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Capacity evaluation of a quantum-based channel
in a biological context

Valeria Loscrı́ Member, IEEE, and Anna Maria Vegni Senior Member, IEEE

Abstract—Nanotechnology, as enabler of the miniaturization
of devices in a scale ranging from 1 to few hundreds of nm,
represents a viable solution for “alternative” communication
paradigms that could be effective in complex networked
systems, as body area networks. Traditional communication
paradigms are not effective in the context of joint body and
nano-networked systems, for several reasons, and then novel
approaches have been investigated such as nanomechanical,
electromagnetic, acoustic, molecular, etc. On the other hand,
quantum phenomena represent a natural direction for devel-
oping nanotechnology, since it has to be considered as a new
scale where new phenomena can occur and can be exploited for
information purpose. Specific quantum particles are phonons,
the quanta of mechanical vibrations (i.e., acoustic excitations),
that can be analyzed as potential information carriers in a
body networked context.

In this paper we will focus on the generation of phonons
from photon-phonon interaction, by irradiating a sample of
human tissue with an electro-magnetic field, and then we will
theoretically derive the information capacity and the bit rate
in the frequency range [103 − 1012] Hz.

I. INTRODUCTION

Traditional communication paradigms are not suitable
in the context of nanotechnology, above all when applied
in bio-medical contexts and for body networked systems.
Specific features of human body need to be taken into
account in order to derive a biological propagation model
for nano-communications [1], [2].

Different communication alternatives have been consid-
ered, such as molecular and nano-communications [3],
acoustic [4], molecular communications based on Forster
Resonance Energy Transfer (FRET) phenomenon [5] just to
mention some of them. In the last case, authors propose the
exploitation of FRET to realize a molecular based physical
channel. A step towards the miniaturization at nanoscale
level can be also moved by considering quantum phenom-
ena. A very appealing research area involving quantum
information science [6], [7] is quantum communication [8],
namely the exchange of information encoded in quantum
states of matter or quantum bits (known as qubits) between
both nearby and distant quantum systems. The key resource
behind quantum information science is quantum entangle-
ment, which occurs when the state of a particle interacts
with another one and their quantum state cannot be described
independently [9].
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A specific type of quantum particles is represented by
phonons (or phononics), that represent the quanta of me-
chanical vibrations or quanta of lattice vibration (i.e. acoustic
excitations). In practice, phonons represent quanta of ionic
displacement field that describes classical sound waves.
Very recently, in the context of fundamental control of
phonons, their potentiality in information processing has
been shown [10], [11] and due to pressure of Moore’s
law and Landauer entropy related to the limit of silicon-
based electronic computing, there is a great attention devoted
to alternative methods of computation and communication.
The implementation of a new communication paradigm
based on the exploitation of phonons will pave the way to
revolutionary applications in the context of communication
technologies.

As of today, it is possible to think on the design of devices
based on periodic atomic structures, for example realized
on planar substrates using litography and plasma etching,
engineered for specific wireless communications and sensing
applications. Usually, these structures are based on quan-
tum vibrations, namely phonons at megahertz or gigahertz
frequencies for their operations and support large phonon
band gaps (PnBGs), representing ranges of frequencies that
phonons are not allowed to propagate and then can be used
to confine and guide the sound particles. Periodic structures
have great capabilities in controlling and modifying the flow
of particles/waves through the application of the band gap
concept and this has been demonstrated through the concept
of phonon crystals (PnCs) structures [12]. The feasibility
of phonon-routing based information processing in opto-
mechanical crystal circuitry has been recently demonstrated
in [13].

In this paper we focus on these specific quantum par-
ticles named phonons, that is acoustic excitations that are
limited in terms of bandwidth and in terms of ability to
transmit information farther than a few millimeter, but can
be delayed and stored for significantly longer times than
photons counterparts, and can interact resonantly with RF-
microwave electronic systems. On the other hand, quantum
information has weird properties that contrast sharply with
the familiar properties of classical information. Moreover,
quantum phenomena are crucial for the developing of nan-
otechnology. In fact, nanoscale cannot be considered as
another step towards miniaturization, but it represents a kind
of new scale [14]. Quantum phenomena can be considered at
a purely quantum level or as derived from both quantum and
classical laws and components. In this paper, we will focus
on a specific context, namely body network systems, where
phonons can be generated by photon-phonon interference, by
applying an electro-magnetic field on a portion of biological
tissue. We will derive the main features of a phonon-based
quantum network and, based on the specific representation
of this network, we will establish a parallelism with an
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optical quantum network. Phonon-based communication is a
method based on a physically existing phenomenon, where
phonons (i.e., quantum particles) can potentially provide
novel opportunities for quantum communications, as well
as nanomedicine applications. Quantum communication net-
works are expected to provide high speed communications
than “traditional” counterparts. Finally, phonon-based com-
munications can represent a viable technique also in the
context of nanomedicine applications, as an alternative to
well-known molecular communications [15].

Leveraging on these assumptions, we will characterize
phonons as information carriers, and will derive a characteri-
zation of the information capacity from a theoretical point of
view. Furthermore, since we can assume that the biological
information processing takes place at the challenging regime
where quantum meets classical physics, we will focus on a
specific biological scenario with a sample of human tissue
irradiated with an electromagnetic field, representing the
source generation of a photon-phonon interaction. Notice
that the overall communication system is only based on
the phonons. The interaction between photons and phonons
allows the phonons generation. Then, in this paper, we derive
the phonon-based capacity. Then, we will derive the theo-
retical information capacity and the bit rate of this system.
The formal derivation of the information capacity is based
on the concept that the initial representation of the phonon-
based quantum network is formally equivalent to an optical
quantum networks, but in contrast to high frequency optical
fields, there is a generation of heat phonons, called thermal
population, that is not negligible. We will characterize this
thermal population in the body system context.

The rest of the paper is organized as follow. In Section II,
we explain the system model as represented in our paper. In
Section III we derive a theoretical evaluation of the capacity
and the bit rate. In Section IV we show a concrete example
of biological tissue irradiated with an electromagnetic field
and we show the capacity information and the bit rate in the
specific case under analysis. Finally, conclusions and future
directions are drawn at the end of the paper.

II. PHONON COMMUNICATION SYSTEM

In analogy with [16], our phonon-based quantum com-
munication system is composed by N elementary com-
ponents that we refer as nodes, and the phonon channel.
The connection among the nodes is established through
a quantum bus, and the i-th node is associated with a
two-level system, namely the qubit (quantum bit) with the
information bit encoded as |0 > and |1 >, as depicted in
Fig. 1. Each node is represented by a cavity (element), where
quantum information is encoded in states |0 > and |1 > . We
assume that node i is a transmitter, while node j a receiver.
The qubits interact with the phonon cavities, also weakly
coupled to the quantum bus. The qubit propagating in the
quantum bus are depicted as grey rectangles, while the qubit
transmitted by node i or received by node j are represented
by black rectangles. The interaction from a cavity to the next
one generates a phonon, and it is shown as a propagating
wave.

Notice that the quantum information is transmitted
through propagating phonons. This aspect distinguishes the
proposed approach from the Nanoscale Heat Communica-
tions (NHC) [17], where the information is encoded in tem-
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Fig. 1. A generic phonon-based network, where information is encoded
in states | 1 > and | 0 > .

perature signals by using Magneto-Caloric Effects (MCE).
This implies the use of magnetic materials exposed to a
varying magnetic field.

The communication system can be described through an
Hamiltonian H . The Hamiltonian operator H describes the
energy of the system, and as any other quantum system,
the state of a qubit will evolve under the influence of its
Hamiltonian.

The operator H is composed by three fundamental com-
ponents, that include the energy related to (i) the nodes,
(ii) the channel, and (iii) the interaction between nodes and
channel, i.e.

H =

N∑
i=1

Hi
node +Hchannel +Hint. (1)

In (1) the operator Hnode related to the i-th node can be
expressed through a temporal dependency as:

Hi
node(t) = ωmb

†
i bi +

Miq (t)

2
σiz + λi(t)

(
σi+bi + σi−b

†
i

)
,

(2)
where the Pauli operators are as follows i.e.,

σ+ =

[
0 1

0 0

]
, σ− =

[
0 0

1 0

]
, σz =

[
1 0

0 −1

]
.

Moreover, in (2), bi represents the bosonic operators, ωm
is the phonon mode frequency, Miq (t) is the qubit frequency
splitting, λi(t) is the qubit-resonator coupling, and the term
λi(t)(σ

i
+bi + σi−b

†
i ) characterizes the coupling between the

qubits and the local modes. The interactions of a qubit and
the resonators, as described in the above equation, have been
characterized in literature [16].

In the phonon-based quantum network, the nodes com-
municate by means of a quantum channel as represented in
Fig. 1, where we show a representation of a generic phonon-
based network. Specifically, nodes are connected through a
quantum channel (quantum bus) constituted by a chain of
NCh coupled mechanical resonators, expressed as:

Hchannel =

NCh∑
l=1

p2l
2m

+
1

2
mω2

0x
2
l +

k

2

NCh−1∑
l=1

(xl − xl+1)2,

(3)
where xl is the position operator, m is the effective mass,
pl is the momentum operator, ω0 is the bare oscillating
frequency, and k is a spring constant that takes into account
the nearest neighbor coupling. In the case of NCh � 1, that
represents the scenario we are interested to as we assume
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extended arrays, the mechanical quantum channel Hchannel

can be represented by a set of plane wave modes i.e.,

Hchannel =
∑
q

ωqb
†
qbq, (4)

where ωq is the phonon dispersion relation, and

[bq, b
†
q] = δq,q′ , (5)

with [ ] as the canonical commutation relation, and δ as
the Kronecker delta. If we consider a lattice space a, with
a v 1µm, the momentum label q is restricted to the
first Brillouin zone q ∈ (πa ,

π
a ]. Moreover, by assuming a

phononic band gap structure as realized in [18], a resonator
l corresponds to a vibrational mode of a unit cell. It follows
that it is possible to identify a frequency range ∆ω (away
from the band edges), where the resonator exhibits an
approximately linear dispersion i.e., ωq u ω̃0 + c | q |,
where ω̃0 is frequency offset, and c is the speed of sound.

We can derive the normalized displacement field as

Φ(z) = ΦR(z) + ΦL(z), (6)

where the two components ΦR(z) and ΦL(z) represent right
and left moving mechanical excitations of the phononic
channel, respectively, i.e.

ΦR(z) =

√
2c

L

∑
q>0

eiqzbq, (7)

ΦL(z) =

√
2c

L

∑
q>0

e−iqzb−q, (8)

where L is the waveguide length, and c is the speed of light.
Notice that the waveguide represents the phonon channel,
namely the sequence of nodes (or cavities) where there is
the qubit interacting with the phonon cavities.

If we assume that the frequency of the local modes ωm lies
within this frequency range, ∆ω, then the local resonators
and the waveguide modes coupling are represented through:

Hint u
√
γ

2

∫ L

0

dz

N∑
i=1

δ(z − zi)
(
b†iΦ(z) + biΦ

†(z)
)
,

(9)
where zi represents the position of the nodes along the
waveguide, and γ is the total decay rate of the local resonator
modes into the waveguide.

Moreover, if we assume that there is a linear dispersion,
the field obeys to the following expressions i.e.,

[ΦR(z, t),Φ†R/L(z
′
, t

′
)] = 0 (10)

[ΦR/L(z, t),Φ†L(z
′
, t

′
)] u exp−jω̃(t−t

′
) δ(t−t

′
∓(z−z

′
)/c).
(11)

In realistic cases, we need to take into consideration also
phonon losses, backscattering, and re-thermalization effect.
Right now, we have characterized the quantum phononic
network from an energy point of view, by considering
the Hamiltonian operator. The network derived is formally
equivalent to an optical quantum network and then, it is
possible to use it in a similar fashion to transfer quantum
states among the nodes. However, there are differences that
we need to take into consideration, such as that at high

frequencies, the heat bath population of phonons is normally
not negligible. This implies that if transfer state protocols
as conceived in [16] are considered, specific filters have to
be assumed in the case of phonon communications. This
kind of protocols are supposed to be developed in periodic
structures, based on the exploitation of band gap concept.

On the other hand, the context under analysis in this
paper is related to body networked systems where we
cannot consider periodic structures, and also the generation
of thermal bath phonons is an interesting subject to be
investigated as potential carriers of information. Based on
these considerations, in the next section we will derive the
theoretical capacity of a quantum based system, formally
represented as our system.

III. THEORETICAL INFORMATION CAPACITY AND BIT
RATE

In this paper we are interested to derive a theoretical infor-
mation capacity suitable for the phonon channel model, as
presented in Section II. For this aim, we start by considering
the computation of the information capacity in a “traditional
case”. In a classical communication channel, the information
capacity, namely the maximum number of bits that can be
delivered in a reliable way, is given by considering the
maximum of the Von Neuman entropy [19], [20] as:

S(ρ) = −Tr[ρ log2 ρ], (12)

where Tr[ ] is the matrix trace operator, and ρ repre-
sents the input states. If we assume that the entropy S(ρ)
is maximized on the states where the average energy is
E = Tr[ρH], and H is the Hamiltonian, then we can solve
the constrained maximization of S(ρ) by using standard
variational methods. This implies to solve the following
equation:

δ

{
S(ρ)− β

ln 2
Tr[Hρ]− β′

ln 2
Tr[ρ]

}
= 0, (13)

where δ is the Dirac function, β and β′ are Lagrange multi-
pliers that consider the normalization constraint Tr[ρ] = 1,
and the ln 2 factor is introduced to make possible the use of
natural logarithms. Equation (13) can be solved by density
matrix as

ρ =
e−βH

Z(β)
, (14)

where Z(β) = Tr[e−βH ] is the partition function of the
system, and is determined by solving

E = − ∂

∂β
ln[Z(β)]. (15)

It follows that from (12) and (14), we can easy compute
the capacity of the quantum channel as:

C = S

[
e−βH

Z(β)

]
=
βE + ln[Z(β)]

ln 2
. (16)

Of course, this represents an ideal capacity, since for real
systems we must also account for intrinsic phonon losses,
backscattering and re-thermalization effect.

From (2) we can argue that the evaluation of the system
capacity can be done through the evaluation of its partition
function Z(β). Generally, the expression of Z(β) is not easy
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to be derived. In the case of non-interacting bosonic systems,
as the case under analysis in this paper, we have seen that
the Hamiltonian of channel is given by (4) where we do not
consider } since we have supposed to be in the case where
} = 1. In this case, the partition function can be rewritten
as:

Z(β) =
∏
q

∞∑
nq=0

e−βωqnq =
∏
q

1

1− e−βωq
. (17)

This means that the associate capacity will be determined
by the spectrum ωq of the system. If we consider the case
of narrowband systems, namely only a mode of frequency
ω exists, the related capacity Cnb will be given by:

Cnb = g

(
E

}ω

)
, (18)

where } = 1, and g(·) is a function expressed as

g(x) = (1 + x) log2(1 + x)− x log2(x), (19)

with the condition that g(0) = 0.
Since we are considering the case of NCh � 1, Hchannel

can be represented as a dense set of plane wave modes,
and then we consider an infinite collection of equi-spaced
frequencies i.e., ωq = qδω, employed for q ∈ Hchannel. The
equation of the capacity for wideband systems will be then:

Cwb '
π

ln 2

√
2E

3}δω
, (20)

which is valid if }δω � E, that will become δω � E in
our case. For the interested reader, in Appendix A we report
the derivation of the capacity expression.

Finally, by assuming the power P as energy transmitted
per time unit i.e.,

P =
δωE

2π
, (21)

it follows that we can express the rate R as qubits transmitted
per time unit, as

R =
1

ln 2

√
πP

3}
. (22)

This formula represents the ideal case where phonons
persist indefinitely. In practice, it does not take into con-
sideration that phonons have a limited lifetime that we will
indicate as τ [s]. By taking into account the phonon lifetime
(i.e., τ ) as a first order approximation, we can multiply the
energy of the phonons by τ/Ts, where Ts represents the
periodic time for the streaming of photons is represented as:

Ts =
1

nphotons
, (23)

where nphotons is the number of photons incident on one
cell. Then, the rate with the phonon lifetime dependency
i.e., R(τ), can be expressed as:

R(τ) =
1

ln 2

√
πP (τ/Ts)

3}
. (24)

IV. CAPACITY OF PHONON-BASED QUANTUM
NETWORK

Based on the results obtained in the previous section,
we will examine the capacity of a phonon-based quantum
channel for biomedical applications, assuming an electro-
magnetic radiation is incident to a portion of human tissue.
Notice that for this specific context, the possible side effects
are exactly the same when a mobile phone is used.

Let us consider the photon-phonon interaction as mediated
by a homogeneous sample of identical elements (namely, the
human cells), which are in harmonic modes of vibration. We
can consider a system of N vibrating elements, each of them
has an energy as:

En =

(
N +

1

2

)
hf, (25)

where En represents the energy of the n-th stationary
state, f is the frequency of a normal mode that an element
vibrates accordingly to, and h is the Planck’s constant equal
to 6.62606957× 10−34 [J s].

When an element absorbs totally or partially a photon with
an initial frequency fin, there is a phonon production that
is regulated by Raman-Stokes scattering effect [21], and an
excited phonon will have a frequency f . This results in the
n-th element to acquire a higher energy, and the absorbed
energy will be

En − E0 = nphf, (26)

where np represents the number of phonons. It follows that
the scattered photon will end up with energy hfs, and so
we have

hfin = hfs + nphf. (27)

Notice that each element 1 cannot absorb photon that may
elevate its energy to a state higher than kBT that is the
thermal noise, i.e.

En =

(
N +

1

2

)
hf ≤ kBT, (28)

where kB = 8.6173324 × 10−5 [eVK−1] is the Boltzmann
constant. This means that the number of phonons depend on
both the frequency and the temperature as:

0 ≤ np ≤
kBT

hf
− 1

2
. (29)

In order to simplify the treatment of the problem, we make
some assumptions that we will be able to relax in future
works. Specifically, we assume that the flux of photons
scattered on the basis of Raman-Stokes laws is generated
in such a way that the number of photons is equal to the
number of elements. The number of elements (i.e., N ) will
coincide with the number of cells and we will assume that
this will be in the order of ' 1012. This value comes out
from the specific context considered.

In fact, we assume that the phonons and the photons
incident on the biological sample are the result of the elec-
tromagnetic waves emitted from an electromagnetic source
(e.g. a common cellphone). We assume a power incident on
1 cm3 on the human tissue. Normally, human cells are of
the order of 1µm far from each other and the number of
cells in 1 cc will be in the order of 1012.

1We assume an element coincides with a biological cell.
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Fig. 2. Capacity of phonon-based quantum channel versus frequency.
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Fig. 3. Rate of phonon-based quantum channel versus frequency.

In such a scenario, when a photon interacts inelastically
with one element (i.e. one cell), it contributes to generate
a random number of phonons with a randomized value
of frequency. Notice that we are assuming the maximum
number of phonons generated since we do not have prior
information regarding the real number of phonons that can
be created in a single collision between a photon and a cell.
Furthermore, we assume that all the phonons will have the
same frequency f . This means that the number of phonons
in (29) will be exactly equal to the upper bound i.e., kBThf −

1
2 .

Then, it follows that the capacity in (20) will become:

Cwb '
π

ln 2

√
2n+ 1

3δ
. (30)

In practice, we have determined that the capacity in the
case of a homogeneous wideband channel is proportional
to the number of phonons that are inversely proportional
to the frequency. In the specific case of a biological tissue,
there exists a frequency band in the range [103, 1012] Hz,
where the energy absorbed reaches its maximum value and
it seems that there is no appreciable absorption beyond this
band. So, with the aim of characterizing the phonon-based
quantum channel capacity, we have to limit to this specific
frequency range.
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Fig. 4. Rate of phonon-based quantum channel versus frequency, including
the phonon lifetime τ .

A. Performance Evaluation

In this section, we will evaluate the information capacity
in the case of a sample of biological tissue at a typical tem-
perature of 37◦C, where the thermal noise kBT ' 27 meV
with the values of emitted power as described above.

In Fig. 2 we show the capacity of the system by varying
the frequency in the range [103, 1012] Hz. As expected, since
the number of phonons, at a fixed temperature, is higher at
lower frequency modes, the capacity will be higher at lower
frequencies. It is worth to recall that we are considering a
1−to−1 correspondence in the phonon generation from one
incident photon. This means that for each photon generated
there will be one phonon.

In a more realistic condition, we should take into account
that the photons are inelastically scattered and a ratio of
around 10−4% is engaged in phonon generation. Since this
factor impacts on the number of phonons, based on the
model we have derived, it will also impact on the energy
and then on the total capacity. On the other hand, we did
not make any assumptions on the exposure time i.e., the
time interval of irradiation on the biological sample from an
incident electromagnetic wave, for the sake of simplicity of
the analysis. But, it is obvious that as the time of exposure to
the electromagnetic field increases, the number of incident
photons will increase as well.

In Fig. 3 we show the rate R (as bits transmitted per unit
time) in an ideal case (i.e. phonons are considered persistent
over the time) as computed in (22), by considering the power
P as the amount of energy transmitted per unit time. In this
specific case, we have considered a transmission time equal
to 2π/(δω). Differently from Fig. 2 where higher capacity
is experienced for lower frequencies, the rate increases for
higher frequencies i.e., > 1 GHz, due to the frequency
dependency of the transmission time. In fact, the higher is
the frequency, the lower will be the transmission time and
consequently the rate. For this reason, we can observe an
opposite trend in the capacity and rate shapes. In Fig. 3,
maximum value (i.e., 3.75 Tqubit/s) is obtained for the
frequency upper bound of 1 THz.

Notice that Fig. 3 represents the rate by assuming that the
phonons remain in the excited state without including their
lifetime. In Fig. 4 we depict R(τ) as computed in (24).
It is worth to notice that in this specific case we assumed
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that the number of photons incident on one cell is 1, that
means that there is a correspondence 1− to−1 between the
number of cells and the number of photons. As expected, we
observe a reduction of rate to the order of [Mqubit/s], still
for frequency values > 1 GHz. Also in this case, maximum
value (i.e., 0.673 Mqubit/s) is reached for 1 THz.

V. CONCLUSIONS

In this paper we have investigated quantum mechanics
as a viable way to meet the nanotechnology. In particular,
we analyzed a specific quantum particle, named phonon (or
phononics), representing acoustic excitations, from a com-
munication perspective. Specifically, we assumed that these
quantum particles can be used to encode the information,
namely phonons are considered as potential information
carriers. Normally, these particles are studied in periodic
structures, as crystals structures, that provide a promising
platform for realizing phonon networks in practice.

In this work, we have analyzed a different context, rep-
resented by a sample of biological tissue irradiated with
an electromagnetic source that generates a photon-phonon
interaction. The phonons generated in this way represent
the so-called “thermal bath phonon modes”. Following the
concept of photon-phonon interaction, it is possible to derive
the theoretical information capacity and the rate of these
generated phonons. In practice, we have analyzed their
communication capability through a simple model that has
as objective to show the feasibility of a nano-communication
paradigm in body networked systems based on phonon
particles.

The work dealt in this paper has as objective to start the
characterization of a phonon-based networked system, that
could be exploited in a future for addressing the design of
nano-motors with specific features matching the environment
under analysis. As future investigations, we aim to refine the
model presented by taking into account of real phenomena
and their impact on the Hamiltonian that represents the sys-
tem. We will consider non-linear terms in the Hamiltonian
system that takes into consideration interactions between
particles and the propagation medium. Finally, as future
work, it will be interesting to investigate the impact of
different tissues on phonon-based communications. Indeed,
the generation of phonons strictly depends on the inherent
structure of the specific biological material.

APPENDIX

A. Theoretical derivation of the expression of the quantum
capacity (18)–(20)

The possible amount of information transferred from a
source to a receiver via a quantum system is bounded
through the quantum entropy function. The capacity in a
narrowband system is computed as:

C = g

(
E

~ω

)
, (31)

and derives from the characterization of the capacity of a
lossy bosonic channel (in bits per channel use) as

C = max
Nk

∑
k

g (ηkNk), (32)

where Nk is the modal average phonon-number sets {Nk}
that must satisfy the following energy constraint∑

k

~ωkNk = E, (33)

with ωk as the frequency of the k-th mode, and ηk as the
transitivity (quantum efficiency).

In (32), g(x) is the Shannon entropy of the Bose-Einstein
distribution with mean x, as demonstrated for the first time
in [22]. In the expression of g(x) in (19), the base used
for the logarithm sets the units for measuring information
content, i.e. the base e leads to nats, while the base 2 leads
to bits.

The maximization is performed on the modal average
phonon-number sets {Nk} that satisfy the energy constraint
(33). The capacity expression (31) can be simplified by using
standard variational techniques, since the maximization is
constrained and then we can rewrite it as:

C =
∑
k

g (ηkNk (β)), (34)

where Nk represents the optimal phonon-number distribu-
tion, and β is a Lagrange multiplier determined through the
constrained energy transmitted. In the case of narrowband
channel, there is a single mode of frequency ω employed.
In this specific case, (34) becomes:

C = g

(
ηE

~ω

)
, (35)

since we have considered the average phonon number i.e.,
N = E

~ω , as input.
In the case of a wideband channel with uniform trans-

mittivity i.e., ηk = η, where there is a set of equi-spaced
frequencies i.e., ωk = kδω (with k ∈ N), we can replace the
sums in (33) and (34) with integrals and we obtain that the
power constraint becomes:

P =

∫
W

~ω/ηk
e~ω/ηk − 1

dω, (36)

where W is the frequency band (modes per second). Then,
the capacity can be rewritten as:

C =

∫
W

g

(
1

e~ω/ηk − 1

)
dω. (37)

By solving (36) and (37), we obtain:

C =

√
η

ln 2

√
πP

3~
T, (38)

where T = 2π
δω .

Finally, if we consider the lossless case (i.e., η = 1) [22],
the capacity becomes:

C =
π

ln 2

√
2E

3~δω
. (39)

This result has been obtained by showing that (39) is
simultaneously a lower bound and an upper bound for the
capacity [23].
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