgg]φ ⊆ G∞. By construction of
G, it is easy to see that the above holds when φ maps bv1v2
either to v1 if v1 = v2 and v1 ∈ U ∪L, or to itself otherwise.
It therefore follows that G |=R G′lgg, hence G |=R Glgg.



As an immediate consequence of the above results, we get
the following worst-case bounds for the time to compute an
lgg of two RDF graphs G1 and G2, and for its size. Here,
we assume given the saturation G∞1 and G∞2 , as the times to
compute them and their sizes depend on the particular set
of RDF entailment rules at hand.

Corollary 1. An lgg of two RDF graphs G1 and G2 can
be computed in O(|G∞1 | × |G∞2 |) and its size is bounded by
|G∞1 | × |G∞2 |.

Figure 4 (right) displays an lgg of the RDF graphs G1 and
G2 in Figure 3 w.r.t. the entailment rules shown in Table 2.
In contrast to Figure 4 (left), which shows an lgg of the
same RDF graphs when RDF entailment rules are ignored,
we further learn that Serge Abiteboul is an author of some
particular publication (i1 in G1 and i2 in G2). Moreover, re-
moving the redundant triples (the grey ones) yields precisely
the lgg Glgg of G1 and G2 shown in Figure 3.

4. FINDING COMMONALITIES BETWEEN
QUERIES

We consider now the problem of finding the largest set
of commonalities between queries. Adapting the results for
RDF graphs from the preceding section to BGPQs is rather
direct (recall that a query body is a BGP, i.e., an RDF graph
in which variables can be used in subject, property and ob-
ject positions of triples), but of limited interest as the next
example shows. Consider the two BGPQs q1 and q2 in Fig-
ure 5. The first asks for the conference papers having some
contact author, while the second asks for the journal papers
having some author. Clearly, a least general generalization
of q1 and q2 is the very general BGPQ qlgg shown in Figure 5
that asks for the resources having some type. Observe that
qlgg is an lgg for any subset of the RDF entailment rules
shown in Table 2, as there is no ontological constraint in
the queries. However, by considering the extra ontological
constraints displayed in Figure 6 that hold in the scientific
publication domain, i.e., the context in which the queries
are asked, a more pregnant lgg would be a BGPQ asking for
publications having some researcher as author, since (i) hav-
ing a contact authors is having an author, (ii) only publi-
cations have authors, (iii) only researchers are authors, and
(iv) conference (resp. journal) papers are publications.

We therefore devise in Section 4.1 a notion of lgg of BG-
PQs in the presence of ontological constraints, which as ex-
emplified above helps finding more interesting commonal-
ities by taking into account the background knowledge of
an application domain. Then, we provide a technique for
computing such an lgg of BGPQs in Section 4.2.

4.1 Defining the lgg of BGPQs
Recall that the notion of lgg of n descriptions d1, . . . , dn is

a most specific description d generalizing d1, . . . , dn for some
generalization/specialization relation. Here, we adapt this
notion by using BGPQs as descriptions and revisiting en-
tailment between BGPQs (Section 2) in order to endow this
RDF relation between queries with background knowledge.

We first devise in Section 4.1.1 entailment between BG-
PQs w.r.t. ontological constraints as a generalization of the
standard entailment between BGPQs. Then, we define the
lgg of BGPQs w.r.t. ontological constraints in Section 4.1.2.

4.1.1 Entailment between BGPQs w.r.t. constraints
We start by generalizing the saturation of a query w.r.t. ex-

tra ontological constraints. Roughly speaking, the saturated
query comprises all the triples in the saturation of its body
augmented with the constraints, except those triples that
are proper to the ontological constraints, i.e., which are not
related to what the query is asking for.

Definition 3 (Saturation w.r.t. constraints).
Given a set R of RDF entailment rules, the saturation of
a BGPQ q w.r.t. a set O of RDFS statements, denoted
q∞O , is a BGPQ with the same answer variables as q and
whose body, denoted body(q∞O ), is the maximal subset of
(O∪body(q))∞ such that for any of its subset S: if O |=R S
holds then body(q) |=R S holds.

Remark that the above definition coincides with the stan-
dard one of saturation (Section 2) when the set O of onto-
logical constraints is empty.

Figure 6 shows a setO of ontological constraints, as well as
the saturations of the BGPQs q1 and q2 in Figure 5 w.r.t. O,
named q1

∞
O and q2

∞
O respectively.

The theorem below states the fundamental properties for a
query and its saturation w.r.t. ontological constraints: they
are equivalent for the central RDF reasoning tasks of query
entailment and query answering.

Theorem 3. Let R be a set of RDF entailment rules, O
a set of RDFS statements, and q a BGPQ whose saturation
w.r.t. O is q∞O . For any RDF graph G whose set of RDFS
statements is O,

1. G |=R q holds iff G |=R q∞O holds,

2. q(G∞) = q∞O (G∞) holds.

Proof. Let us first show item 1). Observe that G |=R
q iff G |=R q∞O holds iff G∞ |= q iff G∞ |= q∞O holds (recall
Section 2). If G∞ |=φ q∞O holds for some homomorphism φ,
then G∞ |=φ q holds also since body(q) ⊆ body(q∞O ). Now,
if G∞ |=φ q holds for some homomorphism φ, consider the
subset [body(q)]φ of G∞. Since O ⊆ G, and by definition of
the saturation of q w.r.t. O, φ can obviously be extended
to a homomorphism φ′ such that [body(q∞O )]φ′ ⊆ G∞, which
maps body(q∞O ) to the maximal subset of (O∪[body(q)]φ)∞ ⊆
G∞, such that for any of its subset G′: if O |=R G′ then
[body(q)]φ |=R G′.

Item 2) directly follows from: (i) the fact that, above,
item 1) holds for any homomorphism φ and (ii) q and q∞O
have, by definition, the same answer variables.

Based on the above result, we are now ready to extend
the entailment relation between queries, i.e., the standard
RDF generalization/specialization relation between queries,
to that of entailment between queries w.r.t. ontological con-
straints.

Definition 4 (Entailment w.r.t. constraints).
Given a set R of RDF entailment rules, a set O of RDFS
statements, and two BGPQs q and q′ with the same arity,
q entails q′ w.r.t. O, denoted q |=R,O q′, iff q∞O |= q′ holds.

The above definition coincides with the standard one of en-
tailment between BGPQs (Section 2) when the set O of
ontological constraints is empty.
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The BGPQ q(x) ← (x, τ,Publication), (x,hasAuthor, y)
is not entailed by the queries q1 and q2 shown in Figure 5,
while it is entailed by these queries w.r.t. the set O of onto-
logical constraints displayed in Figure 6: q1

∞
O |=φ1 q (resp.

q2
∞
O |=φ2 q) holds for φ1(x) = x1 and φ1(y) = y1 (resp.

φ2(x) = x2 and φ2(y) = y2).

The next theorem establishes the fundamental properties
for a query entailed by another w.r.t. ontological constraints:
the former generalizes the latter for the central RDF reason-
ing tasks of query entailment and query answering.

Theorem 4. Let R be a set of RDF entailment rules, O
a set of RDFS statements, and two BGPQs q and q′ such
that q |=R,O q′. For any RDF graph G whose set of RDFS
statements is O,

1. if G |=R q holds then G |=R q′ holds,

2. q(G∞) ⊆ q′(G∞) holds.

Proof. Let us first show item 1). By Theorem 3, item
1), G |=R q holds iff G |=R q∞O holds. Consider some φ such

that G |=φ
R q∞O holds. Also, by Definition 4, consider some

φ′ such that q∞O |=φ′
q′. By composing φ and φ′ into ψ, we

get G |=ψ
R q′, i.e., G |=R q′.

Item 2) directly follows from: (i) the fact that, above,
item 1) holds for any pair of homomorphisms φ, φ′ such that

G |=φ
R q∞O and q∞O |=φ′

q′ hold, and (ii) q and q∞O have, by
definition, the same answer variables.

Finally, it is worth noting that our notion of entailment
between BGPQs w.r.t. ontological constraints is the RDF
counterpart to that of query containment under deductive
constraints in a database setting [8].

4.1.2 lgg of BGPQs w.r.t. constraints
With the above new RDF generalization/specialization re-

lation between queries endowed with background knowledge,

we are now ready to define the lgg of queries w.r.t. ontolog-
ical constraints.

Definition 5 (lgg of BGPQs). Let q1, . . . , qn be BG-
PQs with the same arity, R a set of RDF entailment rules
and O a set of RDFS statements.

• A generalization of q1, . . . , qn w.r.t. O is a BGPQ qg
such that qi |=R,O qg holds for 1 ≤ i ≤ n.

• A least general generalization of q1, . . . , qn w.r.t. O is
a generalization qlgg of q1, . . . , qn w.r.t. O such that
for any other generalization qg of q1, . . . , qn w.r.t. O,
qlgg |=R,O qg holds.

When O is empty, the above definition is the direct adap-
tation of that of lgg of RDF graphs to the case of BGPQs,
using standard entailment between BGPQs.

Unlike the case of RDF graphs, an lgg of BGPQs may not
exist. For instance, consider q1(x1) ← (x1, hasAuthor, y1)
asking for the resources having some author, and q2(x2) ←
(y2, hasAuthor, x2) asking for the authors of some resource.
Clearly, there is no BGPQ that generalizes them both.

Similarly to the definition of an lgg of RDF graphs, the
above definition indicates that an lgg of queries is unique
up to entailment w.r.t. ontological constraints, i.e., is se-
mantically unique (as qlgg |=R,O qg holds for any qg). In-
deed, if it were that queries have multiples lggs incompara-
ble w.r.t. entailment, say the BGPQs lgg1(x̄), . . . , lggm(x̄),
the BGPQ that merges2 their bodies qlgg(x̄)← body(lgg1)]
2The merge operator of RDF graphs ] is straightforwardly
extended to union BGPQ bodies (i.e., BGPs) after renaming
their blank nodes and non-answer variables with fresh ones,
so that these BGPs do not share (thus join on) them. Blank
nodes and non-answer variables in a BGPQ, which have the
same semantics (recall Section 2), are used to characterize
the answer variables of this BGPQ, hence are local to it.



· · ·]body(lggm) would be a single strictly more specific lgg,
a contradiction.

Also, queries may have many syntactically different
(though equivalent) lggs due to redundant triples. However,
differently from the case of RDF graphs, redundant triples
are only those generalizing others in a purely relation fash-
ion, as the semantics of BGPQs is not its saturation (recall
Section 2). This implies that a query has a unique mini-
mal lgg, which may be obtained using standard database
minimization techniques for relational conjunctive queries.
Importantly, redundancy of triples is not specific to lggs of
BGPQs, since any query may feature redundancy. We there-
fore focus in this work on finding some lgg of BGPQs.

The proposition below is the counterpart of Proposition 1
for RDF graphs. It shows that an lgg of n BGPQs, with
n ≥ 3, can be defined (hence computed) as a sequence of
n − 1 lggs of two BGPQs. That is, assuming that `k≥2 is
an operator computing an lgg of k input BGPQs, the next
proposition establishes that:

`3(q1, q2, q3) ≡R,O `2(`2(q1, q2), q3)
· · · · · ·
`n(q1, . . . , qn)≡R,O `2(`n−1(q1, . . . , qn−1), qn)

≡R,O `2(`2(· · · `2(`2(q1, q2), q3) · · · , qn−1), qn)

Proposition 3. Let q1, . . . , qn≥3 be n BGPQs, O a set
of RDFS statements and R a set of RDF entailment rules.
qlgg is an lgg of q1, . . . , qn w.r.t. O iff qlgg is an lgg w.r.t. O
of an lgg of q1, . . . , qn−1 and qn w.r.t. O.

Proof. The proof relies on the next lemma.

Lemma 2. Let q1, . . . , qn be BGPQs, O a set of RDFS
statements and R a set of RDF entailment rules. If q1lgg is an

lgg of q1, . . . , qk<n w.r.t. O and q2lgg is an lgg of q1, . . . , qn
w.r.t. O, then q1lgg |=R,O q2lgg holds.

Let us show that the above lemma holds.
Suppose that q1lgg is an lgg of q1, . . . , qk<n w.r.t. O, i.e., by

Definition 5: (i) q1≤i≤k |=R,O q1lgg holds and (ii) for any

BGPQ q such that q1≤i≤k |=R,O q holds, q1lgg |=R,O q holds.

Suppose also that q2lgg is an lgg of q1, . . . , qn w.r.t. O,

i.e., by Definition 5: (i) q1≤i≤n |=R,O q2lgg holds and (ii) for

any BGPQ q′ such that q1≤i≤n |=R,O q′ holds, q2lgg |=R,O q′
holds.

Clearly, q2lgg is a possible value for q above, because

q1≤i≤n |=R,O q2lgg implies q1≤i≤k<n |=R,O q2lgg, hence

q1lgg |=R,O q2lgg must hold. �

Now, let us prove Proposition 3 using the above lemma.
(⇒) Assume that qlgg is an lgg of q1, . . . , qn w.r.t. O and

let us show that it is also an lgg w.r.t. O of some lgg of
q1, . . . , qn−1 and qn w.r.t. O. By Definition 5, because qlgg is
an lgg of q1, . . . , qn w.r.t. O, we have: (i) q1≤i≤n |=R,O qlgg
holds and (ii) for any BGPQ q such that q1≤i≤n |=R,O q
holds, qlgg |=R,O q holds.

Let q′lgg be an lgg of q1, . . . , qn−1 w.r.t. O. From (i) and
the above lemma, (*) q′lgg |=R,O qlgg and qn |=R,O qlgg hold.
Moreover, for any BGPQ q, if it were that q′lgg |=R,O q and
qn |=R,O q and qlgg 6|=R,O q, then q1≤i≤n |=R,O q would
hold and contradict the fact that qlgg is an lgg of q1, . . . , qn
w.r.t. O. Therefore, (**) for any BGPQ q, if q′lgg |=R,O q
and qn |=R,O q holds, then qlgg |=R,O q holds.

From Definition 5, (*) and (**) we get that qlgg is an lgg

w.r.t. O of an lgg of q1, . . . , qn−1 and qn w.r.t. O.

(⇐) Assume that qlgg is an lgg w.r.t. O of an lgg q′ of
q1, . . . , qn−1 and qn w.r.t. O, and let us show that it is also
an lgg of q1, . . . , qn w.r.t. O.

By Definition 5, (i) q′ |=R,O qlgg and qn |=R,O qlgg hold,
hence q1≤i≤n−1 |=R,O qlgg and qn |=R,O qlgg hold, i.e., (*’)
q1≤i≤n |=R,O qlgg holds.

Moreover, (ii) for any BGPQ q such that q′ |=R,O q
and qn |=R,O q hold, qlgg |=R,O q holds. By Definition 5,
q1≤i≤n−1 |=R,O q′ holds, therefore we get: (**’) for any
BGPQ q such that q1≤i≤n |=R,O q holds, qlgg |=R,O q holds.

From Definition 5, (*’) and (**’) we get that qlgg is an lgg

of q1, . . . , qn w.r.t. O.

Based on the above result, without loss of generality, we
focus in the next section on the following problem:

Problem 2. Given two BGPQs q1, q2 with same arity, a
set O of RDFS statements, and a set R of RDF entailment
rules, we want to compute some lgg of q1 and q2 w.r.t. O.

4.2 Computing an lgg of BGPQs
We first devise the notion of cover query of two BGPQs

q1 and q2 (to be defined shortly, Definition 6 below) and
we show (Theorem 5) that it corresponds to an lgg of q1
and q2 just in case extra ontological constraints and RDF
entailment are ignored. Then, we show (Theorem 6) that
their enhanced lgg as defined in Definition 5, i.e., which
does consider extra ontological constraints and RDF entail-
ment, can be obtained as the cover query of the saturations
of q1 and of q2 with the ontological constraints and RDF
entailment rules at hand (Definition 3). We also provide the
size of these cover query-based lggs, as well as the time to
compute them.

Definition 6 (Cover query). Let q1, q2 be two BG-
PQs with the same arity n.
If there exists the BGPQ q such that

• (t1, t2, t3) ∈ body(q1) and (t4, t5, t6) ∈ body(q2) iff
(t7, t8, t9) ∈ body(q) with, for 1 ≤ i ≤ 3, ti+6 = ti
if ti = ti+3 and ti ∈ U ∪ L, otherwise ti+6 is the vari-
able vtiti+3

• head(q) = q(vx11x12
, . . . , vxn1 xn2 ) iff head(q1) = q(x11, . . . ,

xn1 ) and head(q2) = q(x12, . . . , x
n
2 )

then q is the cover query of q1 and q2.

The cover query body is defined (first item above) as a
slight generalization of the cover graph of two RDF graphs
(Definition 1 and Theorem 1), so that it corresponds to an
lgg of the bodies of q1 and q2 when both extra ontolog-
ical constraints and RDF entailment are ignored. Recall
that the bodies of the BGPQs are BGPs, which generalize
RDF graphs by allowing variables in triples (Section 2). In
particular, unknown values are allowed in the property po-
sition of BGP triples (using variables), whereas this was not
possible in RDF graph triples in which the property val-
ues must be URIs. To generalize the results of Theorem 1
from RDF graphs to BGPs, (i) variables are used instead of
blank nodes to generalize distinct values in the least general
anti-unifications of triples begetting the cover query body
(as they have the same semantics within a BGP, but only
variables can be used at subject, object and property po-
sitions in triples), (ii) the cover query body comprises the
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Figure 7: Cover queries of the BGPQs q1 and q2 in Figure 5 (left), and of their saturations w.r.t. O in Figure 6 (right). Triples
shown in grey are redundant w.r.t. those shown in black.

least general anti-unifications of every q1 triple with every q2
triple instead of just those pairs of triples with same property
URI (as now distinct property values can be generalized us-
ing variables), and (iii) again, across these anti-unifications
characterizing the body of q, we consistently name the vari-
ables generalizing same pair of the distinct q1 and q2 values
(so as to capture the common structure between the bodies
of q1 and q2).

The cover query head is simply defined (second item in
Definition 6) as the least general anti-unification of the q1’s
head and q2’s head, in order to model the least general set
of result tuples generalizing those of q1 and of q2.

Figure 7 (left) shows the cover query qc of the BGPQs q1
and q2 displayed in Figure 5. The head qc(vx1x2) of qc results
from anti-unifying q1(x2) and q2(x2); its body consists of
the triple (vx1x2 , τ, vCPJP), which results from anti-unifying
(x1, τ,ConfPaper) in q1 and (x2, τ, JourPaper) in q2, of the
triple (vx1x2 , vhCAτ , vy1JP), which results from anti-unifying
(x1, hasContactAuthor, y1) in q1 and (x2, τ, JourPaper) in q2
etc.

Importantly, a cover query of two BGPQs may not ex-
ist (If . . . then . . . in Definition 6). For instance, recall the
BGPQs q1 and q2 previously introduced in subsection 4.1.2,
with which we pointed out that an lgg may no exists. Their
cover query does not exists either, since Definition 6 leads to
q(vx1x2) ← (vx1y2 ,hasAuthor, vy1x2) which is not a BGPQ
(vx1x2 does not appear in q’s body).

The next theorem formalizes the above discussion:

Theorem 5. Given two BGPQs q1, q2 with the same ar-
ity and empty sets R of RDF entailment rules and O of
RDFS statements:

1. the cover query of q1 and q2 exists iff an lgg of q1 and
q2 exists;

2. the cover query of q1 and q2 is an lgg of q1 and q2.

Proof. The proof can be directly derived from that of
the more general Theorem 6 (see below), noting that in the
particular case of Theorem 5 R = ∅ and O = ∅ hold, hence
q1
∞
O = q1 and q2

∞
O = q2 hold.

In Figure 7 (left), the cover query qc of the BGPQs q1 and
q2 displayed in Figure 5 is therefore an lgg of them when
both extra ontological constraints and RDF entailment are
ignored (Theorem 5). Remark that qc is equivalent to the
näıve minimal lgg of q1 and q2 shown Figure 5: qlgg.

We provide below the worst-case time to compute a cover
query, and its size.

Proposition 4. The cover query of two BGPQs q1 and
q2 can be computed in O(|body(q1)| × |body(q2)|); its size is
|body(q1)| × |body(q2)|.

The next theorem generalizes the preceding one in order
to use the notion of cover query to compute an lgg of two
queries w.r.t. extra ontological constraints and any set of
RDF entailment rules.

Theorem 6. Given a set R of RDF entailment rules, a
set O of RDFS statements and two BGPQs q1, q2 with the
same arity,

1. the cover query q of q1
∞
O and q2

∞
O exists iff an lgg of

q1 and q2 w.r.t. O exists;

2. the cover query q of q1
∞
O and q2

∞
O is an lgg of q1 and

q2 w.r.t. O.

Proof. We start by showing that the cover query q, when
it exists, is a generalization w.r.t.O of q1 and q2, i.e., q1 |=R,O
q and that q2 |=R,O q. Clearly, once proved, this entails de
fact that if q exists, then an lgg of q1 and q2 w.r.t. O exists.

Consider the BGPQ q′ obtained from q by replacing every
variable vt1t2 by the value t1. Clearly, q′ |=R,O q and, by
construction of q, q′ = q1, i.e., q1 |=R,O q. Showing that
q2 |=R,O q holds is done in a similar way.

Therefore, the cover query q is a generalization of q1 and
q2 w.r.t. O, thus an lgg of q1 and q2 w.r.t. O also exists.

Now, let us show that the cover query q, when it exists, is
an lgg of q1 and q2 w.r.t. O. Let qlgg be any lgg of q1 and q2
w.r.t. O. Without loss of generality, assume that BGPQs do
not contain blank nodes (recall that they can be equivalently
replaced by non-answer variables, Section 2). Also, assume
that q, q1, q2, qlgg heads are q(x̄), q1(x̄1), q2(x̄2), qlgg(x̄lgg) re-
spectively.

To prove our claim, we need to show that q |=R,O qlgg
holds. Since qlgg is an lgg of q1 and q2 w.r.t. O, there
exist two homomorphisms φ1 and φ2 from the variables in
qlgg to the values (variables and constants) in q1

∞
O and in

q2
∞
O respectively, such that [body(qlgg)]φ1 ⊆ body(q1

∞
O ) and

φ1(x̄lgg) = x̄1, and similarly, [body(qlgg)]φ2 ⊆ body(q2
∞
O ) and

φ2(x̄lgg) = x̄2. Consider the BGPQ q′lgg obtained from qlgg
by replacing every variable v by vt1t2 where t1 = φ1(v) and



t2 = φ2(v). Clearly, qlgg ≡R,O q′lgg holds. Assume that the
head of q′lgg is q′lgg(x̄

′
lgg); by construction is has the same

head as q. Let us show that q |=R,O q′lgg holds, i.e., there
exists a homomorphism φ from the variables in q′lgg to values
in q∞O such that [body(q′lgg)]φ ⊆ body(q∞O ) and φ(x̄′lgg) = x̄.
By Definition of q, it is easy to see that the above holds
when φ maps vt1t2 either to t1 if t1 = t2 and t1 ∈ U ∪ L, or
to itself otherwise. Importantly, this entails (i) the existence
of the cover query q when an lgg qlgg exists and (ii) that
q |=R,O q′lgg holds, hence q |=R,O qlgg holds, and therefore q
is an lgg of q1 and q2 w.r.t. O.

As an immediate consequence of the above results, we
get the following worst-case time to compute an lgg of two
BGPQs q1 and q2, and its size. We assume given the satura-
tion q1

∞
O and q2

∞
O w.r.t. the sets O of ontological constraints

and R of RDF entailment rules under consideration, as the
times to compute q1

∞
O and q2

∞
O , and their sizes, depend on

the particular O and R at hand.

Corollary 2. An lgg of two BGPQs q1 and q2 can be
computed in O(|body(q1

∞
O )| × |body(q2

∞
O )|) and its size is

|body(q1
∞
O )| × |body(q2

∞
O )|.

Figure 7 (right) displays the cover query of the BGPQs
q1
∞
O and q2

∞
O shown in Figure 6. It is therefore (Theorem 6)

an lgg of the BGPQs q1 and q2 shown in Figure 5 w.r.t. the
ontological constraints shown in Figure 6, using the RDF
entailment rules shown in Table 2.

Figure 7 exemplifies the benefits of taking into account ex-
tra ontological constraints modeling background knowledge
when identifying the commonalities between queries, thus of
endowing the RDF relation of generalization/specialization
between queries with such knowledge. When background
knowledge is ignored (left), we only learn that both q1 and
q2 ask for the resources having some type. In contrast, when
we do consider background knowledge (right), we further
learn that these resources, which both q1 and q2 ask for, are
publications, which have some researcher as author.

5. EXPERIMENTS
We provide an experimental assessment of our technical

contribution for computing lggs of BGPQs, which goes be-
yond that for RDF graphs (recall that BGPQ bodies general-
ize RDF graphs). In Section 5.1, we describe our experimen-
tal settings. Then, in Section 5.2, we study the saturation
of a BGPQ w.r.t. ontological constraints. Finally, in Sec-
tion 5.3, we study the computation of lggs with or without
considering constraints, notably the gain in precision when
constraints are considered.

5.1 Settings
Software. We implemented our framework for comput-

ing lggs of RDF graphs or of BGPQs in Java 1.8 (https:
//www.java.com), on top of the Jena 3.0.1 RDF reasoner
(https://jena.apache.org) and a PostgreSQL 9.3.11 server
(https://www.postgresql.org); all used with default settings.

We use Jena to compute the saturation of an RDF graph
(against which queries must be evaluated to obtained their
complete answer sets, recall Section 2), as well as the satu-
ration of queries w.r.t. extra ontological constraints that we
devised in the preceding section.

PostgreSQL is used to evaluate SQLized BGPQs against
a saturated RDF graph. This RDF graph, which comprises

both data and constraints (i.e., RDF and RDFS statements),
is stored in a Triple(s,p,o) PostgreSQL table, indexed by
all permutations of the s, p, o columns, leading to a total
of 6 indexes. This indexing choice is inspired by [17, 28], to
give PostgreSQL efficient query evaluation opportunities.

There exist alternative data layouts like having one two-
columns table p(s,o) per distinct property p in the RDF
graph, which stores all the subject/object tuples of triples
with property p [6], or the elaborate layout of [4] used in
DB2 RDF. However, adopting another data layout than the
Triple table would have no impact on our experiments, as
the reported times are not related to query evaluation.

RDF entailment rules. We used the rules shown in Ta-
ble 2, which allow reasoning about RDFS ontological con-
straints.

Dataset. We conducted experiments using LUBM [13].
We generated an RDF graph comprising 884k triples (in-
cluding 242 ontological constraints, i.e., RDFS statements)
before saturation and 1.08M triples after. This RDF graph
is used to compare the quality of lggs of BGPQs w.r.t. their
precision, when ontological are considered or not.

Queries. We borrowed from [5] a set of 9 BGPQs. Ta-
ble 3 (top) displays the characteristics of these queries, which
have a variety of structural aspects and numbers of answers.
The queries can be found in the Appendix.

Hardware. We used an Intel Xeon (X5550) 2.67GHz ma-
chine with 32GB RAM, using Ubuntu 14.04.3 LTS (64bits).

In the sequel, all measured times are averaged over 5 warm
runs and are in milliseconds.

5.2 BGPQ saturation w.r.t. constraints
Following Definition 3, we compute the saturation of a

BGPQ q w.r.t. a set O of ontological constraints as follows.
We build a saturated query q∞O with same output variables
as q and whose body comprises the triples in (body(q)∪O)∞,
except those inO∞ that are not in body(q)∞, i.e., body(q∞O ) =
(body(q) ∪ O)∞ \ (O∞ \ body(q)∞).

Table 3 (bottom) shows the size of our saturated test
queries and the time to compute them. Enriching our test
queries using the 242 LUBM constraints significantly aug-
ments their size: from ×2 for Q10 up to ×5 for Q22. The
query saturation time is always fast: a very few tens of mil-
liseconds for all our test queries.

5.3 lggs of BGPQs w.r.t. constraints
Table 4 (lines 1 and 3) shows that cover query-based lggs

of test queries are always computed fast whether or not we
consider the LUBM constraints: 1 to 4ms when they are
ignored, and 5 to 10ms when they are considered. In the
latter case, overall, it takes between 50 and 59ms to compute
an lgg in the worst case (i.e., when the two saturated test
queries are computed in sequence before computing their
cover query).

Further, observe that the cover query-based lgg of two
BGPQs when ignoring extra ontological constraints, is en-
tailed by that of these same queries when extra contraints
are considered. Indeed, by construction, these lggs have the
same answer variables and, clearly, the body of the former
is included in that of the latter (as it is built using the sat-
urated queries an not the queries themselves). This obser-
vation allows comparing their numbers of answers in order
to quantify to which extent lggs ignoring extra ontological



Queries: Q01 Q03 Q05 Q07 Q08 Q10 Q12 Q22 Q25

shape star star graph graph star tree graph star star

size (number of triples) 3 3 4 3 2 4 6 2 3

number of constants/distinct variables/answer variables 5/2/2 5/2/2 5/3/3 4/2/2 3/2/2 6/3/3 7/4/3 2/3/2 5/2/2

cardinality (number of answers) 123 41 869 0 269 41 751 79 14 252 16

size of the saturation w.r.t. constraints 8 9 11 7 6 8 14 10 8

time to compute the saturation w.r.t. constraints 24 23 23 21 22 22 21 27 22

Table 3: Characteristics of our test queries (top) and of their saturations w.r.t. LUBM constraints (bottom); times are in ms.

Pairs of queries: Q01Q07 Q03Q07 Q01Q22 Q03Q22 Q08Q22 Q01Q25 Q22Q25 Q05Q10 Q05Q12

time to compute the lgg 1 2 1 1 1 3 2 2 4

cardinality (number of answers) of the lgg 30 963 1 048 060 1 048 060 74 643 1 048 060 253 443 1 048 060 9 615 770 34 852

time to compute the lgg w.r.t. constraints 5 6 6 7 10 6 6 6 8

cardinality of the lgg w.r.t. constraints 14 285 14 285 33 305 33 305 340 358 74 643 33 305 351 580 30 529

Table 4: Characteristics of cover query-based lggs of test queries, w or w/o using the LUBM constraints; times are in ms.

constraints are unnecessarily more general than lggs which
take them into account, i.e., to which extent lggs consider-
ing extra ontological constraints are more precise than those
ignoring such constraints. Table 4 (lines 2 and 4) shows that
ignoring extra constraints significantly increases the number
of answers for some lggs, from a small ×1.14 for Q05Q12 up
to a striking ×73 for Q03Q07, with a significant average of
×19.42. lggs with same number of answers in Table 4 were
found equivalent, e.g., lggs with 1 048 060 answers are ask-
ing for all the (distinct) subject/object pairs in triples in the
LUBM RDF graph.

6. RELATED WORK
The problem of computing an lgg was introduced in the

early 70’s by G. Plotkin [21, 22] to generalize First Order
Logic clauses w.r.t. θ-subsumption, a non-standard logical
implication typical of Machine Learning.

Recently, this problem has started receiving consideration
in the Semantic Web field:

[10] studies the problem of computing an lgg of two so-
called r-graphs while ignoring RDF entailment rules, i.e.,
comparing r-graphs in a purely relational fashion (recall Sec-
tion 2). r-graphs are particular RDF graphs describing a
single resource r called the root. More precisely, r-graphs
are almost-tree RDF graphs, which can be represented as
standard trees if we consider as pattern of successive edges:
a triple (s1, p1, o1) followed by either (i) (o1, p2, o2) or (ii)
(p1, p2, o2). Intuitively, an r-graph captures the fact that r
is described by the resources it is (indirectly) connected to
(i) and by the properties (indirectly) connecting it to other
resources (ii). The proposed technique for computing an
lgg of two r-graphs exploits their tree-shapes to traverse
them simultaneously from the roots up to the leaves, while
constructing an r-graph lgg. Our contributions encompass
those of [10], since we can compute an lgg of general RDF
graphs using any set of RDF entailment rules.

[15] investigates the problem of computing an lgg of unary
tree-BGPQs while ignoring RDF entailment rules. Intu-
itively, a unary tree BGPQ describes its answer variable by
how it must be (indirectly) connected to other resources.
Like in [10], a tree BGPQ lgg is computed by a simultane-
ous root-to-leaves traversal of the tree shaped input queries.

Our contributions encompass those of [15], since we can com-
pute an lgg of general n-ary BGPQs using any set of RDF
entailment rules and, further, extra ontological constraints.

The problem of computing an lgg has also been studied in
Knowledge Representation, where the notion of lgg was re-
baptized least common subsumer. Interestingly, some works
of this field use formalisms whose expressivity overlaps with
our RDF/SPARQL setting.

In Description Logics (DLs), [2] studies the problem of
computing an lgg of concepts (DL formulae) for three DLs:
EL and it extensions FLE and ALE ; these results are ex-
tended in [3, 29] to consider ontological constraints. EL-
concepts correspond exactly to unary tree BGPQs in which
all triple properties are constants, while the only shared
constraints are domain typing and subclass. For these EL-
concepts and particular BGPQs, one may interchangeably
use the EL-technique or ours to compute lggs.

Similarly, in Conceptual Graphs (CGs), the so-called sim-
ple CGs with unary and binary relations [9] correspond to
RDF graphs in which all triples with τ property must have
a constant has class name; all the RDFS ontological con-
straints are shared with simple CGs. For these simple CGs
and particular RDF graphs, one may interchangeably use
the CG-technique or ours to compute lggs.

7. CONCLUSION AND PERSPECTIVES
We have revisited the Machine Learning problem of com-

puting a least general generalization (lgg) of some descrip-
tions in the setting of RDF and SPARQL. Our contributions
significantly extend the state of the art by considering the
entire RDF standard and popular conjunctive fragment of
SPARQL, i.e., BGPQs. In particular, we neither restrict
RDF graphs and BGPQs nor RDF entailment in any way,
while closely related works only consider almost-tree RDF
graphs and unary tree BGPQs (i.e., describing a single root
resource or answer variable, respectively), and, further, they
completely ignore RDF entailment rules (i.e., their particular
RDF graphs and BGPQs are simply compared in a purely
relational fashion). Moreover, in the case of BGPQs, we
also endowed with background knowledge the standard RDF
entailment relation between queries. As our experiments
showed, taking into account the ontological constraints de-



scribing the application domain in which queries are posed
may enhance the precision of lggs.

As a short-term perspective, we want to study heuristics
in order to efficiently prune out as much as possible redun-
dant triples, while computing lggs. Indeed, as for instance
Figures 4 and 7 show, our cover graph/query technique pro-
duces many redundant triples. This would allow having
more readable lggs, as well as reducing the a posteriori elim-
ination effort of redundant triples with standard technique
from the literature. Moreover, in the case of BGPQs, re-
moving redundant triples may significantly improves their
evaluation time.

Computing lggs has many possible applications in data-
bases (recall Section 1); in particular, we plan to apply our
results for BGPQs to the optimization problem of view se-
lection in RDF. Our idea is to select as views to material-
ize a set V of lggs of queries from a workload, such that
(i) the workload queries can be (partially or totally) rewrit-
ten using V and (ii) V minimizes a combination of query
processing, view storage, and view maintenance costs. This
would provide an alternative to [11], which applies to the
so-called RDF database fragment of RDF (restricting RDF
entailment) and BGPQs, and which is based on recursively
decomposing the workload queries into subqueries that may
be materialized.

Finally, we also want to investigate the problem of com-
puting lggs, and apply it to view selection, in the setting of
the DL-LiteR description logic [7], which underpins OWL2
QL, the other W3C’s Semantic Web standard.
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9. APPENDIX

Q01(?X, ?Y ) : −
?X ”http : //www.w3.org/1999/02/22-rdf -syntax-ns#type” ”http : //swat.cse.lehigh.edu/onto/univ-bench.owl#Employee”,
?X ”http : //swat.cse.lehigh.edu/onto/univ-bench.owl#worksFor” ”http : //www.Department0.University0.edu”,
?X ”http : //swat.cse.lehigh.edu/onto/univ-bench.owl#degreeFrom” ?Y
Q03(?X, ?Y ) : −
?X ”http : //www.w3.org/1999/02/22-rdf -syntax-ns#type” ”http : //swat.cse.lehigh.edu/onto/univ-bench.owl#Employee”,
?X ”http : //swat.cse.lehigh.edu/onto/univ-bench.owl#worksFor” ”http : //www.Department0.University0.edu”,
?X ”http : //swat.cse.lehigh.edu/onto/univ-bench.owl#doctoralDegreeFrom” ?Y
Q05(?X, ?Y, ?Z) : −
?X ”http : //www.w3.org/1999/02/22-rdf -syntax-ns#type” ”http : //swat.cse.lehigh.edu/onto/univ-bench.owl#Student”,
?X ”http : //swat.cse.lehigh.edu/onto/univ-bench.owl#advisor” ?Y,
?Y ”http : //swat.cse.lehigh.edu/onto/univ-bench.owl#teacherOf” ?Z,
?X ”http : //swat.cse.lehigh.edu/onto/univ-bench.owl#takesCourse” ?Z,
Q07(?X, ?Y ) : −
?X ”http : //www.w3.org/1999/02/22-rdf -syntax-ns#type” ”http : //swat.cse.lehigh.edu/onto/univ-bench.owl#Faculty”,
?X ”http : //swat.cse.lehigh.edu/onto/univ-bench.owl#degreeFrom” ?Y,
?X ”http : //swat.cse.lehigh.edu/onto/univ-bench.owl#memberOf” ?Y
Q08(?X, ?Y ) : −
?X ”http : //swat.cse.lehigh.edu/onto/univ-bench.owl#degreeFrom” ?Y,
?X ”http : //swat.cse.lehigh.edu/onto/univ-bench.owl#memberOf” ”http : //www.Department0.University0.edu”,
Q10(?W, ?X, ?Y ) : −
?X ”http : //www.w3.org/1999/02/22-rdf -syntax-ns#type” ”http : //swat.cse.lehigh.edu/onto/univ-bench.owl#GraduateStudent”,
?Y ”http : //www.w3.org/1999/02/22-rdf -syntax-ns#type” ”http : //swat.cse.lehigh.edu/onto/univ-bench.owl#Faculty”,
?W ”http : //swat.cse.lehigh.edu/onto/univ-bench.owl#publicationAuthor” ?X,
?W ”http : //swat.cse.lehigh.edu/onto/univ-bench.owl#publicationAuthor” ?Y
Q12(?W, ?X, ?Y ) : −
?X ”http : //www.w3.org/1999/02/22-rdf -syntax-ns#type” ”http : //swat.cse.lehigh.edu/onto/univ-bench.owl#GraduateStudent”,
?X ”http : //swat.cse.lehigh.edu/onto/univ-bench.owl#advisor” ?Y,
?Y ”http : //swat.cse.lehigh.edu/onto/univ-bench.owl#teacherOf” ?Z,
?X ”http : //swat.cse.lehigh.edu/onto/univ-bench.owl#takesCourse” ?Z,
?W ”http : //swat.cse.lehigh.edu/onto/univ-bench.owl#publicationAuthor” ?X,
?W ”http : //swat.cse.lehigh.edu/onto/univ-bench.owl#publicationAuthor” ?Y
Q22(?X, ?Y ) : −
?X ”http : //swat.cse.lehigh.edu/onto/univ-bench.owl#doctoralDegreeFrom” ?Z,
?X ”http : //swat.cse.lehigh.edu/onto/univ-bench.owl#teacherOf” ?Y
Q25(?X, ?Y ) : −
?X ”http : //www.w3.org/1999/02/22-rdf -syntax-ns#type” ”http : //swat.cse.lehigh.edu/onto/univ-bench.owl#Faculty”,
?X ”http : //swat.cse.lehigh.edu/onto/univ-bench.owl#degreeFrom” ”http : //www.University532.edu”,
?X ”http : //swat.cse.lehigh.edu/onto/univ-bench.owl#memberOf” ?Y

Figure 8: LUBM queries


