U. Schotten and S. Verheule, Pathophysiological Mechanisms of Atrial Fibrillation: A Translational Appraisal, Physiological Reviews, vol.91, issue.1, pp.265-325
DOI : 10.1152/physrev.00031.2009

S. Verheule and E. Tuyls, Fibrillatory Conduction in the Atrial Free Walls of Goats in Persistent and Permanent Atrial Fibrillation, Circulation: Arrhythmia and Electrophysiology, vol.3, issue.6, pp.590-599, 2010.
DOI : 10.1161/CIRCEP.109.931634

N. De-groot and R. Houben, Electropathological Substrate of Longstanding Persistent Atrial Fibrillation in Patients With Structural Heart Disease: Epicardial Breakthrough, Circulation, vol.122, issue.17, pp.1674-1682, 2010.
DOI : 10.1161/CIRCULATIONAHA.109.910901

M. Allessie and N. De-groot, Electropathological Substrate of Long-Standing Persistent Atrial Fibrillation in Patients With Structural Heart Disease: Longitudinal Dissociation, Circulation: Arrhythmia and Electrophysiology, vol.3, issue.6, pp.606-615, 2010.
DOI : 10.1161/CIRCEP.109.910125

J. Eckstein and B. Maesen, Time course and mechanisms of endo-epicardial electrical dissociation during atrial fibrillation in the goat, Cardiovascular Research, vol.89, issue.4, pp.816-824, 2011.
DOI : 10.1093/cvr/cvq336

J. Eckstein and S. Zeemering, Transmural Conduction Is the Predominant Mechanism of Breakthrough During Atrial Fibrillation: Evidence From Simultaneous Endo-Epicardial High-Density Activation Mapping, Circulation: Arrhythmia and Electrophysiology, vol.6, issue.2, pp.334-341, 2013.
DOI : 10.1161/CIRCEP.113.000342

S. Ho and R. Anderson, Atrial structure and fibres: morphologic bases of atrial conduction, Cardiovascular Research, vol.54, issue.2, pp.325-336, 2002.
DOI : 10.1016/S0008-6363(02)00226-2

S. Ho and D. Sanchez-quintana, The importance of atrial structure and fibers, Clinical Anatomy, vol.29, issue.1, pp.52-63, 2009.
DOI : 10.1002/ca.20634

R. Anderson and A. Becker, Cardiac Anatomy: An Integrated Text and Colour Atlas, 1980.

M. Potse, B. Dube, J. Richer, A. Vinet, and R. Gulrajani, A Comparison of Monodomain and Bidomain Reaction-Diffusion Models for Action Potential Propagation in the Human Heart, IEEE Transactions on Biomedical Engineering, vol.53, issue.12, pp.2425-2435, 2006.
DOI : 10.1109/TBME.2006.880875

D. Krause, M. Potse, T. Dickopf, R. Krause, A. Auricchio et al., Hybrid Parallelization of a Large-Scale Heart Model, Facing the Multicore -Challenge II, pp.120-132
DOI : 10.1109/TBME.2002.804597

M. Courtemanche and R. Ramirez, Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. The American journal of physiology1998, pp.301-321

F. Fenton and K. A. , Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.8, issue.1, pp.20-47, 1998.
DOI : 10.1063/1.166311

Y. Gong, F. Xie, and K. Stein, Mechanism Underlying Initiation of Paroxysmal Atrial Flutter/Atrial Fibrillation by Ectopic Foci: A Simulation Study, Circulation, vol.115, issue.16, pp.2094-2102, 2007.
DOI : 10.1161/CIRCULATIONAHA.106.656504