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Activity-based Discrete Event Simulation of Spatial
Production Systems: application to fisheries

Eric Innocenti, Paul-Antoine Bisgambiglia, DomingUrbani

University of Corsica UCPP, UMR 6134 SPE CNRS, 2025RTOFRANCE
(eric.innocenti,bisgambiglia,durbani)@univ-corse.fr

Abstract. In this paper, we present a modular and generiecplfijamework us-
ing the Discrete EVent system Simulation Specifice{DEVS and the activity
concept. We plan to simulate coastal fishery pedidn the aim of improving
harvesting and the management of fisheries.
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1 I ntroduction

Application of long-term effective policies in naal production systems needs rele-
vant decision-making indicators and quantitativeeasments. This issue is critical in
fisheries management facing the decline of worladpctivity due to pressures from
overfishing, habitat change, pollution, and climatenge [1]. It is possible to de-
velop software tools dedicated to the electiontodtegies for sustainable fisheries
management (fishing gear regulation, stock rebagdirojects, etc.) [2] — [4]. This
work remains part of a computer tool designed tip fishery managers. The main
goal is to assist in the definition of a resporssifishing policy in Corsica. We discuss
the opportunity to develop a modular framework gsihe Discrete EVent system
Specification formalismIEVS and theactivity concept. We plan to develop soft-
ware to simulate coastal fishery policies to imgrdive management of resources. We
use a Cellular Automata ModeCAM) for spatial representation and taking into ac-
count the activity concept [5]-[8]CAM are usually considered as an aggregation of
discrete components with local interactions. Thelehaf fish population growth is
inspired by the literature [19], [20], and spatiadixplained with &CAM. The tech-
niques developed are discussed, including chalkengerspectives and limitations.
Section 2 reminds the theoretical concepts andose8t details the software frame-
work before presenting an illustrative applicatigection 4). The last section before
the discussion and concluding remarks gives omulsition results, we want to show
that whenCAM are jointly used with th®EVS formalism [9] and thectivity con-
cept, both the model and the simulator objectgiefiitly exploit the numerous spatial
components.
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2 Backgrounds

2.1 Cédlular automata modelling

Cellular Automata ModelGAM) are an evolved form of von Neumman'’s Cellular
Automata CA) [8], [9]. These computational models are weltedito capture essen-
tial features of spatial systems in which largeleséehaviour arises from the collec-
tive effect of a great number of locally interagtisimple components. ASAM in-
herit their basic characteristics frdd#, they get the benefit of emerging phenomena.
From a simple and deterministic local rul®AM can generate a surprisingly complex
global behaviour. The spatial interactions betweeltls are key elements of such
models. At each time step, a cell changes stater@iog to the local rule linked to its
neighbourhood. The successive states of the adlisrf a state trajectory, in the dis-
crete time base. The state of BAM is the aggregation of the cell states. Over the
last years, the study of IT implementation @AM considerably increased [11-15].
The determination of active components in this kafdmodel is also an essential
aspect to improve the computing model elegancet@igdiarantee acceptable simula-
tion times. In the next subsection we give morerimation on thectivity concept. .

2.2 Activity concept

The activity concept is usually formulated as a soe@ of change in system behav-
iour [9], and is used to concentrate computationghe high rates of change [14],
[15]. The activity in aCAM is determined by the measure of the active cielisby
the set of cells that can change state betweemglwlaal state transitions. Tleetivity

is measured at the highest level of the hierarchy,at the global level of tHeAM in

a set of active cells. The local level informs thebal level on the modeictivity: (1)

at timet, the simulator browses tleetive cellsand executes their transition functions
Jint (transition phasg (2) at the same time, the neighbouring inactiells are tested
in order to determine if they can become activera{propagation phasge This step

is called and relies on the propagation rule. Taetive neighbouring cells of active
cells are placed as active if they can become actit+1. Whatever the size of the
CAM considered, computations only dependaativity, thus the formulation of the
propagation ruleis a key element to enhance simulation times.

2.3 DEVSformalism

DEVSformalism was introduced in [8] as a rigorous bdsr the compositional mod-
elling and simulation of discrete event systemdDBBVSmodel is either amtomic
(AM) or aCoupled(CM) model. AnAM is a structurexX, Y, Sdexs Oints 4, ta > With X
the set of external eventgthe set of output eventSithe set of sequential statésy



QxX—Sthe external state transition function, whQ = {(s,e) | sin S, & e <t,(s)
andeis the elapsed time since the last state trans i, S—Sthe internal state tn-
sition function;1:S—Y the output function antl:S—R"—. the time advance fic-
tion. TheAM describes the behaviour of the systenCM describes the compositic
of several DEVS sulodels, i.eAM or CM. We have developed our DEVS simule
inspired by pythonDEVS16] and DEVS-Ruby [17], and in this worke usethe
DEVSsimulator takng into account thactivity concept previously describe

3 Framework

In this section, we give a brief description of simulation software. Our approact
not based on CelDEVS [18], but on the multi-component concepts. [Bhe atomic
model aggregatdbe entiri environment.

3.1  Activity-based Discrete Event Simulation

The use of thactivity concept implies the prediction of neadtive cells from a siu-
lation procedure based on evelWhile applying these criteria to tl&AM previously
described, it is appropriate to use a discrete teggatem tat cause transitior
through the triggering of events based on me« exchanges. For that, the mode
established on the basis DEVSformalism. TheCAM used for the simulation isg-
gregated in al\M. It interacts with the simulator with ports andssages. Thee-
rimeter of the active area is updated when annatezvent occursdiy).

3.2  Object implementation

Objects ensure modularity, genericity, and reuggbdnd the DEVS formalism
comes with well establishediscrete event simulation algorithmiBhe main object
and the interconnections are presented in figL The left part describes the sira-
tion part, it is conventional in DEVS. The rightrpahows the encapsulation ma-
nism of CAM in an atomic modt

Simulator | Model |

[ Message | [ Coordinator || >
1 i
Z Y i

| Scheduler ‘ | Simullator |» oo | C:M ‘ | Cell |
! i a }

Fig. 1. TheCAM and itsDEVSobjects.



4 [llustrative application: Fox model adaptation

To study the effect of the fishery on biomass anédtimate the Maximum Sustain-
able Yield MSY) in each cell, we implement a F&urplus-Production Mod€SPM
[19], [20]. The MSY corresponds to the maximum capture that does xi@ust the
fish population.SPM models are advantageous as they allow to simpimnate both
fish stock and fish rates. Moreover, they collecthe same production model the
evolution rules of the biomass, the mortality amgydation growth. Thus, they only
require temporal series of stock abundance indéseases their use. The FORM
[18] is a particular case of the Pella and Tomlismdel [20]. It allows characterising
the fish populatiorx according to a set of coefficients, as:

fo) = E2 o xx x - (3)H

[ = x X (1 — ¢ — 1 x log(x/K)) x £(2)

Whereg is the fish rates the environmental variability, r the populatiorierak the
maximum capacity of the environmeptan asymmetric coefficient.

In the Fox's mode} is near 0; this allows getting an asymmetric btk evolution.
The model grows up to l& maximum constant, and it decreases keeping an@sym
totic course. These models are relatively simpld arll documented in literature.
This model is implemented in each cell of @&&M with K=90.

4.1 SPM Model settings

The environmental map is composedrbgf andfishing areasthereef areasmodel
the life spaces of the fish. They have a strongetibn capacity as they feed the fish.
The attraction coefficienaCff allows setting the attraction capacity of the .c€he
value ofaCff of each cell depends on the distance betweerethard the location of
the reef area The attraction capacity of the cells around rbef areasis randomly
calculated at the initialization. Theshing areasare space with fishing production
determined by the fishing rate In the original Fox's model, the fish rate is légab
to all the cells of the space. In order to cleatiydy the effect of fishing, we only
apply it to the cells set dishing areas During simulation, we apply the transition
rule in charge of the fish population evolutiondahe propagation rule in charge of
the movement of fishes in space (Fig. 2).
1: c: current cell, nCell: neighbouring cell, x: fi sh, K: max cell ca-
pacity, aCff: attraction coefficient
2: If c.nbFish >0
For eachn innCell{
| f c.aCff < n.aCff O c.nbFish > (K-20) Then

#Different attraction da

da <- n.aCff — c.aCff

#Moving potential

pd <- int(K — c.nbFish)
. #Small attraction difference, little migrati on

CONOITN AW



10: migrCOEF = 6 #Migration coefficient

11: I f da<=0.1 Then
12: bmin <- 0 #Min value
13: bmax <- pd/migrCOEF #Max value

14: . #Medium attraction difference, medium migr ation
15: maxMigrCOEF = 4 #Max migration coefficient

16: minMigrCOEF = 8 #Min migration coefficient

17: If da>0.1 And da <0.2 Then
18: bmin <- pd / minMigrCOEF

19: bmax <- pd / maxMigrCOEF

20: Then

21: bmin <- pd / maxMigrCOEF , bmax <- pd
22: . I f c.nbFish >=K Then

23: bmin<-0, bmax<-pd

24: . #Number of fish moving

25: nFish <- random(bmin,bmax)

26: moveFish(nFish)From(c)To(n)Location

27: activateNCell(n)
28: removeFish(nFish)At(c)Location }

Fig. 2. CAM Propagation phase algorithm.

4.2  Simulation example

We compare the fish population evolution in fishemgas and in an area where fish-
ing is prohibited. Thanks to the activity concep @an simulate a domain of 350x250
cells. We experiment a reef area with maximal etima (1.0). The attraction around

the reef area is randomly determined between 0db0a®. These coefficients have

been empirically defined. The number of active celolves during the simulation

process. The main values of the model's coeffisiant detailed in table 1.

ocean | reercrow] FEVSsed Fenngare
Population growth r 0.2 0.9-0.75 0.9 0.9
Cell capacity K 90 90 90 90
Fish rateg 0.1 0.4-0.45 1 25
Attraction aCff 0 0.5-1 0.5-1 0.5-1

Table 1. Model’s setting.

The simulation results point out the fish quangisolution in the simulated time.

4.3 Reaults

The curve presented in Fig. 3 shows the activitgalls. It decreases slightly with a
stronger tendency to t = 40, corresponding to #griming of overfishing. Trawlers
have emptied cells and they have become inactive.
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Fig. 3. : Fish quantity and activity evoluti. The blue curveepresents the evolution of the fi
population. The red curve describes the maximuraapof the environment acding of the
K parameter and the number of active cells.

The fish population evolves as tactivity level. The activity curve is good indicato
trend of the model.
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Fig. 4. Activity (a) and population (b) evolutions.
Figure 4a represents the evolution of the actiatyt=0, 41120, 180. Active cells ai

greatly influenced by the reef areas and theimetimn. Figure 4b shows the poa-
tion fish at 0, 41, 120, and 180. After initialiat, the homogenization of the fi



population is due to the propagation rule. The fispulation comes on the outskirts
of the reefs. The results highlight the influenéattractions areas in the development
of biomass, and the impact of fishing and overfighiThe activity does not directly
increases with the increase of fish quantity, iyiste stable, and clearly shows to
t=40 the increase in fishing. A targeted and intenfishing activity quickly reduces
the fish population per cell. To improve the modtes, will substitute the fishing areas
by agents following the fish population.

5 Conclusion

In this paper we described a research approach tiséractivity concept and the Dis-
crete EVent system Simulation Specification forsmlito model the management
and harvesting of resources for fisheries. Diig/Sformalism is coupled with &el-
lular Automata Modeto efficiently exploit numerous spatial componeméth this
approach we simulate a complex fishery productigstesn with strong interactions
between components evolving in huge spatial arf®patial data are generated in a
modular and hierarchical way in reasonable comjmutaimes. We use our frame-
work to explore the maximum sustainable yield (M@¥ig to fix the max sustainable
catch in a large fishing area. Using our softwasmework, decision makers can
explore various policies and make choices to imeritne management and harvesting
of fisheries resources. Using a traditional popafatgrowth model from literature
[19], we show how our theoretical approach candsluo integrate spatial dynamics,
in spite of a huge number of components. Futureksvaiill require the integration of
the findings and insights of experimental studiss.in [21], we plan also to add an
economic model that takes into account the saldstofand the cost of fuel. We can
thus add a propagation rule for trawlers. At theireammental level, we want to inte-
grate the dynamics of biomass (phyto/zooplanktar eurrents and finally imple-
ment a propagation rule of biomass based on ctrent
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