N
N

N

HAL

open science

Evaluation of Format- Preserving Encryption
Algorithms for Critical Infrastructure Protection
Richard Agbeyibor, Jonathan Butts, Michael Grimaila, Robert Mills

» To cite this version:

Richard Agbeyibor, Jonathan Butts, Michael Grimaila, Robert Mills. Evaluation of Format- Pre-
serving Encryption Algorithms for Critical Infrastructure Protection. 8th International Conference
on Critical Infrastructure Protection (ICCIP), Mar 2014, Arlington, United States. pp.245-261,
10.1007/978-3-662-45355-1__16 . hal-01386769

HAL Id: hal-01386769
https://inria.hal.science/hal-01386769
Submitted on 24 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01386769
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Chapter 16

EVALUATION OF FORMAT-
PRESERVING ENCRYPTION
ALGORITHMS FOR CRITICAL
INFRASTRUCTURE PROTECTION

Richard Agbeyibor, Jonathan Butts, Michael Grimaila and Robert Mills

Abstract Legacy critical infrastructure systems lack secure communications ca-
pabilities that can protect against modern threats. In particular, opera-
tional requirements such as message format and interoperability prevent
the adoption of standard encryption algorithms. Three new algorithms
recommended by the National Institute of Standards and Technology
(NIST) for format-preserving encryption could potentially support the
encryption of legacy protocols in critical infrastructure assets. The
three algorithms, FF1, FF2 and FF3, provide the ability to encrypt
arbitrarily-formatted data without padding or truncation, which is a
critical requirement for interoperability in legacy systems. This pa-
per presents an evaluation of the three algorithms with respect to en-
tropy and operational latency when implemented on a Xilinx Virtex-6
(XC6VLX240T) FPGA. While the three algorithms inherit the security
characteristics of the underlying Advanced Encryption Standard (AES)
cipher, they exhibit some important differences in their performance
characteristics.

Keywords: Format-preserving encryption, legacy infrastructure assets

1. Introduction

Legacy industrial control systems were developed and implemented well be-
fore the threats associated with modern networking were recognized. The trend
to interconnect industrial control systems, however, has introduced many se-
curity concerns [26]. The systems were designed for performance, reliability
and safety using proprietary hardware, software and communications protocols.
The communications protocols incorporate basic error detection and correction
functionality, but lack the secure communications capabilities required by mod-

246 CRITICAL INFRASTRUCTURE PROTECTION VIII

ern interconnected systems. Many legacy protocols associated with industrial
control systems are incompatible with modern IP-based security such as mes-
sage encryption. Arbitrarily-formatted data associated with control operations
cannot be padded or truncated; this prevents the use of standard encryption
that relies on fixed message data lengths (e.g., the 128 or 256 block size asso-
ciated with the Advanced Encryption Standard (AES)).

The Computer Security Act of 1987 assigned the National Institute of Stan-
dards and Technology (NIST) the task of developing security standards and
guidelines to secure sensitive federal information and communications systems
[15]. Among the most sensitive of these federal systems are those categorized
as critical infrastructure assets. According to Executive Order 13636 of Febru-
ary 2013, “the cyber threat to critical infrastructure continues to grow and
represents one of the most serious national security challenges” [17]. Executive
Order 13636 also defines critical infrastructure as “the assets, whether physical
or virtual, so vital to the United States that the incapacity or destruction of
such systems and assets would have debilitating impact on security, national
economic security, national public health or safety, or any combination of those
matters” [17].

In response, NIST started the development of a cybersecurity framework in
collaboration with researchers and stakeholders from the telecommunications,
energy, financial services, manufacturing, water, transportation, healthcare,
and emergency services sectors [16]. The interconnected nature of systems
used in these sectors requires comprehensive risk management and infrastruc-
ture assurance plans. A major concern in critical infrastructure protection is
the ubiquity of systems that employ aging (legacy) technologies with limited
security functionality. Many of the legacy communications protocols used in
sectors such as energy and transportation are incompatible with modern IP-
based security, but are too costly to replace.

An important focus of NIST is the development of cryptographic standards.
Cryptography includes the algorithms used to encrypt and decrypt information,
and to perform other security functions such as digital signatures, authentica-
tion and key exchange [15]. One notable success is the adoption of the Advanced
Encryption Standard (AES), the gold standard for symmetric-key encryption.

In July 2013, NIST released Draft Special Publication 800-38G, which rec-
ommends methods for format-preserving encryption (FPE) [6]. FPE allows
the encryption of data with non-standard formats that are not suitable for
modification (e.g., information transmitted in non-IP networks or stored in
legacy databases). FPE can potentially provide security to legacy critical in-
frastructure systems that were not designed with security in mind and that are
incompatible with standard encryption technology. This paper investigates the
security and performance of the three NIST-recommended FPE algorithms for
use in critical infrastructure protection.

Agbeyibor, Butts, Grimaila € Mills 247

Cryptography

h 4

Public-Key Private-Key
L J
RSA and others
A A

| Block Cipher][Stream Cipher ‘

h

v Y ¥ v ¥
[RC2 [AES | DES " 3DESI RCaE I Blowﬁsh]

Figure 1. Modern cryptography hierarchy [1].

2. Background

Encryption is the mathematical manipulation of data in a manner that
makes it unintelligible to unauthorized parties, yet recoverable by intended
recipients [27]. Figure 1 shows the modern cryptography hierarchy. Crypto-
graphic algorithms can be categorized as symmetric or asymmetric algorithms,
also known as private-key or public-key algorithms, respectively. Symmetric
algorithms use the same key for encryption and decryption; the key must be
distributed offline or via a secure key distribution protocol. Asymmetric al-
gorithms use two keys: one for encryption and the other for decryption. One
of the keys (private key) is kept secret by one party; the other key (public
key) can be distributed openly. This resolves the problem of key distribution,
but asymmetric algorithms are typically more complex and computationally
intensive than symmetric algorithms.

Cryptographic algorithms operate as block ciphers or stream ciphers. Stream
ciphers encipher the plaintext one character at a time and concatenate the in-
dependent encryptions to produce the ciphertext. Stream ciphers are fast, but
are prone to weaknesses with regard to integrity protection and authentica-
tion [27]. On the other hand, block ciphers are slower, but their mechanisms
ensure the security properties of confusion and diffusion. Confusion means that
the key does not relate in a simple manner to the ciphertext; it refers to making
the relationship as complex as possible using the key non-uniformly through-
out the encryption process. Diffusion means that changing a single character
in the plaintext causes several characters in the ciphertext to change, and vice
versa [27]. Block ciphers are widely used in modern cryptography, and three in
particular — AES, 3DES and Skipjack — are recommended for use by NIST [6].

248 CRITICAL INFRASTRUCTURE PROTECTION VIII

AES, 3DES and Skipjack are applied to 64-bit or 128-bit blocks of data.
When AES was designed, 128-bit message blocks were commonly used for cryp-
tographic applications [22]. Messages that do not fit the prescribed block size
are padded or truncated. However, many supervisory control and data ac-
quisition (SCADA) systems used in the critical infrastructure do not permit
padding. SCADA systems traditionally use low-bandwidth links and compact
communications protocols such as Modbus and DNP3 [28]. Solutions have been
developed to retrofit security in these systems, but they often incur significant
processing and buffering overhead that cannot be tolerated in systems with
strict timing constraints [28]. A preferred solution is an algorithm that can
transform formatted data into a sequence of symbols such that the encrypted
data has the same format and length as the original data [22].

2.1 Format-Preserving Encryption

The origins of the format-preserving encryption (FPE) problem go back 32
years. In 1981, the U.S. National Bureau of Standards (later renamed NIST)
published FIPS 74 that described an approach for enciphering arbitrary strings
over an arbitrary alphabet [2]. The scheme was subsequently proven to be
insecure. It was not until 1997 that Brightwell and Smith [5] specifically men-
tioned the FPE problem and its utility, which they referred to as “datatype-
preserving encryption” [5]. In 2002, Black and Rogaway [3] published a seminal
paper that proposed three methods for ciphers with arbitrary finite domains:
a prefix method, a cycle-walking cipher and a Feistel construction. The first
two methods have strong security bounds, but are targeted for tiny-space and
small-space messages. In the case of tiny-space FPE, the size of the message
space N = | X| is so small that it is feasible to spend O(N) time or O(N) space
for encryption or decryption. For small-space FPE, the size of the message
space N = | X]| is at most 2" where w is the block size of the cipher underlying
the FPE scheme. AES is most often used as the block cipher, so w = 128 bits
and N = 2128 ~ 10385 becomes the cutoff for “small” [12]. The third method
encrypts a much wider variety of data using the Feistel construction that was
first examined by Luby and Rackoff in 1988 [10]. The Feistel construction has
the desirable property that ciphers built from it can be proven to reduce to the
cipher that is used as a round function [19].

In 2003, Spies [24] proposed the FFSEM algorithm that employs the Feis-
tel construction for FPE. The development of FFSEM was motivated by the
desire to add security to legacy protocols and systems in the financial ser-
vices sector [25]. In these systems, one of the barriers to adopting effective
encryption methods was the cost of modifying databases and applications to
accommodate encrypted information. Applications often expect input in spe-
cific formats. Moreover, data such as social security numbers and personal
account numbers are often used as keys or indices in databases, so any ran-
domization of these fields by a randomized or stateful algorithm can require
significant schema changes [22]. In 2010, Bellare, et al. [2] submitted specifi-
cations for FFX, a format-preserving, Feistel-based encryption. Note that the

Agbeyibor, Butts, Grimaila € Mills 249

u characters v characters

-
+

A4<—33 B4<— C3

Figure 2. Feistel structure of the FF1, FF2 and FF3 algorithms [6].

“X” in FFX is a placeholder for implementations of the algorithm that are
tailored to particular applications.

NIST Recommendations. The release of the FFX specification raised
awareness about the FPE problem and encouraged security researchers to de-
velop alternative algorithms. After nearly two years of deliberation, NIST
released a draft of Special Publication 800-38 [6] for public comment. The
publication specifies three FPE methods: FF1, FF2 and FF3. Each of these
methods is a mode of operation of the AES algorithm, which is used to con-
struct a round function within the Feistel structure for encryption as shown in
Figure 2.

250 CRITICAL INFRASTRUCTURE PROTECTION VIII

Algorithm 1 FF1.Encrypt(K,T.X) [4]

Prerequisites:

Approved, 128-bit block cipher, CIPH;

Key, K, for the block cipher;

Base, radix, for the character alphabet;

Range of supported message lengths, [minlen..maxlen];
Maximum byte length for tweaks, maxTlen.

Inputs:
Character string, X, in base radix of length n such that n € [minlen..maxlen);
Tweak T, a byte string of byte length t, such that 7 € [0..maxT len].

Output:
Character string, Y, such that LEN(Y) = n.

Steps:
1: Letu=[n/2]:v=n—u.
2 LetA=X|l.ul:B=Xu+ l.n].
3. Let b = [[VvLOG:(radix)]/8]:d = 4[b/4] + 4.
4 Let P =111 120" I [radix)® || [1O1" || [mod 256]1" || [n]* 1] [1]*.
5: fori «— 0to9 do
6: Let Q = T || [0]'==b=Dmedie || [|| [N UM aain(B)]-
7 LetR = PRF(P | Q).
8 Let S be the first d bytes of the following string of [d/ 167 blocks:
R || CIPH(R & [11") || CIPH{(R & [2]") || .. || CIPH(R @ [[d/16] = 1]'°).
9: Let y = NUM(S).
10: If i is even, let m = u; Else, let m = v.
11: Letc = (NUM,4:,(A) + y) mod radix™.
12: Let C = STR . (c).
13: LetA = B.
14: Let B=C.
15: end for
16: Return A || B.

Figure 8. FF1 encryption algorithm adapted from [6].

m FF1 Algorithm: The FF1 algorithm is derived from FFX as proposed
by Bellare, et al. [2]. Figure 3 describes the FF1 algorithm. The NIST
recommendation designates a maximally balanced Feistel structure that
for an odd length message of size n divides the message into A and B
halves of size u = [n/2]| and v = n — u. The original FFX algorithm uses
an alternating-Feistel structure, leaving the user to choose the size of the
halves along with eight other parameters. Of the three recommendations,
FF1 supports the greatest range of lengths for formatted data and the
tweak.

Agbeyibor, Butts, Grimaila € Mills 251

Algorithm 2 FF2 Encrypt(K, T.X) [4]

Prerequisites:

Approved, 128-bit block cipher, CIPH;

Key, K, for the block cipher;

Base, radix, for the character alphabet;

Base, rweakradix, for the tweak character alphabet;
Range of supported message lengths, [minlen..maxlen];
Maximum supported tweak length, maxT len.

Inputs:
Numeral string, X, in base radix of length n such that n € [minlen..maxlen];
Tweak numerical string, T, in base tweakradix of length t such that 7 € [0..maxT len].

Output:
Character string, ¥, such that LEN(Y) = n.

Steps:
I Letu=[n/2];v=n—u.
2 LetA=X1l.u]:B=X|u+1.n].
3 Ifr> OP = [r(.r.gﬁl\']] H [I]l H [”]1 H ["VUi'l’!rn'ecmudh'(T)]13:
Else P = [radix]" || [0]" || [2]" 1] [0]"3.
4: LetJ = CIPHg(P).
5. fori «— 0109 do
6 Let O « [i]' || [NUM,aqix(B)".
7: LetY « CIPH,(Q).
8: Lety « NUM,(Y).
9: If i is even, let m = u; Else, let m = v.
10: Lete = (NUM,4i,(A) + v) mod radix™.
11: LetC =STRY . (c).
12: LetA =B.
13: LetB=C.
end for
15: Return A || B.

E

Figure 4. FF2 encryption algorithm adapted from [6].

m FF2 Algorithm: The FF2 algorithm is derived from the VAES3 algo-
rithm proposed by Vance [29]. Figure 4 describes the FF2 algorithm,
which generates a subkey for the block cipher in the Feistel round func-
tion; this can help protect the original key from side-channel analysis [6].
FF2 differs from FF1 in that it employs a larger tweak with an indepen-
dent tweak radix to allow for additional variation in the cipher.

m FF3 Algorithm: The FF3 algorithm is essentially equivalent to the
BPS-BC component of BPS [4] instantiated with a 128-bit block and
limited to tiny- and small-space messages [6]. Figure 5 describes the FF3
algorithm, which has only eight rounds, but is the least flexible in terms

252 CRITICAL INFRASTRUCTURE PROTECTION VIII

Algorithm 3 FF3.Encrypt(K,T,X) [4]

Prerequisites:

Approved, 128-bit block cipher, CIPH;

Key, K. for the block cipher;

Base, radix, for the character alphabet;

Range of supported message lengths, [minlen..maxlen], such that minlen = 2 and
maxlen < 2 Vug,.m,,-_‘.(2%)J.

Inputs:
Numeral string, X, in base radix of length n such that n € [minlen..maxlen];
Tweak bit string, T, such that LEN(T') = 64.

Output:
Character string, ¥, such that LEN(Y) = n.

Steps:
1: Letu=[n/2T;v=n-u
2: LetA = X[1.u]; B= X[u+ 1.n].
3: Let T, =T[0.31] and T = T[32..63];
4: fori «— 0107 do
5 If iseven, letm =wuand W =Ty, Else letm = vand W = T7.
6: Let P = REV(INUM,aui(REV(BD]'®) || W & REV([i]*).
7: LetY = CIPHE(P).
8: Lety = NUM»(REV(Y)).
9. Let ¢ = (NUM,ui(REV(A)) + v) mod radix™.
10 LetC = REV(STR" . (c)).
11: LetA = B.
12: Let B = C.
13: end for
14: Return A || B.

*Where REV(X) reverses the order of characters in the character string X

Figure 5. FF3 encryption algorithm adapted from [6].

of the tweaks that are supported. In particular, the FF3 employs a 64-
bit tweak, which is split into right and left halves that are used to add
diffusion to odd and even encryption rounds, respectively.

2.2 Evaluation of the Algorithms

One of the criteria used during the evaluation of the AES candidate algo-
rithms in 1999 was demonstrated suitability as a random number generator.
Specifically, the evaluation of the output utilizing statistical tests should not
provide any means to distinguish it from a truly random source. NIST used
several statistical tests to evaluate the AES candidates: frequency test, block
frequency test, cumulative sums test, runs test, long runs of ones test, rank

Agbeyibor, Butts, Grimaila € Mills 253

test, spectral test, non-periodic templates test, overlapping template test, uni-
versal statistical test, random excursion test, random excursion variant test,
Lempel-Ziv complexity test, linear complexity test and an approximate en-
tropy test [23]. The Rijndael algorithm performed satisfactorily in all the tests
and was selected as the AES algorithm.

Since FPE algorithms are modes of operation of the underlying block cipher,
FF1, FF2 and FF3 should benefit from the statistical characteristics of AES.
This hypothesis is supported by theoretical results [13, 19, 20]. Our evaluation
uses Shannon entropy measurements to assess the security characteristics of
the three FFX algorithms. Note that entropy is a measure of unpredictabil-
ity or information content; Shannon entropy quantifies the expected value of
the information contained in a message and is typically measured in bits per
byte [27].

In addition to security performance, the computational performance of the
algorithms is an important criterion. Several metrics may be used to measure
the computational performance: encryption time, processing time and total
clock cycles per encryption [9]. The total clock cycle metric was used in this
research to evaluate the computational speed of the FF1, FF2 and FF3 algo-
rithms.

3. Experimental Design

In order to determine the security and performance of the FF1, FF2 and
FF3 algorithms for critical infrastructure assets, a set of experiments was de-
signed to test the hypothesis suggested by the algorithm designers and NIST [6]
that the algorithms inherit the strong security characteristics of the underlying
block cipher. NIST has not released details of its internal deliberations and
performance assessments.

As such, statistical tests were conducted to determine the ability of the
FPE algorithms to provide confusion and diffusion, and to output ciphertext
that is computationally indistinguishable from a random process. A dataset
containing input plaintext with varying levels of entropy was created. The
FF1, FF2 and FF3 algorithms were applied to this dataset. The algorithms
were implemented in C using the offspark AES library [18] and the entropy
of the resulting ciphertext was measured.

The second objective of our research was to evaluate the computational speed
of the three algorithms by measuring the operational latency of a hardware
implementation. This was accomplished by implementing the algorithms in
VHDL using the Xilinx ISE suite for the Virtex-6 FPGA (XC6VLX240T) [31].
A hardware-agnostic design was used to mitigate effects due to the Virtex-6
CMOS technology and Xilinx FPGA architecture. The operational latency
was estimated using the number of clock cycles between the input of plaintext
and the output of its ciphertext.

254 CRITICAL INFRASTRUCTURE PROTECTION VIII

54]2e[7d 45 1e 32 c4 8a e4 e9 75 5f be 5623 7545 1e 32 c4 8apd 954 51[7d
54]2e[7d 83 62 9a a0 bc 43 de d8 ed 1b 1a 9641 Pel6a [7d54 bc 43 de d8 ed 1b
54)2e[7d 3d 62 ec 84 c4 68 3d 4033 52 4a3d 62 ec 84 ¢4 68 5440 3352

Figure 6. Plaintext strings in the 3 Front and 3 Random scenarios.

3.1 Plaintext Dataset Design

In 1999, NIST tested the ability of the AES candidate algorithms to en-
crypt a plaintext avalanche comprising various sequences of random and fixed
plaintext bits [23]. Similarly, our research focused on the ability of the FPE
algorithms to encrypt a plaintext avalanche comprising various sequences of
random plaintext and fixed plaintext bytes. We studied the effect of repeti-
tive and, thus, predictable input data on the entropy of the ciphertext. Input
strings of thirteen bytes were used; this non-standard block size is used by a
legacy protocol employed in the transportation sector for aircraft transponder
messages [8].

Our research employed randomized experiments to enhance the reliability
and validity of the statistical results. The True Random Number Generator
(TRNG) service provided by Random.org [21] formed the backbone of the ex-
perimental design. Unlike pseudo-random number generators that use mathe-
matical formulas to generate sequences of numbers that appear random, TRNG
extracts randomness from physical phenomena (i.e., by measuring atmospheric
noise), producing 1 MiB (22° bytes) of raw random data. These true random
numbers were used to create a dataset of input plaintext strings with varying
levels of random and deterministic data. The experimental factor used in the
study was the number of deterministic bytes in the plaintext.

The experiments involved eight scenarios in which three, six, nine and twelve
bytes of the thirteen-byte plaintext string were held constant at the front or
dispersed randomly throughout the string. Each of the eight scenarios was
replicated 20 times in unique plaintext files, each containing 4,000 different
thirteen-byte strings. In the 3 Front scenario, the first three bytes were the
same in all input strings within the file. In the 3 Random scenario, the three
deterministic bytes were randomly dispersed throughout the string as shown in
Figure 6.

The other six scenarios followed the same design. The 4,000 thirteen-byte
strings in each input file repeated the same deterministic sequence; however,
each trial used a different deterministic byte sequence. The non-deterministic
part of the message was composed of random data extracted from the Ran-
dom.org sequence of 2013-09-17 [21].

3.2 Implementation and Entropy Measurement

All three FPE algorithms require a NIST-approved block cipher operation
CIPH. The 128-bit AES algorithm was used in the implementation. The cryp-

Agbeyibor, Butts, Grimaila € Mills 255

tography community discourages the use of unverified implementations of AES
because of its complexity. Therefore, we used offspark, a vetted open source
implementation of AES used to encrypt official Dutch Government communi-
cations [18]. The offspark implementation is written in the C programming
language, which partly motivated the use of C in the research. The research
validated the offspark AES implementation by comparing its output with
known vectors published in NIST’s Known Answer Test [14].

No known answers tests exist for FF1, FF2 and FF3, nor are there any vetted
implementations. Therefore, we verified our implementation via decryption.
The decryption algorithms provided by NIST were applied to the ciphertext
to reverse the encryption process. Satisfactorily-decrypted ciphertext provided
confidence that the implementations were accurate.

Entropy is a measure of the amount of information that can be gleaned from
ciphertext. The entropy H(X) of a variable or distribution is defined as:

H(z)=— Zp(m)loggp(x).

Comparisons of the entropy of ciphertext and the entropy of a random distri-
bution were used to assess the security of the algorithms. The ENT tool [30]
was used to measure entropy. ENT applied various statistical tests to the se-
quences of bytes stored in the files and reported the aggregate entropy of the
4,000 output ciphertext strings in each file.

3.3 Hardware Implementation

Hardware performance was another criterion used by NIST in 1999 to evalu-
ate the AES candidate algorithms. The Rijndael algorithm was selected partly
because it proved to be one of the fastest and most efficient algorithms, and
implementable on a wide range of platforms [7].

A number of different architectures can be considered when implementing
an encryption algorithm in hardware or using a field programmable gate array
(FPGA). Iterative looping is where only one round is designed; hence, for an
n-round algorithm, n iterations of the round are used to perform an encryp-
tion. Loop unrolling involves the unrolling of multiple rounds. Pipelining is
achieved by replicating the round and placing registers between each round to
control the flow of data. A pipelined architecture generally provides the highest
throughput [11]. Our research employed a pipelined implementation of 128-bit
AES and an iterative looping architecture for the Feistel structure of FPE. It-
erative looping saves hardware resources by implementing only one round of
the algorithm and using control logic to manage data flow.

The NIST pseudocode description is primarily intended for software imple-
mentations. As a consequence, certain operations that depend on previous
operations require carefully synchronized logic when implemented in hardware.
The pseudocode of algorithm was, therefore, expanded to identify paralleliz-
able modules and blocks that can be implemented with combinational logic.
Function calls to AES within the F-block of each round require the use of loop

256 CRITICAL INFRASTRUCTURE PROTECTION VIII

M Plaintext
MFF1

Entropy (bits/byte)

FF2
®FF3

3 Front 3 6 Front 6 9 Front 9 12Front 12 All
Random Random Random Random Random

Numberand Distribution of Deterministic Bytes(Scenario)

Figure 7. Mean entropy.

counters. The algorithms were coded in VHDL, simulated, placed and routed,
and synthesized on a Virtex-6 (XC6VLX240T) device using the Xilinx ISE de-
sign suite. Post-PAR static timing analysis and device utilization analysis were
performed on each implementation.

The throughput, latency and hardware resource requirements are usually
the most critical parameters when evaluating a hardware implementation. Our
research evaluated the speed of each algorithm by measuring the operational
latency of an encryption cycle. To eliminate bias due to the use of a particular
FPGA technology, we estimated operational latency as the number of clock
cycles required for an algorithm to encrypt plaintext.

4. Results and Analysis

This section presents and analyzes the experimental results.

4.1 Security

A thirteen-byte sequence of random data obtained from Random.org served
as the control in the entropy experiment. An all-random input plaintext file
created with the sequence was determined to have an entropy of 7.996 bits /byte.
In the following analysis, the mean entropy was calculated for 20 trials of each
scenario. Note that there was no statistical significant variance between the
various trials. Figure 7 and Table 1 present the security performance of each
algorithm estimated in terms of the ciphertext entropy for each level of the
experimental factor. As expected, the entropy decreases in the plaintext as
the number of deterministic bytes increases. The input entropy ranges from

Agbeyibor, Butts, Grimaila € Mills 257

Table 1. Mean entropy.

Scenario Plaintext FF1 FF2 FF3

3 Front 7.240370 7.996331 7.996487 7.996388
3 Random 7.240221 7.99654 7.996503 7.996498
6 Front 6.402844 7.996482 7.996472 7.996564
6 Random 6.402425 7.996358 7.996373 7.996502
9 Front 5.448800 7.996368 7.996341 7.996511
9 Random 5.448699 7.996375 7.996554 7.996432
12 Front 4.256321 7.942249 7.939892 7.942226

12 Random 4.256166 7.996518 7.996558 7.996404
All Random 7.996332 7.996460 7.996348 7.996424

7.24 bits/byte for three deterministic bytes out of the thirteen total bytes to
4.25 bits/byte for twelve out of thirteen fixed bytes. The distribution of the
deterministic bytes, whether located in the front of the string or randomly
dispersed throughout the string, does not have a significant effect on the entropy
of the plaintext.

All three algorithms provide high levels of ciphertext security with no dis-
cernible differences in performance. In all but one scenario (12 Front), the
ciphertext is indistinguishable from a random sequence with entropy above
7.996 bits/byte. The plaintext in the 12 Front scenario with entropy of 4.256
bits/byte causes a lower entropy in the ciphertext of 7.94 bits/byte versus the
7.996 bits/byte for the random sequence. The lowered entropy presents an up-
per bound on the obfuscation capabilities of FPE. Further study is necessary
to clarify this performance limitation and categorize suitable plaintext.

The three FPE algorithms provide higher levels of entropy when the same
number of deterministic bytes are randomly distributed throughout the string in
the 12 Random scenario, These results indicate that the distribution of repeated
patterns in the plaintext affects the ability of the algorithms to obfuscate the
data more than the amount of repeated information.

4.2 Performance

The performance results shown in Table 2 indicate that the underlying AES
core is the principal factor in the area and speed of the implementation. The
AES implementation employed in the designs requires 31 clock cycles per en-
cryption and 1,864 slices (slices are the basic building blocks in an FPGA
implementation). Each slice contains a number of look up tables (LUTSs) that
are used to implement AND gates, OR gates and other Boolean functions. In
addition to LUTS, slices also contain a number of registers that hold state and
are used to implement sequential logic. In the device utilization report, any slice
that is used even partially is counted towards the number of occupied slices.
A design may be fitted into fewer slices if necessary, but mapping unrelated
logic into the same slice may impact the ability to meet timing constraints [31].

258 CRITICAL INFRASTRUCTURE PROTECTION VIII

Table 2. FPGA performance.

AES FF1 FF2 FF3

Number of Slice Registers 5,801 11,285 11,323 5,592
Number of Slice LUTs 3,452 7,426 6,825 3,587
Number of Occupied Slices 1,864 3,850 3,728 1,820
Number of 18K Block RAMs 172 343 342 170
Maximum Frequency (MHz) 336.315 279.587 284.592 283.427
Clock Cycles per Round 3 68 33 32
Clock Cycles per Encryption 31 707 374 269

The Virtex-6 provides 18 Kb and 36 Kb blocks of RAM for storing data. Our
implementations did not require any 36 Kb RAM blocks.

The iterative looping architecture employed in the design minimizes the
hardware resources needed for each algorithm. The FF1 implementation uses
two cascaded AES blocks per round, which causes the area and number of slices
required to be approximately twice those of one AES block. FF2 makes only
one call to AES per round, but uses an additional AES block to generate the
subkey. FF3 has the smallest footprint of the three algorithms because it relies
sparingly on calls to AES.

The maximum frequency is based on the worst path delay found in the de-
sign, and it indicates the fastest frequency at which a signal may be toggled
given this constraint. A simulation test bench was used to measure to opera-
tional latency of each implementation. The numbers of clock cycles required
for completing one round and for completing an entire encryption cycle are
reported for each algorithm (Table 2). The FF1 algorithm makes two calls to
AES per round, which makes it the slowest of the three algorithms. FF2 is
faster than FF1 because of its single call to AES in its F-block. FF3 is the
fastest of the three algorithms because it uses only eight rounds. The overall
results indicate that the FF3 algorithm requires the least hardware resources
and has the lowest operational latency.

5. Conclusions

The FF1, FF2 and FF3 format-preserving encryption algorithms have im-
portant applications in critical infrastructure protection. In particular, the
algorithms could be incorporated in security modules for legacy protocols and
databases that are currently incompatible with standard cryptographic prac-
tices.

The experimental results demonstrate that algorithms are secure based on
their ability to obfuscate repetitive input data. The algorithms successfully
encipher plaintext with twelve of thirteen bytes containing a deterministic se-
quence. The three algorithms (as recommended by NIST) demonstrate the
inherited security characteristics of the underlying AES cipher.

Agbeyibor, Butts, Grimaila € Mills 259

Because the algorithms can be implemented with AES as the underlying
block cipher, they are suitable for implementation on any number of hard-
ware platforms. The characteristics of the underlying AES implementation
contribute strongly to the security and speed of the three algorithms. The FF3
algorithm requires the least hardware resources, has the lowest operational la-
tency and has similar security performance as the other two algorithms.

The results also demonstrate that the three algorithms can obfuscate data
streams with large amounts of repeated data without overhead or significant
hardware costs. As such, the FF1, FF2 and FF3 algorithms provide good op-
tions for retrofitting encryption in legacy critical infrastructure systems without
sacrificing interoperability or performance.

The views expressed in this paper are those of the authors and do not reflect
the official policy or position of the United States Air Force, Department of
Defense or U.S. Government.

References

[1] D. Abdul Elminaam, D. Abdul Kader and M. Hadhoud, Perfomance eval-
uation of symmetric encryption algorithms, International Journal of Com-
puter Science and Network Security, vol. 8(12), pp. 280285, 2008.

[2] M. Bellare, P. Rogaway and T. Spies, The FFX Mode of Operation for
Format-Preserving Encryption, Report to NIST Describing the FFX Al-
gorithm, National Institute of Standards and Technology, Gaithersburg,
Maryland, 2010.

[3] J. Black and P. Rogaway, Ciphers with arbitrary finite domains, Proceed-
ings of the Cryptographer’s Track at the RSA Conference, pp. 114-130,
2002.

[4] E. Brier, T. Peyrin and J. Stern, BPS: A Format-Preserving Encryption
Proposal, National Institute of Standards and Technology, Gaithersburg,
Maryland, 2010.

[5] M. Brightwell and H. Smith, Using datatype-preserving encryption to en-
hance data warehouse security, Proceedings of the Twentieth National In-
formation Systems Security Conference, 1997.

[6] M. Dworkin, Recommendation for Block Cipher Modes of Operation:
Methods for Format-Preserving Encryption, Draft NIST Special Publica-
tion 800-38G, National Institute of Standards and Technology, Gaithers-
burg, Maryland, 2013.

[7] A. Elbirt, W. Yip, B. Chetwynd and C. Paar, An FPGA-based perfor-
mance evaluation of the AES block cipher candidate algorithm finalists,
IEEFE Transactions on Very Large Scale Integration Systems, vol. 9(4), pp.
545-557, 2001.

[8] C. Finke, J. Butts and R. Mills, ADS-B encryption: Confidentiality in
the friendly skies, Proceedings of the FEighth Annual Cyber Security and
Information Intelligence Research Workshop, pp. 9-13, 2013.

260 CRITICAL INFRASTRUCTURE PROTECTION VIII

[9] T. Good and M. Benaissa, AES on FPGA from the fastest to the small-
est, Proceedings of the Seventh International Workshop on Cryptographic
Hardware and Embedded Systems, pp. 427-440, 2005.

[10] M. Luby and C. Rackoff, How to construct pseudorandom permutations
from pseudorandom functions, STAM Journal on Computing, vol. 17(2),
pp. 373-386, 1988.

[11] M. McLoone and J. McCanny, High performance single-chip FPGA Ri-
jndael algorithm implementations, Proceedings of the Third International
Workshop on Cryptographic Hardware and Embedded Systems, pp. 65-76,
2001.

[12] B. Morris, P. Rogaway and T. Stegers, How to encipher messages on a small
domain, Proceedings of the Twenty-Ninth Annual International Conference
on Advances in Cryptology, pp. 286-302, 2009.

[13] M. Naor and O. Reingold, On the construction of pseudorandom permuta-
tions: Luby-Rackoff revisited, Journal of Cryptology, vol. 12(1), pp. 29-66,
1999.

[14] National Institute of Standards and Technology, Advanced Encryption
Standard (AES), Federal Information Processing Standards Publication
197, Gaithersburg, Maryland, 2001.

[15] National Institute of Standards and Technology, Critical Infrastructure
Protection, Gaithersburg, Maryland, 2002.

[16] National Institute of Standards and Technology, Cybersecurity Frame-
work, Gaithersburg, Maryland, 2013.

[17] B. Obama, Improving critical infrastructure cybersecurity: Executive Or-
der 13636, Federal Register, vol. 78(33), pp. 11739-11744, 2013.

[18] Offspark, offspark: Straightforward Security Communication, Rijswijk,
The Netherlands, 2014.

[19] J. Patarin, Luby-Rackoff: Seven rounds are enough for 2"1=) security,
Proceedings of the Twenty-Third Annual International Conference on Ad-
vances in Cryptology, pp. 513-529, 2003.

[20] J. Patarin, Security of random Feistel schemes with five or more rounds,

Proceedings of the Twenty-Fourth Annual International Conference on Ad-
vances in Cryptology, pp. 106-122, 2004.

[21] Random.org, Random Binary File 2013-09-17, Dublin, Ireland (www.
random.org/files), 2013.

[22] P. Rogaway, A Synopsis of Format-Preserving Encryption, Voltage Secu-
rity, Cupertino, California, 2013.

[23] J. Soto, Randomness Testing of the AES Candidate Algorithms, National
Institute of Standards and Technology, Gaithersburg, Maryland, 1999.

[24] T. Spies, Feistel Finite Set Encryption Mode, National Institute of Stan-
dards and Technology, Gaithersburg, Maryland, 2008.

Agbeyibor, Butts, Grimaila € Mills 261

[25] T. Spies, Format Preserving Encryption, Voltage Security, Cupertino, Cal-
ifornia, 2008.

[26] K. Stouffer, J. Falco and K. Scarfone, Guide to Industrial Control Sys-
tems (ICS) Security, NIST Special Publication 800-82, National Institute
of Standards and Technology, Gaithersburg, Maryland, 2011.

[27] W. Trappe and L. Washington, Introduction to Cryptography with Coding
Theory, Pearson Prentice Hall, Upper Saddle River, New Jersey, 2005.

[28] P. Tsang and S. Smith, Yasir: A low-latency, high-integrity security retrofit
for legacy SCADA systems, Proceedings of the IFIP TC-11 Twenty-Third
International Information Security Conference, pp. 445-459, 2008.

[29] J. Vance, VAES3 Scheme for FFX: An Addendum to the FFX Mode of Op-
eration for Format Preserving Encryption, National Institute of Standards
and Technology, Gaithersburg, Maryland, 2011.

[30] J. Walker, Ent: A Pseudorandom Number Sequence Test Program, Four-
milab, Lignieres, Switzerland (www.fourmilab.ch/random), 2008.

[31] Xilinx, Virtex-6 Family Overview, Xilinx Data Sheet, San Jose, California,
2011.

